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Abstract: Few-shot object detection (FSOD) is proposed to solve the application problem of traditional
detectors in scenarios lacking training samples. The meta-learning methods have attracted the
researchers’ attention for their excellent generalization performance. They usually select the same
class of support features according to the query labels to weight the query features. However, the
model cannot possess the ability of active identification only by using the same category support
features, and feature selection causes difficulties in the testing process without labels. The single-scale
feature of the model also leads to poor performance in small object detection. In addition, the hard
samples in the support branch impact the backbone’s representation of the support features, thus
impacting the feature weighting process. To overcome these problems, we propose a multi-scale
feature fusion and attentive learning (MSFFAL) framework for few-shot object detection. We first
design the backbone with multi-scale feature fusion and channel attention mechanism to improve the
model’s detection accuracy on small objects and the representation of hard support samples. Based
on this, we propose an attention loss to replace the feature weighting module. The loss allows the
model to consistently represent the objects of the same category in the two branches and realizes the
active recognition of the model. The model no longer depends on query labels to select features when
testing, optimizing the model testing process. The experiments show that MSFFAL outperforms
the state-of-the-art (SOTA) by 0.7–7.8% on the Pascal VOC and exhibits 1.61 times the result of the
baseline model in MS COCO’s small objects detection.

Keywords: few-shot object detection; few-shot learning; attention mechanism; multi-scale feature
fusion

1. Introduction

Thanks to the development of large-scale computing devices, deep learning has made
rapid progress. As a research branch of deep learning, object detection is widely used
in production and life due to its excellent stability, high accuracy, and detection speed.
It can realize the localization and classification of the objects and mark them in images
in the form of text and bounding boxes. However, object detection algorithms based on
deep learning usually need to learn the representation of object features from large-scale
labeled data before they can classify and locate objects, which consumes many human and
material resources [1–3]. Additionally, it is challenging to obtain a large amount of data
that can be used for training in some application scenarios, such as rare species detection,
industrial defect detection, and so on. Inspired by the cognitive characteristics that humans
can recognize a new thing through only a few samples, the researchers believe that the
neural network imitates human neurons’ reasoning process, so it should also have similar
learning capabilities [4]. Therefore, FSOD comes into being, which is dedicated to using
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only a few training samples to realize the detection function. The current mainstream
FSOD methods can be divided into metric learning-based, data augmentation-based, and
meta-learning-based methods.

Metric learning-based methods [5–8] usually utilize the feature distribution of objects
for classification. Li et al. [5] propose a boundary balance condition for the target distribu-
tion in the feature space. It can reduce the uncertainty of novel class object representation
caused by an excessively large feature distance and the difficulty of novel class feature rep-
resentation caused by an excessively small feature distance. Sun and Karlinsky et al. [6,7]
classified features by comparing the distribution distance between query and support
features. However, metric learning heavily relies on the sampling strategy. If the strat-
egy is simple, the model can only learn simple distributions and cannot be applied to
complex scenarios; if it is tough, the model will have difficulty or even fail to converge.
Augmentation-based methods [9,10] enrich data diversity in limited data through various
techniques. Li et al. [10] increase the diversity of data by adding noise and occlusion to the
images. This can improve the model’s consistent representation of the same object under
different conditions. Zhang et al. [9] employed hallucination networks to generate more
object proposals, enriching the training data in disguise. However, it still cannot achieve
good results in FSOD with very little training data. Meta-learning-based methods [5,11–16]
avoid the above problems. The model is usually built with a Siamese network structure [17]
and learns to discern the objects in the query images by relying on the information provided
by the support images. This mode of continuously adapting to each specific task enables
the model to obtain an abstract learning ability, which can easily be generalized on a few
training samples.

In existing meta-learning-based FSOD methods, most models still take ResNet [18] and
VGG [19] as the network backbones of the dual-branch structure. This will cause the model
to be insufficient in small object detection [20,21], which can only reach 1–3% in mAP (mean
average precision) on the MS COCO dataset [22]. At the same time, many hard samples
exist in the support branch (as shown in Figure 1). A large percentage of the regions in
these samples are background or other category objects, and only a tiny part belongs to
useful support objects. This causes the model to fail to obtain the support features that can
accurately represent the category, which affects the model’s recognition effect of objects
belonging to the same class in the two branches. In addition, during the training process,
most models need to filter out the support features of the same class according to the query
labels to enhance the query features, highlighting the object features belonging to the same
category in the two branches. This seems reasonable, but it only makes use of the support
feature information of the same category, and the model does not obtain the ability to
actively distinguish the same category of objects from the support images. The model has
to manually prepare support images of the same class during the testing process without
query labels, making the process more time-consuming and laborious.

To overcome the above deficiencies, this paper proposes the MSFFAL based on meta-
learning. First, we adopt a multi-scale feature fusion strategy and design the backbone as
ResNet + feature pyramid networks (FPNs) [21] to improve the model’s recognition effect
on small objects. Then, we optimize the model’s representation of hard support samples
by introducing the channel attention structure SENet [23] in the support branch to weight
the features of foreground objects. Finally, we design an attention loss to let query features
perform attention calculations with all support features. The computed attention scores
constrain the model’s representation of the query features. Through attention loss, the
model learns to actively focus on objects of the same category in the two branches and
no longer depends on query labels. The experiments on the benchmark datasets Pascal
VOC [24,25] and MS COCO [22] prove the effectiveness of our method.
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Figure 1. Some support images used for training. The support objects only account for a small
proportion in the figure and most of the area is the background, which we call hard samples. It is
difficult for the model to extract support features that can represent the desired object category.

To summarize, the main contributions of this paper are as follows:

(1) We propose an MSFFAL framework for few-shot object detection. The backbone
of our model mainly contains the multi-scale feature fusion and channel attention
mechanisms. The former is introduced to improve the model’s detection accuracy on
the small objects. The latter is adopted to strengthen the model’s representation of
hard samples in the support branch and enhance the model attention to foreground
object features.

(2) We design an attention loss to enhance the active recognition ability of the model,
realize the consistent representation of objects belonging to the same category in
the two branches, and improve the model’s generalization ability in novel classes.
Based on this, the model no longer relies on the feature selection and avoids model
testing difficulty.

(3) We conduct extensive experiments on the benchmark datasets Pascal VOC and MS
COCO to verify the effectiveness of our method. The experimental results show that
our model is 0.7–7.8% ahead of the SOTAs on the Pascal VOC. We also achieve a
substantial lead over the baseline model in MS COCO’s small object detection.

This paper includes five sections: The first is the introduction, which introduces
the relevant research background of FSOD and the motivation for our research. The
Section 2 presents the related work of FSOD and describes the problems and optimization
possibilities of the previous methods. The Section 3 introduces our algorithm in detail. The
Section 4 first introduces the dataset selected in this paper and the relevant experimental
settings and then shows sufficient experimental results to prove the reliability of our work.
The Section 5 summarizes the whole work and concludes.

2. Related Works
2.1. Object Detection

The object detection algorithm can realize the detection of the targets in the image
or video. If there is a target to be detected, it will return the category and bounding
box information and mark it in the image. Conventional deep learning-based object
detectors can be classified into one- and two-stage detectors. The one-stage detectors
directly regress the object bounding boxes and categories through the fully connected layer
or the convolutional layer in the deep features, such as the YOLO [26–28] series detectors
and the SSD [20] detector. These are characterized by a high detection speed but are prone
to misjudgment of background information. The two-stage detectors generate the object
candidate regions and perform position repair and classification on the candidate regions,
such as the faster R-CNN [29–32] series detectors. Compared with the one-stage detectors,
the detection speed of the two-stage detectors is slower, but the detection accuracy is higher
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than that of the single-stage detectors. Since the region proposal network (RPN) module
in faster R-CNN only distinguishes foreground and background information, it has better
class independence. This gives faster R-CNN a more significant advantage in generalization
to novel classes. Therefore, most current FSOD models take faster R-CNN as their base
detector. The method in this paper is also evolved based on this model.

2.2. Few-Shot Learning

To allow the deep model to generalize in the target domain with only a few sam-
ples, the researchers propose a new machine learning method, namely few-shot learning
(FSL) [33–37] for this problem. However, insufficient samples will bring difficulties in
model training, resulting in overfitting. Therefore, learning a kind of transferable abstract
knowledge so that the deep model can be applied to the target scene with only a little or no
training data has become a critical research problem in this field. Early FSL methods mainly
focus on classification tasks. At the earliest, Li et al. [4] proposed a method based on the
Bayesian framework. They believed computers should learn to use prior knowledge, just
like humans can recognize new things from a few examples. Later, Vinyals et al. [38] pro-
posed the matching network to encode images as deeply embedded features and perform
weighted nearest neighbor matching to classify query images. Snell et al. [39] proposed
a prototype network based on the previous methods, converted the embedded features
into feature vectors, and classified samples by measuring the distance between the feature
vectors. Recently, Xie et al. [40] found that the few-shot classification accuracy can be
improved using Brownian distance instead of the previous Euclidean distance or cosine
similarity. The above methods allow the model to no longer focus on the specific category
of the object but to learn how to distinguish which objects are in the same category. There-
fore, the model also has good generalization performance when facing unseen samples.
However, compared with the few-shot classification tasks, FSOD needs to consider both
the classification and localization of the objects. Thus, it is more challenging to implement
and needs to be the focus of further work.

2.3. Few-Shot Object Detection and Meta-Learning Paradigm

FSOD aims to use only a few labeled images to train the model to realize the localiza-
tion and classification of the objects. Among various FSOD methods, researchers are widely
concerned with meta-learning-based models because of their abstract learning ability to
better generalize in novel classes. Kang et al. [11] developed a dual-branch detection
model based on YOLO. They proposed a reweighting module to realize the weighting of
support features to query features, amplifying common object features and enhance the
model’s attention to objects belonging to the same category in the two branches. Like the
former, Xiao and Yan et al. [14,16] built few-shot detectors based on faster R-CNN, which
raises the detection results to a higher level. Fan et al. [12] proposed the attention RPN
based on the faster R-CNN. They took support features to perform feature enhancement
on query features before feeding them into RPN. This improves the proposal effect of
RPN for unseen novel class objects. Zhang et al. [13] generated a feature convolutional
kernel for the support branch features and then performed convolution operations on
the query features to enhance the object features belonging to the same category. All the
above methods focus on enhancing the support features to the query features, ignoring
the inherent defects of the model itself. Firstly, the hard samples in the support branch
lead to the model’s imprecise representation of support features, affecting the effect of
weighting query features. Secondly, the single-level feature maps lead to the model’s poor
performance in small object detection. Finally, weighting query features only through the
support features of the same category cannot endow the model with the ability to actively
identify objects of the same category. To this end, we propose the MSFFAL to overcome
the previous shortcomings from the above three perspectives and verify the method’s
effectiveness through sufficient experiments.
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3. Method

Our method has been further innovated and optimized based on the meta R-CNN [14].
We first improved the model’s recognition performance for small objects by introducing a
multi-scale mechanism in the feature extraction backbone. Then, we add a channel attention
mechanism based on FPN to optimize the model’s representation of hard samples in the
support branch and improve detection precision. Finally, we designed an attention loss to
let the model learn consistent representations of objects in the two branches of the same
category. The model learns to actively identify objects from support samples, leading to
an overall improvement in detection performance. In this section, we first make a method
definition for FSOD. Then, we introduce the overall architecture of MSFFAL and describe
the modules and structures in detail.

3.1. Problem Definition

We follow the dataset setup, training strategy, and evaluation methods in [11,14].
We divide the dataset into Cb and Cn, where Cb is the base class data with thousands of
annotations per class and Cn is the novel class data with only one to dozens of annotations
per class. The base class and the novel class data do not contain the same object categories,
that is, Cb ∩ Cn = Φ. We first train the model on base classes Cb and then fine-tune it on
the balance set of Cb and Cn with only K annotations per class. K is set to different values
according to the evaluation indicators of different datasets. For a given N-way K-shot
learning task, in each iteration, the model samples a query image and NK support images
with N categories and K objects in each category from the prepared dataset as input. Then,
the model outputs the detection results of the objects in the query image. Finally, we
evaluate the model’s performance by the mAP on the novel classes in the test set.

3.2. Model Architecture

We choose the meta R-CNN, whose backbone is faster R-CNN, as our baseline. The
model architecture is shown in Figure 2, which is a Siamese network structure. The upper
side of the network is the query branch, which inputs the query image to be detected,
while the lower side is the support branch, which inputs the support image-mask pairs for
auxiliary detection. We remove the meta learner module in meta R-CNN and realize the
information interaction in the two branches through our attention loss. Compared with
the baseline, we optimize the backbone of the query and support branches into ResNet +
FPN and ResNet + FPN + SENet structures, respectively. The two backbones share weight
parameters during the training stage. The query features are passed through RPN and
ROIAlign to obtain positive and negative proposal feature vectors. The support features
are directly average pooled to obtain support feature vectors representing each support
object category. Then, they are used to construct Lmetacls to classify support objects and to
make attention loss with query positive proposal vectors. The model is trained with three
losses, namely:

L = λ1Ldet + λ2Lmetacls + λ3Latten, (1)

where Ldet is the detection loss of faster R-CNN, Lmetacls is the meta-classification loss in the
support branch, Latten is our attention loss, and λ is the weight parameter of the loss.

3.3. FPN and SENet

To improve the detection precision of the FSOD model for small objects and the
representation effect for hard support samples, we design the feature extraction backbone
as an FPN+SENet structure.

As shown in Figure 3, FPN mainly includes a bottom–up line (blue box), a top–down
line (green box), and lateral connections (1× 1 conv 256). Bottom–up is the forward process
of the ResNet network. Each layer down-samples the feature maps’ length and width
and increases the number of channels. Suppose that the input image size is 224 × 224 × 3,
Layer0–Layer3 output feature maps sizes of 56 × 56 × 256, 28 × 28 × 512, 14 × 14 × 1024,
and 7 × 7 × 2048, respectively. Top–down is the process of up-sampling the width and
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height of the feature maps by two times. FPN combines high-level and low-level features
through lateral connections to obtain M2–M5 features with 256 channels. Finally, the 3 × 3
convolution kernel is used to convolve the fusion features to eliminate the aliasing effect
of up–sampling and get P2–P5 features. P6 is the feature map obtained by P5 after max-
pooling with stride = 2. Each level features output by FPN are fed to the RPN module for
region proposal. Among them, the low-level features will contribute more proposals for
small objects to improve the detection effect of small objects.
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We add the SENet structure based on FPN. The model achieves a channel-level self-
attention enhancement through this structure. During the training process, the model
continuously learns to improve the representation of hard support samples. The design
of SENet is shown in Figure 4. This module adds a skip connection to the output feature
layer of the ResNet forward network. In the connection, the feature maps are first average
pooled. Then, the channel attention scores are obtained through the channel attention
module. Finally, the original feature maps are weighted at the channel level through the
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scores. The internal structure of the channel attention module is shown on the right side of
Figure 4. The input feature vector Vin ∈ Rchannel×1 is first dimensionally decreased through
the first fully connected (FC) layer with a reduction rate of 4 to obtain V′in ∈ Rchannel/4×1.
Then, V′in is followed by the first activation function Tanh to obtain V ′′in ∈ Rchannel/4×1. Then,
the dimension of V ′′in is increased through the second FC layer to obtain V ′′′in ∈ Rchannel×1.
Finally, V ′′′in is followed by the second activation function sigmoid to obtain the weight
score vector Vout ∈ Rchannel×1.The whole process can be summarized as:

Vout = Sigmoid(FC2(Tanh(FC1(Vin)))) (2)

Two different activation functions are used to increase the network’s nonlinearity and
enrich the network’s expressive ability. SENet allows the support branch to output high-
quality support feature vectors for meta-classification and the construction of attention loss,
improving the model detection performance.
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3.4. Attention Loss

Meta learner is the core module in meta R-CNN, which uses the same category support
features to weight the query features. This weighting method causes the model to lack
the ability to actively identify objects of the same category, and the dependence on the
query labels to select the support features makes model testing difficult. To remedy these,
we design an attention loss to replace the meta learner module in the baseline model
meta R-CNN.

The essence of the attention loss lies in utilizing the support features to establish a
mapping between query-positive proposal features and their corresponding categories.
Through training, a strong response is generated between objects of the same category
in two branches. The model learns to recognize objects of the same category in two
branches while also discriminating objects of different categories. As shown in Figure 5,
we extract all query-positive proposal feature vectors Vsheep, Vcar ∈ R256×1 according to the
intersection over union (IOU) between the predicted bounding boxes generated by the
RPN and the ground truth. We then perform a matrix multiplication operation between
all positive proposal feature vectors and the transpose of the support feature vectors
VT

support ∈ R1×256 and put them through softmax to obtain attention vectors Vatten ∈ RN ,
where N denotes the number of input support images in each iteration. Each element
in Vatten represents a support category. Suppose the category of the positive proposal is
consistent with that of the support vector. In that case, we expect the value of the element
position corresponding to this category to be close to 1; otherwise, it is close to 0. To
achieve the goal above, we concatenate all the attention vectors Vatten together to obtain the
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score matrix Mscore ∈ RNp×N , where Np is the numbers of positive proposals, and Labels
corresponds to each positive proposal to constrain the trend of Mscore, that is, the proposed
attention loss:

Latten = −Mscorelog(Mlabels) (3)

where Mlabels ∈ RNp×N represents the concatenation of the Labels.
Through the attention loss, on the one hand, the model can learn a consistent repre-

sentation of objects belonging to the same category in the two branches during the training
process. On the other hand, the model learns an abstract and easily transferable meta-
knowledge in this way. Thus, it can also show an excellent generalization performance
when facing unseen novel class objects.
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4. Experiments
4.1. Setup
4.1.1. Datasets and Preparation

We validate our method on two benchmark object detection datasets, Pascal VOC and
MS COCO. The few-shot object detection datasets are constructed by splitting the above
two datasets.
Pascal VOC: The Pascal VOC dataset contains 20 object categories in total. The dataset is
divided into a base set and a novel set by three splits. The base set of each split includes
15 categories, and the novel set contains 5 categories. The novel sets of each split are: novel
set 1: {“bird”, “bus”, “cow”, “motorbike”, “sofa”}; novel set 2: {“aircraft”, “bottle”, “cow”,
“horse”, “sofa”}; novel set 3: {“boat”, “cat”, “motorbike”, “sheep”, “sofa”}. Novel set 2 and
3 are more challenging to train than novel set 1. We call them hard samples. The model is
trained under the condition that only 1, 2, 3, 5, and 10 novel class samples are provided.
The performance of the 1-, 2-, 3-, 5-, and 10-shot fine-tuning models is evaluated by the
mAP in the test set.
MS COCO: There are 80 object categories in the MS COCO dataset split into a base set
containing 60 categories and a novel set having 20 categories. The model is trained on
the MS COCO dataset under the condition that only 10 and 30 novel class samples are
provided. The performance of the 10- and 30-shot fine-tuning models is evaluated by the
mAP in the test set.

4.1.2. Implementation Details

Firstly, we pre-train our feature extraction module on the large-scale dataset Ima-
geNet [41] and then train and fine-tune our model end-to-end on the Pascal VOC and
MS COCO. We use two pieces of NVIDIA RTX 3090 24 g for model training. We choose
stochastic gradient descent (SGD) as the training optimizer with momentum and decay set
to 0.9 and 0.0001, respectively. On the Pascal VOC dataset, we performed 18,000 iterations
with a learning rate of 0.001 in the first 16,000 iterations and 0.0001 in the last 2000 iterations
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during the base classes training phase. In the novel classes fine-tuning stage, 300, 600, 900,
1200, and 1500 iterations with a learning rate of 0.001 were performed for the 1-, 2-, 3-,
5-, and 10-shot settings, respectively. On the MS COCO dataset, we performed 120,000
iterations with an initial learning rate of 0.005 in the first 110,000 iterations and 0.0005 in the
last 10,000 iterations during the base classes training phase. In the novel classes fine-tuning
stage, 5000 and 8000 iterations with a learning rate of 0.001 were performed for the 10- and
30-shot settings, respectively.

4.2. Comparison with the State-of-the-Arts

In this section, we compare our model with the popular approaches in recent years
on the Pascal VOC and MS COCO datasets. On the Pascal VOC dataset, we only compare
the mAP obtained by the models in the novel classes. The evaluation metrics on the MS
COCO dataset are more abundant, mainly comparing the model’s AP50–95, AP50, APS,
APM, and APL.

4.2.1. Performance in the Three Novel Sets of the Pascal VOC

The detection results of our model in the three novel sets of the Pascal VOC are shown
in Tables 1–3. In the tables, “shot” refers to the number of annotations provided during
model training; “1-, 2-, 3-, 5-, and 10-shot” refer to the mAP of the model’s performance on
novel class object detection in the test set, trained with only 1, 2, 3, 5, and 10 annotations
provided per class, respectively. “Mean” denotes the average mAP across the five afore-
mentioned scenarios. We compare and analyze the results with the SOTA methods in recent
years, including metric learning models, data augmentation models, and meta-learning
models. As shown in Table 1, our model leads the SOTA by 2.5%, 8.2%, 7.8%, and 2.6% in
1-, 2-, 3-, and 5-shot fine-tuning in novel set 1, respectively. As illustrated in Table 2, we
outperform all metrics by 1.4%, 2.1%, 4.3%, 6.3%, and 0.7% in novel set 2, respectively. In
Table 3, we can find that our model outperforms 5-shot fine-tuning by 1.3% in novel set 3.
We also lead the SOTA by 5.8% and 3.9% in the average of all fine-tuning results in novel
sets 1 and 2, respectively.

Table 1. Comparison with previous works on novel set 1 of the PASCAL VOC. Conducting 1-, 2-, 3-,
5-, and 10-shot fine-tuning experiments on five novel classes, respectively. The top two results are
identified in black and blue bold, respectively.

Method
Novel Set 1

Mean
1-Shot 2-Shot 3-Shot 5-Shot 10-Shot

Meta-YOLO [11] 14.8 15.5 26.7 33.9 47.2 27.6
MetaDet [42] 18.9 20.6 30.2 36.8 49.6 31.2

Meta R-CNN [14] 19.9 25.5 35.0 45.7 51.5 35.5
Viewpoint [16] 24.2 35.3 42.5 49.1 57.4 41.7
TFA w/cos [8] 39.8 36.1 44.7 55.7 56.0 46.6

DCNet [15] 33.9 37.4 43.7 51.1 59.6 45.1
AFSOD w/R50 [13] 46.8 49.2 50.2 52.0 52.4 50.1

Halluc w/cos [9] 47.0 44.9 46.5 54.7 54.7 49.7
TIP [10] 27.7 36.5 43.3 50.2 59.6 43.5

CME w/F R-CNN [5] 41.5 47.5 50.4 58.2 60.9 51.7
FSCE [7] 44.2 43.8 51.4 61.9 63.4 52.9

MSFFAL (ours) 49.5 57.4 59.2 64.5 62.9 58.7
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Table 2. Comparison with previous works on novel set 2 of the PASCAL VOC. Conducting 1-, 2-, 3-,
5-, and 10-shot fine-tuning experiments on five novel classes, respectively. The top two results are
identified in black and blue bold, respectively.

Method
Novel Set 2

Mean
1-Shot 2-Shot 3-Shot 5-Shot 10-Shot

Meta-YOLO [11] 15.7 15.3 22.7 30.1 40.5 24.9
MetaDet [42] 21.8 23.1 27.8 31.7 43.0 29.5

Meta R-CNN [14] 10.4 19.4 29.6 34.8 45.5 27.9
Viewpoint [16] 21.6 24.6 31.9 37.0 45.7 32.2
TFA w/cos [8] 23.5 26.9 34.1 35.1 39.1 31.7

DCNet [15] 23.2 24.8 30.6 36.7 46.6 32.4
AFSOD w/R50 [13] 39.4 43.1 43.6 44.1 45.7 43.2

Halluc w/cos [9] 26.3 31.8 37.4 37.4 41.2 34.8
TIP [10] 22.7 30.1 33.8 40.9 46.9 34.9

CME w/F R-CNN [5] 27.2 30.2 41.4 42.5 46.8 37.6
FSCE [7] 27.3 29.5 43.5 44.2 50.2 38.9

MSFFAL (ours) 40.8 45.2 47.9 50.5 50.9 47.1

Table 3. Comparison with previous works on the Novel set 3 of the PASCAL VOC. Conducting 1-, 2-,
3-, 5-, and 10-shot fine-tuning experiments on five novel classes, respectively. The top two results are
identified in black and blue bold, respectively.

Method
Novel Set 3

Mean
1-Shot 2-Shot 3-Shot 5-Shot 10-Shot

Meta-YOLO [11] 21.3 25.6 28.4 42.8 45.9 32.8
MetaDet [42] 20.6 23.9 29.4 43.9 44.1 32.4

Meta R-CNN [14] 14.3 18.2 27.5 41.2 48.1 29.9
Viewpoint [16] 21.2 30.0 37.2 43.8 49.6 36.4
TFA w/cos [8] 30.8 34.8 42.8 49.5 49.8 41.5

DCNet [15] 32.3 34.9 39.7 42.6 50.7 40.0
AFSOD w/R50 [13] 44.1 49.8 50.5 52.3 52.8 49.9

Halluc w/cos [9] 40.4 42.1 43.3 51.4 49.6 45.4
TIP [10] 21.7 30.6 38.1 44.5 50.9 37.2

CME w/F R-CNN [5] 34.3 39.6 45.1 48.3 51.5 43.8
FSCE [7] 37.2 41.9 47.5 54.6 58.5 47.9

MSFFAL (ours) 40.9 45.2 50.0 55.9 56.7 49.7

The results in Pascal VOC prove the effectiveness of our method. Our model achieves
the best results among the 12 detection metrics and ranks second by a slight margin in
the rest of the metrics. Even in the hard sample novel set 2, the model still performs well
and obtains a comprehensive lead. Although only one result of the model is leading in
Novel set 3, other metrics are close behind, which is still a vast improvement compared to
the baseline model. It proves that the channel attention mechanism improves the model’s
representation of hard support samples and its detection effect. The addition of the attention
loss enables the model to consistently represent the same category of objects in the two
branches, enhancing the model’s generalization ability in the novel classes.

4.2.2. Detailed Performance on the Novel Set 1

This section compares the model’s average precision (AP) in the 3- and 10-shot fine-
tuning of each novel class in novel set 1 and the mean average precision (mAP) in the
novel and the base set. Here, “shot” refers to the number of annotations provided during
model training.

It can be observed from Table 4 that our model achieves the maximum detection
precision in most of the novel class objects, in which the AP of the “bus” and “cow” even
surpasses the detection of the base class objects. However, our model lags behind previous
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methods in the mAP of the base classes. For this reason, we analyze that more information
in the base class is retained because models such as TFA [8] and MPSR [43] inherit the ideas
of transfer learning. Thus, they behave very differently in base and novel classes. While
attention loss focuses on making the model actively discover the same class of objects in
the two branches, its performance on the novel and base classes is relatively balanced, and
there will be no massive gap when the detection category changes. In addition, since the
base class data can be obtained from open source datasets, FSOD should pay more attention
to the model’s performance in the novel class data.

Table 4. Comparison with previous works on each class of novel set 1. The top two results are
identified in black and blue bold, respectively. ‘*’ denotes that we reproduce the experimental result.
‘-’ denotes that the result is not recorded.

Shot Method
Novel Class mAP

Bird Bus Cow mbike Sofa Novel Base

3

Meta YOLO [11] 26.1 19.1 40.7 20.4 27.1 26.7 64.8
Meta RCNN [14] 30.1 44.6 50.8 38.8 10.7 35.0 64.8

MPSR [43] 35.1 60.6 56.6 61.5 43.4 51.4 67.8
TFA w/cos [8] - - - - - 44.7 79.1

TFA w/cos * [8] 21.9 53.8 56.5 54.2 47.3 46.7 78.5

MSFFAL (ours) 57.9 67.4 64.5 58.1 48.2 59.2 65.9

10

Meta YOLO [11] 30.0 62.7 43.2 60.6 39.6 47.2 63.6
Meta RCNN [14] 52.5 55.9 52.7 54.6 41.6 51.5 67.9

MPSR [43] 48.3 73.7 68.2 70.8 48.2 61.8 71.8
TFA w/cos [8] - - - - - 56.0. 78.4

TFA w/cos * [8] 39.0 71.9 59.9 70.4 48.2 57.8 79.1

MSFFAL (ours) 61.2 74.0 72.4 64.6 42.8 62.9 68.7

4.2.3. Performance on the MS COCO Dataset

This section displays the detection results of our model on the MS COCO dataset. In
Table 5, AP50–95 represents the average mAP of the model, with an IOU ranging from 0.5
to 0.95. AP50 represents the mAP of the model when IOU = 0.5. APS, APM, and APL are
the mAP of the model for small (area < 32 × 32), middle (32 × 32 < area < 96 × 96), and
large (area > 96 × 96) object detection, respectively. Here, “shot” refers to the number of
annotations provided during model training. Table 5 shows that, in 10-shot fine-tuning,
MSFFAL outperforms previous works by 1.1% in APS. In 30-shot fine-tuning, it leads by
1.4% and 1.3% in AP50 and APS, respectively. Additionally, the results in the remaining
indicators are close to the previous model. In particular, we can find that our model
outperforms the baseline model Meta R-CNN in all metrics with a large margin, especially
for small objects. This performance shows that the backbone combines the FPN structure
to realize multi-scale feature fusion, providing more levels of features for RPN. Among
them, the low-level features offer the model a higher number of small object proposals,
thereby effectively improving its detection precision on small objects. In addition, SENet’s
optimization of support features and the active identification ability of the model endowed
by the attention loss promote the improvement of detection results. However, according
to the overall detection results, it can be seen that the performance of MSFFAL on the
MS COCO is not as good as that on the Pascal VOC and falls behind previous models in
many detection results. Concerning this phenomenon, we consider that the first reason
is that the MS COCO dataset is more complex than the Pascal VOC, containing a large
number of hard samples and small object samples. Moreover, since support features and
query features construct the attention loss, the representation effect of the support features
directly affects the final result of the model. Although the corresponding strategy has been
adjusted to cover this problem, the model still cannot accurately represent such samples,
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revealing shortcomings when dealing with complex datasets. This will also be a part of
our future work.

Table 5. Comparison with previous works on the MS COCO. Conducting 10- and 30-shot fine-tuning
experiments on 20 novel classes, respectively. The top two results are identified in black and blue
bold, respectively. ‘-’ denotes that the result is not recorded.

Shot Method AP50–95 AP50 APS APM APL

10

Meta YOLO [11] 5.6 12.3 0.9 3.5 10.5
MetaDet [42] 7.1 14.6 1.0 4.1 12.2

Meta RCNN [14] 8.7 19.1 2.3 7.7 14.0
TFA w/fc [8] 9.1 17.3 - - -

TFA w/cos [8] 9.1 17.1 - - -
Viewpoint [16] 12.5 27.3 2.5 13.8 19.9

MSFFAL (ours) 11.1 26.9 3.6 11.2 18.0

30

Meta YOLO [11] 9.1 19.0 0.8 4.9 16.8
MetaDet [42] 11.3 21.7 1.1 6.2 17.3

Meta RCNN [14] 12.4 25.3 2.8 11.6 19.0
TFA w/fc [8] 12.0 22.2 - - -

TFA w/cos [8] 12.1 22.0 - - -
Viewpoint [16] 14.7 30.6 3.2 15.2 23.8

MSFFAL (ours) 14.3 32.0 4.5 14.7 23.0

4.2.4. Convergence Comparison of Attention Loss on Different Datasets

This section compares the convergence of attention loss during model training on
the Pascal VOC and MS COCO datasets. From Figure 6, it can be observed that the
attention loss slowly converges in both datasets as the model iterates, demonstrating the
effectiveness of the loss. Additionally, we find that compared to the convergence trend
on the MS COCO dataset, attention loss converges more quickly and to a greater extent
on the Pascal VOC dataset, indicating better convergence performance. This reflects that
attention loss is not adept at handling complex datasets such as MS COCO, which has more
object categories and contains many small objects. Although the multi-scale feature fusion
strategy and attention mechanism somewhat alleviates the impact of this issue, MSFFAL
still faces difficulties in representing these objects, which in turn affects the performance
of the subsequent attention loss. However, from the overall detection performance of the
model, MSFFAL achieves performance improvement compared to the baseline model and
surpasses previous algorithms in small object detection.

4.3. Ablation Study

In this part, we conducted detailed ablation experiments to verify and analyze the
impact of each module on the detection results. We conducted experimental validation on
both the Pascal VOC and MS COCO datasets.

4.3.1. The Performance of the Proposed Modules

For a fairer comparison, we performed ablation experiments for the modules on the
Pascal VOC hard sample novel set 2 (as shown in Table 6). In the table, FPN represents the
multi-scale feature fusion module, and SENet represents the channel attention module. In
this part, we compare it with the baseline model meta R-CNN at the same time. It can be
observed from the second and third rows of Table 6 that the model’s precision increased by
1.8–24.8% with the addition of attention loss. The fourth row in the table shows that, when
we remove the Meta Learner module from the baseline, the model’s precision improves by
0.3–2.8%. Such results reflect that our attention loss plays an essential role in enhancing
the model’s active identification ability and generalization effect in the novel classes and
dramatically improves the detection precision of the baseline model. For the performance
of the model accuracy improvement after removing the meta learner, we analyze that,
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because the original weighting mechanism selects support features of the same category
to weight all positive and negative proposal vectors. This may lead to the enhancement
of some negative proposal features, thus impacting the overall recognition performance
of the model. In addition, the meta learner relies on the query labels for feature selection
which affect the model testing process. For this reason, we directly use attention loss to
replace the meta learner. Subsequently, the model’s precision improved with the addition
of FPN and SENet. In particular, SENet was essential in enhancing the model training for
hard sample tasks. The ablation results in Table 6 prove that the addition of FPN allows
RPN to generate more relevant proposals and enhance detection precision. SENet can
effectively improve the model’s representation effect on hard support samples. Attention
loss enables the model to have an autonomous learning ability, effectively realizes the
mining of the same class of objects in the two branches, and improves the detection effect
of the few-shot model.
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Table 6. Study the effect of each module on the detection results of the hard training data novel set 2
of the Pascal VOC dataset. The top results are identified in black bold. ‘×’ means that the module is
not added. ’X’ means that the module is added.

Model FPN SENet Attention
Loss

Novel Set 2

1-Shot 2-Shot 3-Shot 5-Shot 10-Shot

Meta R-CNN
[14]

× × × 10.4 19.4 29.6 34.8 45.4

× × X 35.2 36.9 46.2 45.8 47.2

MSFFAL (ours)

× × X 35.5 38.7 47.4 48.6 49.3

X × X 36.1 39.3 45.4 48.3 49.9

× X X 37.6 40.4 46.9 49.0 48.7

X X X 40.8 45.2 47.9 50.5 50.9

Table 7 compares the contributions of different modules in the detection results on
the MS COCO dataset. This section mainly shows the APs and AP50 achieved by the
model in 10- and 30-shot fine-tuning. It can be seen from Table 7 that although the model
faces a more complex dataset, the addition of attention loss still effectively improves the
detection accuracy, leading to the AP50 of the baseline by 7% and 7.2% in 10- and 30-shot
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fine-tuning, respectively. In addition, the subsequent combination of SENet and FPN has
further improved the detection precision. However, compared to SENet, FPN contributes
more to small object detection. Regardless of how the module is combined, adding FPN
can promote the detection of small objects by 0.3–0.5%. Finally, compared with the baseline
model, MSFFAL achieves a substantial lead.

Table 7. Study the effect of each module on the model’s detection results in APs and AP50 on the
novel class of the MS COCO dataset. The top results are identified in black bold. ‘×’ means that the
module is not added. ’X’ means that the module is added.

Model FPN SENet Attention Loss
10-Shot 30-Shot

APS AP50 APS AP50

Meta R-CNN
[14] × × × 2.3 19.1 2.8 25.3

MSFFAL (ours)

× × × 2.5 15.5 2.6 21.2
X × × 2.9 16.5 3.0 24.8

× × X 3.0 26.1 3.7 32.5
X × X 3.3 26.2 4.2 31.4

× X X 3.1 26.5 4.0 31.8
X X X 3.6 26.9 4.5 32.0

4.3.2. The Effect of the Position Where the SENet Is Added

In the Section 3 of this paper, we introduce the insertion method of SENet. Since
channel-wise attention enhancement is more suitable for deep features with higher semantic
levels, there is no way to determine the specific joining position. Thus, in this part, we
conduct ablation experiments on the influence of the insertion position of the SENet on the
detection results of the Pascal VOC dataset. The experimental results show the average
precision of the model for all fine-tuning in the three novel sets (as shown in Table 8). In
the table, “Layer0–3” represent the four convolutional layers in ResNet, respectively. It can
be seen from Table 8 that, when the channel attention mechanism is added after Layer1,
Layer2, and Layer3 of ResNet, the results of the model reach the highest. This also verifies
our conjecture that the module does not work with underlying features. In addition, all the
experimental results in this paper are based on this setting.

Table 8. Evaluate the effect of the SENet’s position added in ResNet on the detection results of the
Pascal VOC dataset. The top results are identified in black bold. ‘×’ means that the module is not
added; ’X’ means that the module is added.

Model
SENet Mean

Layer0 Layer1 Layer2 Layer3 Novel Set 1 Novel Set 2 Novel Set 3

MSFFAL
(ours)

× × × X 56.4 42.6 47.2
× × X X 57.6 44.5 48.7
× X X X 58.7 47.1 49.7
X X X X 58.2 44.7 47.0

4.4. Comparision with the Baseline in Meta Accuracy

Meta accuracy is the classification accuracy of the support branch features. It can
reflect the classification effect of the model on the novel classes in the fine-tuning stage.

As shown in Figure 7, we compare the meta accuracy achieved by our MSFFAL and
baseline model Meta R-CNN on the 1-, 3-, and 10-shot fine-tuning on the novel set 1 and
10- and 30-shot fine-tuning on the MS COCO under the same number of iterations. We
can observe from the figure that the meta accuracy achieved by MSFFAL exceeds the
baseline by 9.0%, 11.0%, 24.1%, 9.9%, and 14.7%, respectively. This proves that MSFFAL can
dramatically improve the classification effect of the novel classes and enhance the model’s
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representation of unseen objects to a large extent. Such results indicate that attention loss
has a certain potential in the task of few-shot classification. This will also become our
exploration and research direction in the next stage, and performance comparisons will be
made with mainstream algorithms such as Brownian distance [40].
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4.5. Time Complexity Analysis of MSFFAL

Time complexity is an important performance evaluation metric for most deep learning
methods and has a significant reference value in deploying and applying models. The
time complexity of a model is mainly reflected in the number of floating-point operations.
Therefore, we conducted a complexity analysis of MSFFAL, as shown in Table 9. The
second column of the table lists the modules included in MSFFAL, which are ResNet50,
RPN, Predict head, FPN, and SENet. The third column shows each module’s corresponding
floating-point operation counts, measured in giga floating-point operations (GFLOPs). It
can be found that the first three modules are the main components of the base detector
faster R-CNN and occupy the majority of the model’s computational complexity. The last
two modules are introduced in Section 3. The time complexity of attention loss depends
on the number of positive proposals, the value is unstable and always small, so it can be
ignored. The result shows that introducing FPN increases the model’s time complexity by
2.81 GFLOPs. However, FPN helps the model enhance the detection ability of small objects.
Moreover, SENet brings 0.003 GFLOPs to the model but effectively improves the model’s
representation and detection of difficult samples. In summary, we can find that improving
a model’s performance often comes at the expense of computational complexity. Therefore,
reducing this sacrifice is a direction for future exploration.

Table 9. Time complexity analysis of MSFFAL.

Model Module GFLOPs

MSFFAL (ours)

ResNet50 3.53
RPN 2.51

Predict head 0.003
FPN 2.81

SENet 0.003

5. Conclusions

We propose the MSFFAL based on meta-learning for few-shot object detection. In
addition to optimizing the feature extraction backbone with the FPN structure and SENet,
we also designed an attention loss. FPN effectively improves the detection effect of the
model on small objects through multi-scale feature fusion. SENet relies on the channel
attention mechanism to enhance the representation effect of the support branch on hard



Sensors 2023, 23, 3609 16 of 18

samples. Attention loss replaces the weighting module in the baseline model, introduces a
mutual constraint between query and support features, and achieves a consistent repre-
sentation of the objects belonging to the same class. Through this loss, the model learns to
actively discover the objects of the same class during the training process and no longer
relies on query labels for feature selection. We validate the effectiveness of our method on
the benchmark datasets Pascal VOC and MS COCO. In addition to the successful results
mentioned above, we identify some limitations in our research. For example, the model’s
overall performance in processing complex data still has room for improvement. This is
because complex datasets affect the model’s effective representation of features, which in
turn affects the effectiveness of the subsequent attention loss. Moreover, there is a general
lack of time complexity analysis for FSOD models. We will conduct an in-depth analysis
on the complexity issue and research how to reduce the model’s time complexity while
maintaining its detection performance. In the future, we will optimize our method to solve
the above problems. We will also continue to explore challenging datasets for method
validation and performance comparison with representative algorithms.
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