
Citation: Kvasnov, A.V.

Backscattering Analysis at ATR on

Rough Surfaces by Ground-Based

Polarimetric Radar Using Coherent

Decomposition. Sensors 2023, 23,

3614. https://doi.org/10.3390/

s23073614

Academic Editor: Ram M.

Narayanan

Received: 19 January 2023

Revised: 10 March 2023

Accepted: 23 March 2023

Published: 30 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Backscattering Analysis at ATR on Rough Surfaces by
Ground-Based Polarimetric Radar Using Coherent Decomposition
Anton V. Kvasnov

School of Cyber Physical Systems and Control, Peter the Great St. Petersburg Polytechnic University,
St. Petersburg 195251, Russia; antonkv@mail.ru or kvasnov_av@spbstu.ru

Abstract: This article deals with the analysis of backscattering at automatic target recognition (ATR)
by ground-based radar located on rough terrain surfaces, using the properties of wave polarization.
The purpose of the study is to examine and compare linear and circular polarized reflected waves,
which can be described by decomposition theorems. Coherent decompositions (Pauli, Krogager,
Cameron decomposition) are considered in the case of a rough terrain, for which the advantage of
the Pauli decomposition has been shown. The article demonstrates an approach to the extraction
of polarization signal backscattering data for two types of vehicles with different profiles. It is
shown that the measurement results can be calibrated by a corner reflector that takes into account the
properties of the ground surface, and further used for ATR based on supervised learning algorithms.
The accuracy of object classification was 68.1% and 54.2% for the signal generated by linearly and
elliptically polarized waves, respectively. Based on these results, we recommend using a linearly
polarized wave as an object recognition mechanism. At the same time, any reflected depolarized
wave significantly reshapes the structure due to the rotation of the object profile and the influence of
a rough surface (vegetation fluctuations). This explains the low recognition accuracy in general.

Keywords: automatic target recognition (ATR); radar polarimetry; object recognition; polarimetric
radar; rough surfaces; high-resolution range profile (HRRP); coherent decomposition

1. Introduction

The problem of scattered polarized electromagnetic wave processing on arbitrary
objects has many applications. In particular, the analysis of polarization characteristics
enables ATR using supervised learning algorithms [1,2]. Having obtained a stable scattering
pattern using radar polarimetry, we can use these data to classify a remotely sensed object,
as denoted in [2–4]. It is known that polarimetric radar is capable of emitting and receiving
signal with linear and circular polarization reflected from objects of various types and
shapes (Figure 1). Although such properties allow to extend the invariant feature space for
ATR, we face a number of problems in signal processing. Thus, let us trace the retrospective
of radar polarimetry and its applications.

The basic principles of polarization scattering were initiated in [5,6]. The use of
polarization properties of the radar was continued in [7,8]. Theorems on decomposition
of the target into orthogonal components have become important achievements [9,10].
Currently, an important task of radar polarimetry is the interpretation of target signatures
and their application in various practical developments [11–14].

Polarimetric radar for object recognition offers broad opportunities in meteorological
observations [15–17], classification of birds and insects [18,19], and in automatic MIMO
applications [20–22]. A large class of practical recognition problems based on radar po-
larimetry relates to ground-based space surveys in synthetic aperture radar (SAR) [22–24].
Therefore, a special mathematical approach using matrix cells has been developed [7,25].
Another method of ATR is the use of high-resolution range profile (HRRP) in radar sys-
tems [26,27]. At the same time, there are several studies on ATR of polarimetric ground-
based radars under different interference conditions on a rough surface [1,2,28].
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Figure 1. Principle of obtaining a polarized target signature. E—vector of electric-field intensity.

In this case, the main problem is the influence of HRRP on the accuracy of object clas-
sification [29–31]. On the other hand, the physical influence of the ground as a polarimetric
discriminant for ATR is also essential [1,2,30]. Therefore, this article aims to investigate the
implementation of rough terrain object recognition based on a number of backscattering
marks received experimentally for emitted linearly and circularly polarized signals.

Note that most of the works did not take into account scattering on rough ground
surfaces for a small elevation angle [26,27]. Some of the results were simulated without
experimental data [2] or under laboratory conditions [1,22]. In some works, where the
classification of objects in polarimetric radar was carried out, the scattering of emitted
elliptically polarized waves was not taken into account [21,28].

1.1. Problem and Tasks

In this article we want to focus on the problem of the effect of a rough surface on ATR.
Based on this problem, the author considers the following tasks:

• Select an object decomposition theorem for feature space design and test an acceptable
scattering mechanism after calibration

• Conduct data calibration considering the effect of rough ground surface on object
recognition

• Explore supervised learning as an ATR tool for polarimetric radar.

The article evaluates the efficiency of object recognition on real rough surfaces using
polarization data obtained with Ku-band radar. In the course of the study, the theoretical
results were tested on real data. Thus, the results of HRRP testing are tentatively presented
for discussion.

1.2. Structure of the Article

Since our study is mainly based on experimental evaluation, the structure of the article
is designed according to Figure 2.

In Section 2 we present the necessary theoretical aspects. Section 3 discusses applied
polarization characteristics and features that we can obtain for different types of decom-
position. Sections 4 and 5 demonstrate results of the experimental data. Sections 6 and 7
present the results, discussions, and conclusions of the article.
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Figure 2. Structure of the article.

2. Theoretical Part

In this section, we will present the basic decomposition theorems and make a number
of assumptions concerning the conditions of wave propagation along a rough
underlying surface.

2.1. Assumptions

The problem of optimal data extraction from reflected signals was posed in the disser-
tation [5]. In the general case, it is necessary to find a mathematical model in which the
target profiles are invariable to changes in the wave polarization basis. One can distinguish
four main classes of theorems describing the scattering matrix decomposition [11,12,14]:

• Kennaugh matrix dichotomy (Kennaugh–Huynen scattering matrix)
• Decomposition of the covariance matrix (Freeman and Durden)
• Eigenvector decomposition of the coherent scattering matrix (Cloude–Pottier target

scattering decomposition) [32,33]
• Coherent scattering matrix decomposition (Pauli, Krogager, Cameron).

In the general case we consider the situation with a rough ground surface and a
complex shape of the object under study. The depolarized signal from the reflecting object
has an individual amplitude attenuation and phase shift, which depend on the target profile
and wavelength. Let us take into account some assumptions:

1. The transmitted electromagnetic wave is a plane monochromatic wave with constant
frequency, amplitude, and initial phase in time.

2. In the propagation of a polarized wave, there are additive and multiplicative interfer-
ences.

3. Polarimetric radar generates a signal with strict linear (vertical and horizontal) and
strict circular (right and left) polarization.

4. The classification procedure involves obtaining labeled data on detected objects; hence
it is a supervised learning task.

The coherent decomposition is performed as a combination of basis matrices corre-
sponding to canonical scattering mechanisms [33]. Any classification requires the use
of independent orthogonal features for the training sample. Therefore, the mathemati-
cal model must be developed using coherent decompositions of the Pauli, Krogager, or
Cameron methods, which are discussed further in Section 3.
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2.2. Polarized Wave Model

Before studying the theorems of coherent decompositions, let us turn to the basic
techniques of polarimetric data processing. The problem of polarized wave scattering on
inhomogeneous objects is solved using two approaches [11].

1. The Jones calculus. This is a mathematical description of a fully polarized wave
in which the Jones vectors and linear elements of the Jones matrix (Equation (1))
determine the polarization:

ER = JET :

∣∣∣∣∣ER
x ejφR

x

ER
y ejφR

y

∣∣∣∣∣ =
(

Jxxejφxx Jyxejφyx

Jxyejφxy Jyyejφyy

)
×
∣∣∣∣∣ET

x ejφT
x

ET
y ejφT

y

∣∣∣∣∣ (1)

where ET
x ejφT

x , ER
x ejφR

x are amplitudes and phases of the transmitted and received

signals, respectively, along the Ox axis; ET
y ejφT

y , ER
y ejφR

y are amplitudes and phases of
the transmitted and received signals, respectively, along the Oy axis; Jxxejφxx , Jyyejφyy

are complex reflection coefficients expressing the direct transformations of the inci-
dental wave; and Jxyejφxy , Jyxejφyx are complex reflection coefficients expressing the
cross-transformations of the incidental wave.

2. Mueller calculus. A mathematical description of arbitrarily polarized scattering is
given by the Stokes vector, which is expressed as follows:

SR = MST :


sR

0
sR

1
sR

2
sR

3

 =


m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

×


sT
0

sT
1

sT
2

sT
3

 (2)

where SR =
[
sR

0 sR
1 sR

2 sR
3
]T denotes the Stokes vector of scattering waves, and

ST =
[
sT

0 sT
1 sT

2 sT
3
]T denotes the Stokes vector of an incidental wave; and

M{4× 4} is the Muller matrix, which characterizes the scattering properties of the
object.

The polarimetric coherency in the monostatic case of backscattering must satisfy the
so-called reciprocity and symmetry [11]. Then the Muller matrix can be reduced to the
unitary 3 × 3 matrix of the special group M{4× 4} → TCOH{3× 3} for the monostatic
case. Then the Muller value given is as〈

m2
00

〉
=
〈

m2
11

〉
+
〈

m2
22

〉
+
〈

m2
33

〉
(3)

where m00, m11, m22, m33 denote the main elements of the Muller matrix; and 〈 · 〉 denotes
their average value. Several differences between the two approaches are worth noting [11].

1. The Mueller calculus has only a phenomenological interpretation and is not re-
lated to the electromagnetic theory, whereas the Jones calculus derives directly from
this theory.

2. The Jones calculus allows for the absolute phase, while the Mueller calculus does not
consider the phase at all.

3. The elements of the Jones matrix correspond to the radiation amplitude, while the
elements of the Muller matrix are related to the scattering intensity.

In this article, the Jones calculus describes the experimental process but the numerical
inferences are presented according to the Mueller calculus with respect to the depolarized
system. Therefore, we translated the target signatures from the Jones calculus to the Mueller
calculus, since the Mueller calculus describes the target signatures more reliably, as pointed
out in [11].
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3. Polarimetric Decomposition of Feature Space

This section is devoted to the baseline approaches that are used in the case of coherent
decomposition. We will show the main advantages and disadvantages of these techniques
with respect to wave propagation along a rough underlying surface.

Radar wave propagation leads to its scattering by heterogeneous objects. In particular,
a polarized radar wave reflected from an object has a different polarization structure. One of
the main problems for the scattered signal is its decomposition into an arbitrary orthogonal
basis

(
ei, ej

)
= δij, where δij is the Kronecker delta. In this case, we can represent the

scattering mechanism SR from Equation (2) in the canonical form SR = ∑N=3
k=1 αkSR

k , where
αk, k ∈ 1 . . . 3 are the decomposition coefficients.

3.1. Pauli Decomposition

We consider the unitary group SU(2) to decompose the scattering matrix in the
canonical form SR. The coherent matrix TCOH{3× 3} will be written in this group using
the Hermitian matrix which is obtained from the Jones vector (Equation (1)):

J× J† =

(
JXJ∗X JXJ∗Y
JYJ∗X JYJ∗Y

)
(4)

The resulting matrix can be represented as the sum of coefficients S = [s0, s1, s2, s3]
T

and basic functions {ea, eb, ec, ed} [5]:

J× J† = s0ea + s1eb + s2ec + s3ed (5)

According to the coherent decomposition theorem [14], linear combination (Equation (5))
can be written in the form of the following Pauli matrices:

SP =
s0√

2

(
1 0
0 1

)
+

s1√
2

(
1 0
0 −1

)
+

s2√
2

(
0 1
1 0

)
+

s3√
2

(
0 −j
j 0

)
(6)

In the monostatic case, where s3 = 0, the Pauli matrix basis can be reduced to the first
three matrices. However, due to scattering on the underlying surface, it is necessary to
assume s3 6= 0.

3.2. Krogager Decomposition

The Krogager decomposition can be represented for linear and circular polarization,
respectively:

SK
LIN = ejφLIN kS

(
1 0
0 1

)
+ kD

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
+ kHe∓j2θ

(
0 ±j
±j 0

)
(7a)

SK
CIR = ejφCIR kS

(
0 j
j 0

)
+ kD

(
ej2θ 0
0 −e−j2θ

)
+ kH

(
ej2θ 0
0 0

)
(7b)

where kS, kD, and kH denote corresponding to the sphere, diplane, and helix contribu-
tion, θ is the orientation angle, and φLIN = φHV − 0.5(φHH − φVV) ∀φLIN ∈ SK

LIN or
φCIR = φRL − 0.5(φRR − φLL) ∀φCIR ∈ SK

CIR, respectively.
The Krogager decomposition demonstrates the real physical scattering mechanisms

represented by the component matrices. It is obvious that scattering on non-spherical
objects (cars and trucks) provides kS → 1 . Furthermore, there is no orthogonality condition
for the components between the sphere and “diplane–helix”, as stated in [32]. The decom-
position elements are not basis-invariant. In addition, the phases φLIN and φCIR depend
substantially on the scattering geometry on the underlying surface (see Section 4). Thus, the
choice of the Krogager decomposition components as classifying features is inexpedient.
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3.3. Cameron Decomposition

The Cameron approach (using the basis proportional to the Pauli matrices) [33] can be
presented as

SC =
[
cos(ψrec)

[
ssym

max cos
(
δsym

)
+ ssym

min sin
(
δsym

)]
+ sin(ψrec)snonrec

]
(8)

where ssym
max, ssym

min are the normalized maximum and minimum of symmetric components,
snonrec is the normalized nonreciprocal component, ψrec is the reciprocity degree of the
scattering matrix, and δsym is the deviation degree corresponding to symmetric scattering.

Two fundamental physical properties of radar scattering introduced by Cameron are
reciprocity and symmetry. A scattering matrix S with θrec = 0 corresponds to a scatterer
that strictly obeys the reciprocity principle, whereas a scattering matrix with θrec = π/2
corresponds to a completely nonreciprocal scatterer.

In this case, Cameron establishes [34] that reciprocity is defined as θrec = cos−1
∥∥∥PrecSR

∥∥∥,

where ‖·‖ is the Euclidean norm; Prec ∈ C4 is the projection operator chosen as

Prec =


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

,

where SR is the scattering vector from expression (2), which can be represented as
SR = Srec + S⊥ = Srec + (I− Prec)SR with components of reciprocity Srec, orthogonal-
ity S⊥ and identity operator I.

When a wave is reflected from a rough underlying surface Srec � S⊥, the effects
of additive and multiplicative interference can partially compensate for these losses (see
Section 4). The second component in Expression (8) is the symmetry of the matrix M{4× 4}.
A symmetric scatterer is defined as a scatterer that has a symmetry axis in the plane
orthogonal to the radar line of sight. Obviously, the symmetry is partially present with
respect to the object under study: δsym → {0, π/2} . In the general case, the symmetry can
disappear due to the influence of the underlying surface: δsym → π/4.

The feature space cannot be defined with reliable accuracy in all models (Pauli decom-
position, Krogager decomposition, Cameron decomposition) [17,22]. The Pauli decompo-
sition allows one to study the properties of these components as orthogonal elements on
the Poincare sphere depending on the profile. A number of papers confirm the last thesis.
First, the polarized scattering components can be represented as a linear combination of
eigenvalues and eigenvectors [1,5,11]. The decomposition into eigenvectors and eigenval-
ues for the Mueller matrix can be an efficient approach to polarimetric recognition [34,35].
The recognition approach is to use the coherence matrix (Equation (2)) as the H/A/α
polarimetric decomposition [11,14].

3.4. Assessment of Feature Space for the Learning Algorithm

Given the different features of coherent decomposition (see Section 3), in this section
we consider the feature space for classifying ground vehicles. We also demonstrate criteria
for evaluating the classification efficiency.

ATR of depolarized scattering is recommended to be carried out in the orthogonal
basis according to principal component analysis [36]. Taking into account expression (5),
the class of features can be described as follows:

X = X
(
x1 = s1, x2 = s2, x3 = s3

)T .

Now we will develop the problem of classifying objects by polarization features. Let
a learning sample {(x1, y1), . . . , (xn, yn)} be given such that an arbitrary value of xi ∈ X
uniquely corresponds to a known value of yj ∈ Y. It is necessary to find a conversion func-
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tion a(xi, yi) : X→ Y that minimizes the loss function L(Y) for a wide class of problems
L(Y) : Y× Y→ R . Hence, it satisfies the condition:

L(Y) = argmin
y∈Y

[a(yi)] (9)

An important task is to estimate L(Y) as a result of binary classification. In order to ob-
tain performance metrics, let us apply the classification sensitivity (TRP) to the polarization
data, retrieved from the sample space

TRP =
TP

TP + FN
(10)

where TP is a true positive (type of vehicle correctly identified as a given type), FN is false
negative (type of vehicle incorrectly identified as a given type).

Adoption of a hypothesis-testing approach corresponds to positive predictive value
(PPV) and true positive rate (TPR), respectively. Therefore, we should apply the general
characteristics (Equations (11) and (12)) to the binary classification. In general, these are
accuracy measures of different tests:

F1 = 2
TRP× PPV
TRP + PPV

(11)

where F1 score is the harmonic mean value of precision and recall.

|MCC| =
√

χ2

n
(12)

where MCC (Matthew’s correlation coefficient) is a metric as a measure of binary classi-
fication quality, χ2 is a chi-square statistic for a 2 × 2 table, and n is the total number of
observations. Why should we use expressions (11) and (12)? Actually, the backscattering
signal can produce an incorrect component from Equation (2). Hence, there would be
confusion in classifying objects. We need an integral test for significance.

4. Data and Calibration

The first task is to calibrate the radar according to the experimental conditions. It is
necessary to exclude from consideration such phenomena as interference of direct and
reflected waves, polarization mismatch, and spherical propagation of the radar signal. For
this purpose, we used a stationary Ku-band radar with electronically scanned array (ESA),
which generated a linear frequency-modulated waveform (LFMW). The station emitted
and detected a polarized signal for the following mode:

• Linear polarization (vertical and horizontal plane)
• Circular polarization (right and left rotation).

The transmitted signal was scattered on the object of recognition located at the far
end (~150 m). The radar receiver detected the reflected signal distorted by clutters. The
signal value (in dB) was recorded on the radar display for each 10 ms. Unprocessed
polarization marks were recorded in an open territory (a meadow) for direct visibility. For
radar calibration, a fixed corner reflector was used in the far-field zone, also located at a
distance of about 150 m.

The following objects were used for the experiment: a truck and a car. The profile of
each object was used to estimate the scattering properties of the target. For this purpose,
the object was rotated around its own axis by a full rotation. Registration of the signal
was performed for each 15-degree displacement. The experimental conditions are given in
Table 1.
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Table 1. Research conditions.

Parameter Value

Distance to target 150 m
Sight angle flat

Angles of profile 360◦ (periodicity 15◦)
Radar resolution (range) 0.5 m

Radar resolution (azimuth) 1.8◦

Time registration 10 ms

Meadow unevenness (0.2–0.3 m) was taken into account as an average value of vege-
tation. During the entire observation period (about 2–3 h), a light wind prevailed, which
influenced the fluctuations of the grass.

There are several approaches to calibration, such as singular decomposition or lexico-
graphic decomposition, which are described in [37,38]. The calibration of our measurements
was performed for a corner reflector [39,40]. It was assumed that under experimental con-
ditions, there are additive and multiplicative interferences, which can be described by
the expression:

SR = RNSTTN + N (13)

where SR, ST are the 2 × 2 Jones scattering matrices according to Equation (1), TN is the
transmitting distortion matrix corresponding to the multiplicative distortion component
in the source-target direction, RN is the receiving distortion matrix corresponding to the
multiplicative distortion component in the target-source direction, and N is the random
additive distortion component of the ground surface. Our goal is to estimate the unknown
values RN , TN , and N from Equation (13) in order to estimate the further corrected results
for linearly polarized scattering (Section 4.1) and cyclically polarized scattering (Section 4.2).

In this work, the depolarizing properties of the rough surface (meadow) were taken
into account as an additional component (N). This was not done in [29,40], where studies
were carried out under laboratory conditions. The target marks of the received scattered
signal for free propagation and the influence of a rough terrain are shown in Figure 3 in
polar coordinates.

Figure 3. Polarization diagram of the received signal relative to the transmitted signal unit for a rough
surface and free meadow propagation (radial axis is a dimensionless variable; linear polarization;
number of marks for each observation—64).
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Cross scattering prevails here: |ϕVV − ϕHH | = |ϕHV − ϕVH |. The multiplicative
component of the clutters was calibrated using a corner reflector made for linear and
circular polarization.

If we use expressions for linear phases (Equation (7a)), then φLIN = 1.5(φHV) −
0.5(φVH). Consequently, the multiplier (Equation (7a)) tends to 1 − ejφLIN → 1 , and the
spherical component (Equation (7a)) is kS ≤ 1. In addition, the scattering with phases
{ϕVV , ϕHH , ϕHV , ϕVH} does not allow us to apply the reciprocity principle denoted in
Equation (8). Thus, the experimental calibration data (Equation (13)) indicate the complexity
of practical application of the Krogager and Cameron decompositions.

4.1. Linear Polarization Data

Let us consider the case of linear polarization in scattering. The antenna pattern covers
the object and the neighboring rough surface (Figure 4).

Figure 4. Scheme of the study.

The synchronous detector was used at the output of the radar receiving path. It consisted
of two channels: in-phase (I) and quadrature (Q), which made four types of linearly polarized
signal: horizontal transmission and vertical reception IL1 = Re(HV), QL1 = Im(HV); vertical
transmission and vertical reception IL2 = Re(VV), QL2 = Im(VV); vertical transmission
and horizontal reception IL3 = Re(VH), QL3 = Im(VH); and horizontal transmission and
horizontal reception IL4 = Re(HH), QL4 = Im(HH).

Let us consider a normalized transmitter wave. The Jones vector for the horizontal
wave will be EH =

[
1 0

]T and for the vertical wave EV =
[
0 1

]T . After combining both
vectors, according to expression (1), we obtain:(

IL4 + iQL4 IL1 + iQL1
IL3 + iQL3 IL2 + iQL2

)
=

(
J11 J12
J21 J22

)(
1 0
0 1

)
(14)

The detection of polarized scattering was carried out sequentially. Each polarization
type contained 64 samples, after which a switch to another polarization mode occurred.
An example of unprocessed target signature for linear polarization is shown in Figure 5.

The value of the detected signal, calculated as the average value of each component
is I = ∑i Ii, Q = ∑i Qi. In addition, additive (NLIN) and multiplicative

(
TN

LIN , RN
LIN
)

linear scattering interferences, which are obtained after calibration of the measuring system,
were taken into account. Then we expressed the Jones matrix through the obtained values
according to (Equation (15)):

J = RN
LIN

(
IL4 + QL4 IL1 + QL1
IL3 + QL3 IL2 + QL2

)
TN

LIN + NLIN (15)
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Figure 5. Unprocessed linear polarization target signature (truck, profile angle 45◦): IL1, QL1—horizontal
transmission and vertical reception, respectively; IL2, QL2 —vertical transmission and vertical reception,
respectively; IL3, QL3 —vertical transmission and horizontal reception, respectively; IL4, QL4 —horizontal
transmission and horizontal reception, respectively.

Polarization marks of linear scattering before and after calibration are shown in
Figure 6. The phase and amplitude displacements of the scattered signal relative to the
transmitted signal with unit amplitude and corresponding zero phase are presented in the
polar chart below.

Figure 6. Target marks of the received signal (the second letter in the designation) relative to the
transmitted signal unit (the first letter in the designation) in polar coordinates before and after
calibration (linear polarization, car, profile angle 0◦, number of marks for each observation—64).

After calibration, HV and VH are almost identical in the polar chart. The identical HV
and VH responses confirm the reciprocal scattering [11]. Consequently, the calibration was
performed correctly and the results make sense according to the physics. The experiment
also showed that the obtained phase difference |ϕVV − ϕHH | = 80 corresponds to the results
stated in [1] (p. 59), where the mean square error is σ = 6.80. Below is the polarimetric



Sensors 2023, 23, 3614 11 of 20

coherence matrix (Equation (2)) in the case of a car with zero profile angle (64 samples for
each polarization channel):

T4 = 10−3 ×


0.6970 0.1673 −0.0240 0.6498
−0.3308 −0.0298 0.1649 −0.3410
0.1750 0.2163 −0.0422 0.1304
−0.5575 −0.1236 −0.0810 −0.5692

 (16)

The scattering matrix (Equation (16)) is dominated by the component s3 of the main
diagonal, except for the common component s1. Obviously, this is due to the influence of
vegetation fluctuations, since the component s3 is the result of asynchronous scattering. We
will confirm this statement in Section 6.1.

4.2. Circular Polarization Data

Similar to linear polarization, a research experiment was performed for circular polar-
ization (Figure 7).

Figure 7. Unprocessed circularly polarized target signature of circular polarization (truck, profile
angle 45◦): IC1, QC1—left-hand circular transmission and right-hand circular reception, respec-
tively; IC2, QC2 —right-hand circular transmission and right-hand circular reception, respectively;
IC3, QC3 —right-hand transmission and left-hand circular reception, respectively; IC4, QC4 —left-
hand circular transmission and left-hand circular reception, respectively.

The Jones vector will be ELC = 1/
√

2
[

1 i
]T for left-hand circular polarization and

ERC = 1/
√

2
[

1 −i
]T for right-hand circular polarization. Elements of the Jones matrix

can be calculated according to Equation (1):

J = RN
CIR

((
IC3 + IC4

)
+
(
QC3 + QC4

) (
IC3 − IC4

)
−
(
QC3 −QC4

)(
IC1 + IC2

)
+
(
QC1 + QC2

) (
IC1 − IC2

)
−
(
QC1 −QC2

))TN
CIR + NCIR (17)

where TN
CIR, RN

CIR are the distortion matrices after calibration, and NCIR is the added matrix
of interferences of circular scattering.

Polarization marks of circular scattering before and after calibration are shown in
Figure 8.



Sensors 2023, 23, 3614 12 of 20

Figure 8. Target marks of the received wave relative to the normalized transmitted signal in polar
coordinates before and after calibration (circular polarization, car, profile angle 0◦, number of marks
for each observation—64): LL—left-hand circular transmission and left-hand circular reception;
RR—right-hand circular transmission and right-hand circular reception; RL—right-hand circular
transmission and left-hand circular reception; LR is left-circular transmission and right-hand circular
reception.

The circular calibration demonstrates the reciprocity condition |SRL| ≈ |SLR|. Obvi-
ously, this group has mutually correlated properties compared to linear polarization [31].

The averaged value of the polarimetric coherence matrix (car, profile angle 0◦) is
as follows:

T4 = 10−3 ×


0.1671 0.0362 0.0317 −0.0834
0.0785 −0.0200 0.0377 −0.1516
0.0256 0.0360 0.1333 0.0151
0.0496 0.1351 −0.0214 −0.0488

 (18)

The cross coefficients m42 ≈ 0.13 and m24 ≈ −0.15 are maximal in absolute value.
Thus, in the case of a circular emitting wave, dihedral corner scattering prevails. The degree
of polarization is DOP = 0.8422. It is compatible with the results of linear polarization.

The ground surface effects for both types of target polarization signatures were re-
moved using corner reflector measurements. The test readings were compared with
additive and multiplicative components. It was found that the signal/noise ratio SNRLP =
6.8 for linear polarization and SNREP = 17.4 for circular polarization, respectively. Thus,
the signal attenuation of the wave with linear polarization significantly exceeds the circular
polarization attenuation (more than 10 dB).

5. Supervised Learning for Polarimetric Recognition

This section describes how features (see Section 3) can be used for supervised learn-
ing. It is important to emphasize that Bayesian inference [41] and artificial neural net-
works [17] are effective methods for classifying polarimetric data. A convolutional neural
network [2,3,28,42] is used for unprocessed SAR images. Since we use supervised learning
for a small volume of data, linear separability was chosen as the method of data analysis.

5.1. Modeling Polarimetric Recognition

The values on the main diagonal of the T4 matrix (16 and 18) were used as features for
vehicle recognition and classification. Following expressions (15) and (17), we obtain true
Pauli decomposition coefficients as if the radar signal propagated in free space without
interference. Therefore, we need to choose the most significant coefficients. Coefficients
exceeding the threshold level of radar sensitivity PTH > 0.1 were chosen. The results
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showed that vectors S0, S3 and S0, S2 satisfy the given conditions for linear polarization and
circular polarization, respectively. Consequently, the featured vector consists of an array of
data X = [s0, s3(s2)]

T obtained according to expressions (5) and (6). Class vectors contained
two types of objects (car and truck). The observations consisted of 12 profile angles (from

0◦ to 165◦ in increments of 15◦) in each class Y =
[
{yi_C}k=12

i=0...1650 , {yi_Tr}k=12
i=0...1650

]T
. That

is, 64 target marks for each of the 12 profiles of a car or truck were obtained in a single time
interval. The total sample amounted to δ{2 f eatures; 2 classes} = 1536 (Figures 9 and 10).

Figure 9. Confusion matrix for linear polarization (algorithm—fine tree (68%); split criterion—Gini’s
diversity index).

Figure 10. Confusion matrix for circular polarization (algorithm—logistic regression (54%); the hyper
parameter option is disabled.

Having obtained the data, it became possible to develop a supervised learning algo-
rithm [42,43]. The results showed that the “Fine tree” algorithm with Gini diversity index
separability criterion with 68.1% of correct results was more effective for linearly polarized
wave (Figure 9).

The results of circular polarization modeling demonstrated the efficiency of the logistic
regression algorithm, where the recognition accuracy was 54.2% (Figure 10).

It is obvious that polarimetric radar performing remote sensing using linearly po-
larized wave (68.1%) has higher accuracy of binary classification compared to circularly
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polarized wave (54.2%). These results can be explained by the more sensitive properties of
the linearly polarized wave to external factors (object profile, weather conditions, etc.).

5.2. Comparison with Similar Methods

We made a comparison with other methods of polarization recognition. In most
papers [1,2,44,45], the effect of a real rough surface on asymmetric scattering is missing.

In article [2], the emphasis is on HRRP technology, with 72% confusion in the class.
Although the study was performed on 720 profiles, this does not imply verification of the
finished results since the data sets included simulated samples.

In [44], it is proposed, using the nearest neighbor method, to classify objects. The
accuracy of target recognition is proportional to the signal/noise ratio (validity reaches
82% at 50 dB). In [1], a convolutional neural network was made for seven classes of objects,
where the average classification accuracy is 88%. Finally, after analyzing the model results
for SAR [45], it was found that the recognition validity of polarized target signatures is
no more than 42%. Thus, the obtained results are potentially more valid than the ones for
similar systems.

6. Results and Discussion

In this section we demonstrate how HRRP modifies the components of the Pauli
decomposition (see Section 3). We also analyze the effect of weathering and give an
estimate for binary classification as a result of supervised learning (see Section 5).

6.1. Influence of Different Target Profiles and Weather Conditions

The structure of polarized scattering can vary significantly depending on the profile
angle of the target and climatic conditions. A number of articles have paid attention to
these factors [15,30]. The influence of the profile on the recognition efficiency has been
examined with respect to two types of polarized backscattering. We will also demonstrate
the validity of the results in accordance with the experimental data.

As a part of the study, we obtained the dependencies of coefficients S at different
time intervals during one day. Obviously, it is necessary to take into account the fluctua-
tions of grass in the meadow as an element of scattering. The histogram of the distribution
S = [s0, s1, s2, s3]

T , constructed for a trihedral reflector in one profile, is shown
in Figure 11.

Figure 11. Scattering chart of a linear polarized wave from a trihedral reflector obtained at different
time intervals during one day.
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It can be seen that the ratio of coefficients remains constant. At the same time, the
intensity of the scattering fluctuations can reach 2.5 dB. Although the results obtained
exceed the estimate for the road surface (>20 dB), as shown in [22], the value of asymmetric
scattering in our case is much higher. For this reason, the feature space must consist of
coefficients S0 and S3 for a rough real surface.

Appendix A shows an example of the distribution coefficients (truck) depending on
the object profiles. If we consider a 90-degree object profile, the direct scattering ratio |SVV |
exceeds the cross-polarized scattering |SHV | by 14.7 dB. Comparing this result with [46],
where the value is 16.3 dB, we can confirm the data of our study.

According to Appendix A, there is no statistical pattern of modified profiles. Despite
this result, the profile quantization step depends on the type of target recognition, as shown
in [30], where a genetic algorithm for adaptive state selection of polarization angle radar
sensing is analyzed. The general trend [1] shows that a very high angle quantization (no
more than 1◦) is required to construct a training sample. It is advisable to use convolutional
technologies for this [2]. At the same time, since the asymmetric scattering coefficient S3
dominates (Appendix A), it is possible to implement H/A/α polarimetric decomposition.
However, such ATR analysis has often been performed for elevation angles greater than
30◦ [3,35,36]. There is reason to believe that ground type estimation is important to simplify
the technique of polarimetric target recognition.

6.2. Estimation of Binary Classifiers

The accuracy of target recognition can be estimated using the receiver operating
characteristic (ROC) curve. Then we get the efficiency of the binary classifier according
to the area under the curve (AUC) value. Below is a chart showing the ROC of linear
polarization for the classes “Car” and “Truck” (Figures 12 and 13) [3].

Figure 12. ROC of linear polarization (class “Car”).

Figure 13. ROC of linear polarization (class “Truck”).
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The recognition efficiency is the same for the “Car” and “Truck” classes: AUC = 0.71.
However, there is a difference, which is demonstrated in Appendix B. “Truck” has a higher
TRP = 82%, which allows the algorithm to detect this class correctly. “Car” has a lower
FNP = 17%. Hence, the algorithm accurately rejects unwanted targets. Below is a circular
polarization ROC (Figures 14 and 15).

Figure 14. ROC of circular polarization (class “Car”).

Figure 15. ROC of circular polarization (class “Truck”).

Potential efficiency of binary classification for a circular emitting wave (AUCEL = 0.54)
is lower than for a linearly polarized wave (AUCLIN = 0.71). In addition, the classifier is
able to detect “Truck” (TRP = 83%) more accurately than “Car” (TRP = 8%) (Appendix B).

Obviously, a linearly emitting polarized wave has significant advantages over a circu-
lar wave. At the same time, we need a general criterion capable of assessing not only the
sensitivity of these classes (TPR), but also the classification accuracy (positive predictive
value—PPV). Therefore, in this article we compared the accuracy of two tests, F1 score and
Matthew’s correlation coefficient (Table 2).
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Table 2. Quality of binary classifications.

Type of Polarization F1 Score MCC

Linear (Car) 0.6282 0.3775
Linear (Truck) 0.7206 0.3775
Circular (Car) 0.2667 0.1260

Circular (Truck) 0.6667 0.1260

The F-test showed that the “Truck” class has higher test accuracy than the “Car” class
for the two polarization types. MCC shows the same results for both polarization types.
The advantage of MCC over F1 is obvious, as these results correlate with the equality
AUC{Car} = AUC{Truck}. Furthermore, MCC gives a more informative and truthful
result when evaluating binary classifications than F1, according to [47,48]. As a result, we
claim potentially higher confidence in the data for linearly polarized backscattering using
the significance test.

7. Conclusions

The article demonstrates automatic target recognition—ATR (car and truck)—by
polarimetric ground radar using the properties of polarized waves. Attention is paid to
signal scattering, which occurs on rough terrain surfaces due to the strict geometry of
wave propagation and vegetation fluctuation. Based on decomposition theorems in radar
polarimetry, the article describes the degree of scattering of such processes. We analyzed
various coherent decomposition approaches (Krogager, Cameron, and Pauli) and found that
the Pauli decomposition is the most effective. An arbitrary vehicle has reflective properties,
which can be estimated by the corresponding Pauli coefficients in the orthogonal basis
of the scattering matrix. The feature space is chosen from two components of the Pauli
decomposition, the threshold of which exceeds the desired value.

Significant variation of scattering coefficients depending on target profiles is a major
problem in object recognition. This article demonstrates how to reduce additive and
multiplicative clutters by calibrating measurements for a rough surface.

The Pauli coefficients obtained from experimental data of signal backscattering were
applied in order to test the accuracy of recognition using famous algorithms of supervised
learning. The most efficient algorithm of recognition turned out to be “Fine trees” (68.1%
of correct answers for linear polarization). The logistic regression algorithm showed low
accuracy for circular polarization (54.2%). According to Matthew’s correlation coefficient,
linear scattering (0.3775) has a potential advantage over circular scattering (0.1260). Obvi-
ously, the properties of linear polarization can be used for object recognition. The circular
scattering mechanism would not be recommended as a tool for object recognition on rough
terrain surfaces.

Funding: The research is funded by the Ministry of Science and Higher Education of the Russian
Federation under the strategic academic leadership program ‘Priority 2030’ (Agreement 075-15-2021-
1333 dated 30 September 2021).

Conflicts of Interest: The author declares no conflict of interest.
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Appendix A. The Coefficients Chart Depending on the Profile (Truck)

Figure A1. Linear coefficient data S = [s0, s1, s2, s3]
T for truck: profile angle changes from 0◦ to

165◦ (periodicity 15◦).

Figure A2. Linear coefficient data S = [s0, s1, s2, s3]
T for truck: profile angle changes from 180◦ to

345◦ (periodicity 15◦).

Appendix B. Confusion Matrix of the True Positive Rate of Classification

Figure A3. Confusion matrix TRP for linear polarization.
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Figure A4. Confusion matrix TRP for circular polarization.
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