
Citation: Abuelela, E.; Żal, M.;

Kabaciński, W. Simultaneous

Connections Routing in

Wavelength–Space–Wavelength

Elastic Optical Switches. Sensors 2023,

23, 3615. https://doi.org/10.3390/

s23073615

Academic Editor: Luis Velasco

Received: 24 January 2023

Revised: 21 March 2023

Accepted: 24 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Simultaneous Connections Routing in
Wavelength–Space–Wavelength Elastic Optical Switches
Enass Abuelela † , Mariusz Żal † and Wojciech Kabaciński *,†

Institute of Communication and Computer Networks, Faculty of Computing and Telecommunication,
Poznan University of Technology, 60-965 Poznan, Poland
* Correspondence: wojciech.kabacinski@put.poznan.pl; Tel.: +48-61-665-3907
† These authors contributed equally to this work.

Abstract: In this paper, we investigate the three-stage, wavelength–space–wavelength switching
fabric architecture for nodes in elastic optical networks. In general, this switching fabric has r input
and output switches with wavelength-converting capabilities and one center-stage space switch that
does not change the spectrum used by a connection. This architecture is most commonly denoted
by the WSW1 (r, n, k) switching network. We focus on this switching fabric serving simultaneous
connection routing. Such routing takes place mostly in synchronous packet networks, where packets
for switching arrive at the inputs of a switching network at the same time. Until now, only switching
fabrics with up to three inputs and outputs have been extensively investigated. Routing in switching
fabrics of greater capacity is estimated based on routing in switches with two or three inputs and
outputs. We now improve the results for the switching fabrics with four inputs and outputs and
use these results to estimate routing in the switching fabric with an arbitrary number of inputs
and outputs. We propose six routing algorithms based on matrix decomposition for simultaneous
connection routing. For the proposed routing algorithms, we derive criteria under which they always
succeed. The proposed routing algorithms allow the construction of nonblocking switching fabrics
with a lower number of wavelength converters and the reduction of the overall switching fabric cost.

Keywords: three-stage switching network; rearrangeable switching network; connection routing;
elastic optical network

1. Introduction

We can observe that in recent years elastic optical networks (EONs) are becoming
more popular as a potential alternative to the rapidly growing popularity of optical net-
works. An example of this is the significant shift of ICT services to the new form, instead
of dedicated fixed services. Software as a service (SaaS), function as a service (FaaS), in-
frastructure as a service (IaaS), and platform as a service (PaaS) are demonstrations of this
new form [1–3]. Common features of these services include availability on demand, great
scalability, adaptability, and flexibility [4,5]. This approach is reflected in the progress of data-
transmission technologies and networks. For decades, optical domain technologies have been
widely utilized in access and core networks, including wavelength division multiplexing
(WDM), coarse WDM (CWDM), and dense WDM (DWDM). These technologies have signifi-
cant limits in terms of scalability and flexibility. The International Telecommunication Union
(ITU) has overcome the problem of defined fixed frequency grids by changing to a format that
allows small sections of the optical spectrum to be selected and operated [6,7]. The concept
of frequency slot units (FSUs) as an updated form of spectrum granularity was provided by
this new bandwidth-allocation model. Aside from having a very small granularity (specified
by [8] FSU is set to 12.5 GHz, 6.25 GHz, or smaller in width), this model has another feature.
Any number of FSUs can be used in an optical connection, as long as the sum of the FSUs
remains below the full spectrum and the FSUs are adjacent. In EONs, such a connection is a

Sensors 2023, 23, 3615. https://doi.org/10.3390/s23073615 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073615
https://doi.org/10.3390/s23073615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3828-5737
https://orcid.org/0000-0002-2579-1502
https://orcid.org/0000-0001-5244-9967
https://doi.org/10.3390/s23073615
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073615?type=check_update&version=2

Sensors 2023, 23, 3615 2 of 22

paradigm (known as the m-slot connection) [4,5,9,10]. A new switching fabric architecture is
required for optical switching networks to create many different flexible paths that support a
novel bandwidth-allocation model [4,5,9,11–15].

Basic information about the EON operation, including switch architectures and switch-
ing fabric functions, can be found in [16,17]. The problem of routing and spectrum allocation
in EONs at the network level is surveyed in [18], while the spectrum fragmentation prob-
lems and management approaches were treated in [19]. In [20], the authors evaluated the
performance of EONs when spectrum conversion is introduced in intermediate switches.
The nonblocking two-stage switching fabrics with multirate connections and conversion in
both stages were considered in [21,22]. The authors of [23] present the simulation studies
of elastic optical switching fabrics based on the three-stage Clos switching fabric. They
evaluated the loss probability for various traffic classes offered in a single optical network
node. The multicast connections and wide-sense nonblocking conditions in optical WDM
networks are considered in [24]. Finally, elastic optical switches are also considered for
use in data center networks, where various architectures and nonblocking conditions were
considered in [25–27].

In many papers that discuss the nonblocking properties of switching fabrics, space–
wavelength–space (SWS) and wavelength–space–wavelength (WSW) are the two identified
architectures. There are three stages in each architecture. One switch (SWS1/WSW1) or
more than one switch (SWS2/WSW2) in the intermediate stage are the two categories of each
architecture when classified in terms of the number of center-stage switches [12–15,25,28–32].
In the end, setting up a connection path by using the routing algorithm is one of the most
important aspects. Two patterns are used to examine four node architectures employing
waveband converters for EONs, according to allocation and distribution in [11]. In [9], a
switching node model is introduced that was found to meet the requirements of EONs as WSW
switching fabrics. Similarly, the SWS1 and SWS2 architectures for flexible optical switching
networks are described in [12]. The two WSW architectures (WSW1, WSW2) in [13], are
investigated due to the lower number of FSUs in the interstage links, which can be provided
by using more than one switch in the center stage (WSW2s). In [15], the authors considered
the WSW1 switching fabric with 2, 3 and more input/output links and proposed seven
routing algorithms.

In this paper, we define and illustrate the operation of six routing algorithms and derive
sufficient conditions under which the proposed algorithms always end with success. The
analysis shows that only three of the six algorithms are necessary for further study, and the
required number of frequency slots in the interstage link can be smaller than that required
in [15]. The construction cost, which is determined by the wavelength converters number,
reflects this. As a result, the cost of building the switching nodes by using our proposed
algorithm is less than the cost of constructing the switching nodes by using some of the
previously published algorithms. Consequently, our algorithm succeeds if, for r = 4, each
interstage link contains only n + b2n/3c FSUs, while it requires 2n FSUs, in [15]. In the case
of switching fabrics with r = 4, it means that the proposed work is new and improved. A
demonstration of the general formula and a detailed analysis of the proposed algorithm are
included in the subsequent sections of the paper.

2. Rearrangeable Switching Fabric Architecture and Operation
2.1. Switching Fabric Architecture

In this work, we consider the WSW1(n, r, k) switching fabric architecture with r = 4 (see
Figure 1) that consists of three stages. The first and last stages comprise r Bandwidth-Variable
Wavelength-Converting Switchs (BV-WBCSs), represented as Ii and Oj (where 1 6 i, j 6 r),
respectively. Only one Bandwidth-Variable Wavelength-Selective Space Switch (BV-WSSS)
with r inputs and r outputs constitutes the center stage. There are r interstage links between
every stage. WSW1(n, r, k) routes the m-slot connections, i.e., the connections that may use m
subsequent FSUs (where one FSU represents 12.5 GHz of spectrum). BV-WBCS operates on

Sensors 2023, 23, 3615 3 of 22

m-slot connections and alters the spectrum of an m-slot connection from the spectrum of m
FSUs at the input of BV-WBCS to another spectrum of m FSUs at the output.

The role of BV-WSSS is to switch an m-slot connection in the space domain without
spectrum conversion capability. In [25], the internal structures of BV-WBCS and BV-WSSS
are shown. The WSW1(r, n, k) inputs and outputs are numbered from 1 to r. In the same
way, Ii and Oj are indexed. FSUs in the input fibers entering Ii and in the output fibers
leaving Oj are numbered from 1 to n, while FSUs in the interstage links are numbered from
1 to k.

BV
-W

BS
SS

I4 O4

I3 O3

I2 O2

BV-WBCS

I1

BV-WBCS

O11 13 35 57 79 9

1 13 35 57 79 9

1 13 35 57 79 9

1 13 35 57 79 9

2 24 46 68 810 10

2 24 46 68 810 10

2 24 46 68 810 10

2 24 46 68 810 10

n n1 1k k

n n1 1k k

n n1 1k k

n n1 1k k

1 1

2 2

3 3

4 4

|S1(AD1,C)||S2(AD1,C)||S1(AD1,C)||S2(AD1,C)|

h1,1 h1,2 h1,3 h1,4

h2,2 h2,1 h2,4 h2,3

h3,3 h3,4 h3,1 h3,2

h4,4 h4,3 h4,2 h4,1

h1,1 h2,1 h3,1 h4,1

h2,2 h1,2 h4,2 h3,2

h3,3 h4,3 h1,3 h2,3

h4,4 h3,4 h2,4 h1,4

Figure 1. A general architecture of WSW1(r, n, k) and connections processing.

2.2. A New Connection Processing

The WSW1(r, n, k) switching fabric operates in two domains: space and frequency.
Let us assume that WSW1(r, n, k) is nonblocking in the space domain, where BV-WSSS
is a nonblocking switching fabric. Taking into account the state of the switching fabric
shown in Figure 1, it should be noted that all m-slot connections that exist at the input
of each Ii are marked by the same pattern, while m-slot connections that appear at the
output of each Oj are distinguished by the same color. There is only one connection path
between an input and an output of WSW1(r, n, k) there—a set of interstage links and a set
of switching elements, such as Ii, Oj, and BV-WBSSS. With the exception of BV-WBSSS, all
of these paths are disjoint, making WSW1(r, n, k) the nonblocking switching fabric in the
space domain. However, if we consider the location of a particular m-slot connection in the
frequency domain, we can locate connections that block each other. An m-slot connection
from the input switch Ii that uses FSUs numbered x to x + m− 1 to the output switch Oj
with assigned slots y to y + m− 1 is indicated by (Ii[x], Oj[y], m). When frequency slot
indices are not important, we will use the notation (Ii, Oj, m); when we want to indicate
only the switches that participate in a connection, we use the notation (Ii, Oj).

For example, the connection that demands slot 6 at input 1 blocks the connection that
occupies slots 4–6 at input 3, since both connections are directed to O2 (i.e., they use the
same slot in the link between BV-WBSSS and O2). The red connections at inputs 1 and 2
(which occupy slots 7 and 8) are also connected to the same output switch O4, so they block
each other. Ii and Oj eliminate the blocking situations in WSW1(r, n, k), i.e., connections in
the blocking state are relocated to different frequency slots. We should mention that the
operation of elastic optical networks imposes a connection (Ii, Oj), which must use adjacent
FSUs. This operation is shown in Figure 1. Ii aggregates all connections from input i to
output j in the links between Ii and BV-WBSSS (and between BV-WBSSS and Oj) to the set
of connections indicated as hi,j. The function of Oj is to move connections that correspond
to a specific hi,j to the requested position at the output of WSW1(r, n, k).

In this work, we employ the simultaneous connection model, that is, a model in
which requests arrive at the input of the system at the same time and a set of compatible
connections is set up simultaneously. Two connections are compatible if they use disjoint

Sensors 2023, 23, 3615 4 of 22

sets of FSUs in the input and/or output links. For example, the connections (I1[1], O2[5], 1)
and (I3[4], O2[4], 3) are not compatible, since they both request slot 5 at output port 2.
We assume that all FSUs in the input and output links are occupied by connections; that
is, we have the maximum set of compatible connections. Although such a situation in
real systems is uncommon, we can study all connection permutations in our analysis by
including dummy connections, i.e., connections that use all free FSUs in the input and
output links.

3. Control Algorithms
3.1. State Matrix

Let the maximum set of compatible connections be represented by C, and Xi,j be a
set of all connections (Ii, Oj) in C. In the considered switching fabric, the first and the last
sections contain wavelength converters. This helps to simplify the analysis of the state
of WSW1(r, n, k), since it is not necessary to analyze all the connections established in
WSW1(r, n, k) but only the sum of the bandwidth units occupied between any pair (Ii, Oj).
That is, we need to find relationships between the elements of the Cartesian product Ii ×Oj,
which can be easily represented in the form of a matrix r× r. This matrix, denoted by Hr×r,
is defined in the following way [15],

Hr×r =
[
hi,j
]
, 1 6 i, j 6 r, (1)

where
hi,j = ∑

Xi,j

m, Xi,j ⊆ C, and Xi,j = {(Ii[x], Oi[y], m)}. (2)

According to (2), element hi,j represents the aggregated spectrum of all connections
(Ii, Oj). The matrix property is as follows,

∑r
i=1 hi,j = ∑r

j=1 hi,j = n, (3)

i.e., in every individual input/output link, there are n FSUs. H4×4 represents C for
WSW1(4, n, k) switching fabrics, and

H4×4 =

h1,1 h1,2 h1,3 h1,4
h2,1 h2,2 h2,3 h2,4
h3,1 h3,2 h3,3 h3,4
h4,1 h4,2 h4,3 h4,4

. (4)

In matrix (4), according to property (3), we have h1,1 = n - (h1,2 + h1,3 + h1,4) and
h1,1 = n − (h2,1 + h3,1 + h4,1) and so on. This property of H4×4 is later used in this paper to
demonstrate the rearrangeable non-blocking (RNB) conditions of WSW1(r, n, k).

3.2. FSUs Assignment Algorithms for WSW1(4, n, r) Switching Fabrics

The objective of this section is to describe how FSUs should be assigned to the con-
nections in the WSW1(4, n, k) switching fabrics. In a space-division switching fabric, a
connection path, i.e., a set of resources used by a given connection, is composed of swithching
elements (SEs) and interstage links (ILs) used by the connection. When two connections must
use the same IL at the same time, one of these connections is blocked. In an EON switching
fabric there is another dimension, wavelength. In this case, the connection path is determined
not only by a set of SEs and ILs, but also by a set of FSUs on a given IL. To find two blocking
connections, it is necessary to determine not only whether the connection paths of these two
connections use the same IL(ILs), but also whether they use at least one common FSU.

The process of assigning FSUs to connection paths so that they do not block each
other can be implemented in a way similar to that proposed in [15]. However, in the
considered WSW1(4, n, k) switching fabric, the problem is much more complex, due to the
larger number of inputs and outputs, resulting in a larger number of possible permutations.

Sensors 2023, 23, 3615 5 of 22

We propose six distinct FSUs assignment algorithms, denoted as AD1, AD2, AD3, AD4,
AD5, and AD6. Then, we try to find the best one, or a group of them, for which the number
k of required FSUs in ILs will be the lowest, yet allowing the realization of all possible sets
of compatible connections [33].

The main idea of all proposed algorithms is to divide all FSUs in ILs into two subsets,
in which we will establish connections corresponding to different hi,j. Of course, the
wavelength intervals of FSUs used for the connections represented by hi,j at the input port
may be different from those assigned to these connections in ILs. The wavelength shift is
the task of BV-WBCSs, from which the outermost sections are constructed. To determine
the conditions under which all possible C can be realized in WSW1(r, n, k) (that is, it is
RNB, as shown in [33]), we have to find the required value of k in each IL as the maximum
value of the sum of the number of FSUs in both subsets.

To proceed with the description of the assignment algorithms, we have to add an
important assumption about H4×4. Each set of compatible connections in WSW1(4, n, k) is
represented by a different state of the matrix H4×4. We can reduce the number of states
considered, assuming that h1,1 is equal to or greater than the rest of the elements in H4×4.
Similarly, h2,2 is equal to or greater than the other elements, except for those in row 1 and
column 1 [34]. Finally, h3,3 is equal to or greater than all the remaining elements in H4×4

from rows 1 and 2 and elements from column 1 and 2. This property can be written as

hl,l > hi,j, where i, j = l, l + 1, . . . , 4. (5)

This assumption does not change the FSUs assignment process or the final result, but
simplifies the explanation of the algorithms, their structure, and operation. If the criteria
in (5) are not satisfied, the input and/or output stages, represented as rows and/or columns
in the matrix H4×4, should be modified by rearranging. For example, if the element hi,j is
greater than h1,1, I1 is replaced with Ii and O1 with Oj, which makes hi,j become h1,1.

To make it possible for each algorithm to assign FSUs to connections, we introduce
the concept of subregions and critical pairs. The rows and columns of the matrix Hr×r

represent the inputs and outputs of WSW1(r, n, k), respectively. Two elements located in
the same row/column represent connections from/to the same input/output, and cannot
occupy the same FSUs in ILs. Otherwise, the connections represented by one of these
elements are blocked. For example, the connections represented by h1,1 and h2,2 may use
the same set of FSUs since they come from and go to different outer stage switches. We
call such elements “matched”. On the other hand, the connections represented by h1,1 and
h2,1 have to use different FSUs, as they are directed to the same output switch, and we call
them “mismatched”. Let us divide the elements of each row and each column into two
pairs of elements, creating four groups of four elements each.

Definition 1. Let H4×4 represent C in WSW1(r, n, k) switching fabric working under algorithm
ADx, where x = 1, 2, . . . , 6. Each algorithm divides Hr×r into four disjoint subsets called quarters
(denoted as QADx

j , where j = 1, 2, 3, 4). Each QADx
j consists of four elements hi,j, which form two

pairs of matched elements.

The way each algorithm assigns elements hi,j to quarters is shown in Figure 2. In each
assignment, we can find pairs of QADx

j ’s that are not in the same columns or rows. We
surround these pairs with the same type of line and the same color, and the corresponding
connections can occupy the same set of FSUs in ILs (elements matched). In contrast, Qx’s
surrounded by different line types always share the same rows or columns, i.e., they are
mismatched (having to occupy disjoint sets of FSUs in ILs). For instance, in AD1 the
quarters QAD1

1 and QAD1
4 contain h1,1, h1,2, h2,1, h2,2 and h3,3, h3,4, h4,3, and h4,4, respectively;

these quarters are matched. In QAD1
1 , elements h1,1 and h2,2, as well as h1,2 and h2,1, are

matched, while h1,1 and h1,2, as well as h2,1 and h2,2, or h1,1 and h2,1, as well as h1,2 and
h2,2, are mismatched. When assigning slots, there will be no conflict between connections

Sensors 2023, 23, 3615 6 of 22

when mismatched quarters use disjoint sets of FSUs. Such mismatched quarters will be
called “subregions”.

Definition 2. Two mismatched quarters obtained in H4×4 by the algorithm ADx are called subre-
gions. The subregions are denoted as ADx,j, where j = 1, 2, 3, 4 and x = 1, 2, 3, 4, 5, 6.

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

QAD1
3 QAD1

4

QAD1
1 QAD1

2

(a) Algorithm AD1

Qrd

Qbd

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4
QAD2

3 QAD2
4

QAD2
3 QAD2

4

QAD2
1 QAD2

2

(b) Algorithm AD2

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

QAD3
3

QAD3
4

QAD3
3

QAD3
4

QAD3
1

QAD3
2

(c) Algorithm AD3

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4
QAD4

3

QAD4
3

QAD4
4

QAD4
4

QAD4
4

QAD4
4

QAD4
1QAD4

2 QAD4
2

(d) Algorithm AD4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

QAD5
1 QAD5

1

QAD5
4 QAD5

4

QAD5
3 QAD5

3

QAD5
2 QAD5

2

(e) Algorithm AD5

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

QAD6
3

QAD6
3

QAD6
4

QAD6
4

QAD6
1

QAD6
1

QAD6
2

QAD6
2

(f) Algorithm AD6

Figure 2. Division of the matrix H4×4 into quarters in algorithms AD1–AD6.

The divisions of H4×4 elements into subregions for algorithms AD1, AD2, and AD6
are shown in Figure 3. Each of the four rectangles surrounding the matrix H4×4 consists
of a quarter surrounded by a solid line and a quarter surrounded by a dashed line (see
Figure 3). When we have subregions determined by ADx, we have to divide the set of FSUs
in ILs into two subsets, S1(ADx,C) and S2(ADx,C); slots in each subset will be used for
connections represented in different quarters in subregions. As a result, the total number
of FSUs in ILs for algorithm ADx, denoted by k4×4(ADx,C) is determined by the sum of
slots needed in S1(ADx,C) and S2(ADx,C), that is,

k4×4(ADx,C) = |S1(ADx,C)|+ |S2(ADx,C)|. (6)

Any C can be realized by using ADx when we maximize (6) through all Cs, that
is, when

k4×4(ADx) = max
C
{k4×4(ADx,C)} = max

C
{|S1(ADx,C)|+ |S2(ADx,C)|}. (7)

The connections shown in Figure 1 are set by using AD1, and the set of FSUs in each
IL is divided into subsets S1(AD1,C) and S2(AD1,C) by bold vertical lines.

Sensors 2023, 23, 3615 7 of 22

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

h1,3 h1,4

h2,3 h2,4

h3,3 h3,4

h4,3 h4,4

AD1.1

AD1.2 AD1.3

AD1.4

(a) AD1 subregions

Qrd

Qbd

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

h3,1 h3,2 h3,3 h3,4

h2,1 h2,2 h2,3 h2,4

h1,1 h1,2 h1,3 h1,4

h4,1 h4,2 h4,3 h4,4

h2,1

h3,1

h1,1

h4,1

h2,2

h3,2

h1,2

h4,2

h2,3

h3,3

h1,3

h4,3

h2,4

h3,4

h1,4

h4,4

AD2.1

AD2.2 AD2.3

AD2.4

(b) AD2 subregions

Qrd

Qbd

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

h4,1 h4,2 h4,3 h4,4

h2,1 h2,2 h2,3 h2,4

h1,1 h1,2 h1,3 h1,4

h3,1 h3,2 h3,3 h3,4

h2,1

h4,1

h1,1

h3,1

h2,2

h4,2

h1,2

h3,2

h2,3

h4,3

h1,3

h3,3

h2,4

h4,4

h1,4

h3,4

AD6.1

AD6.2 AD6.3

AD6.4

(c) AD6 subregions

Figure 3. Division of H4×4 into subregions by Algorithms AD1, AD2, and AD6.

As we have H4×4 divided into subregions, we will now show how the algorithms
assign FSUs to connections. We discuss here only AD1 to limit the length of the paper;
the assignment procedure for the other algorithms can be easily derived by analogy. First,
we consider the connections represented by elements in QAD1

1 and QAD1
4 , and the FSUs

assigned to these connections will form the set S1(AD1,C). The connections in h1,1 and h2,2
are matched, so they can use the same set of FSUs in ILs from I1 and I2 numbered from 1 to
max{h1,1;h2,2} = h1,1. Similarly, the connections in h3,3 and h4,4 are matched, so they can use
the same set of FSUs in ILs from I3 and I4 and are numbered from 1 to max{h3,3;h4,4} = h3,3.
The connections in h1,2 and h2,1 are also matched, but are mismatched with connections in h1,1
and h2,2; therefore, they can use FSUs from h1,1+1 to h1,1+h1,2 and from h1,1+1 to h1,1+h2,1.
The same approach can be used for the connections in h3,4 and h4,3—that is, they can use
FSUs from h3,3+1 to h3,3+h3,4 and from h3,3+1 to h3,3+h4,3. As a result, we have already
assigned a FSUs and a =|S1(AD1,C)| = max{h1,1+max{h1,2; h2,1};h3,3+max{h3,4; h4,3}};
from property (3) h1,1 > h2,2 and h3,3 > h4,4. Next, we have to consider the connections
represented by elements in QAD1

2 and QAD1
3 , and the FSUs assigned to these connections

will form the set S2(AD1,C). By analogy, this set will contain FSUs numbered from a + 1 to
max{b; c}; where b = a + max{h1,3; h2,4} and c = a + max{h3,1; h4,2}.

The AD1 is listed as Algorithm 1, and the detailed assignment of FSUs is shown in
Table 1. Similar procedures and tables can be obtained for algorithms from AD2 to AD6 by
comparing QADx

j presented in Figure 2b–f with that obtained for AD1 (Figure 2a), and by

comparing how FSUs are assigned to elements of QAD1
j in Table 1.

Algorithm 1: (AD1)
Data: C
Result: FSUs assigned to connections in C

1 Create matrix H4×4

2 Assign FSUs to the connections according to Table 1

Sensors 2023, 23, 3615 8 of 22

Table 1. Assignment of FSUs to connections by AD1.

Algorithm AD1

hi,j
Index Numbers of Assigned FSUs

QAD1
j Set

From To

h1,1 1 h1,1 QAD1
1

S1(AD1,C)

h2,2 1 h2,2 QAD1
1

h1,2 h1,1+1 h1,1+h1,2 QAD1
1

h2,1 h1,1+1 h1,1+h2,1 QAD1
1

h3,3 1 h3,3 QAD1
4

h4,4 1 h4,4 QAD1
4

h3,4 h3,3+1 h3,3+h3,4 QAD1
4

h4,3 h3,3+1 h3,3+h4,3 QAD1
4

h1,3 a + 1 a+h1,3 QAD1
2

S2(AD1,C)

h2,4 a + 1 a+h2,4 QAD1
2

h1,4 b + 1 b+h1,4 QAD1
2

h2,3 b + 1 b+h2,3 QAD1
2

h3,1 a + 1 a+h3,1 QAD1
3

h4,2 a + 1 a+h4,2 QAD1
3

h3,2 c + 1 c+h3,2 QAD1
3

h4,1 c + 1 c+h4,1 QAD1
3

a = max{h1,1+max{h1,2; h2,1};h3,3+max{h3,4; h4,3}}; b = a + max{h1,3; h2,4}; c = a + max{h3,1; h4,2}.

3.3. The Maximum Number of FSUs in the Algorithms

We now determine the maximum number of FSUsto be occupied by each pair of
mismatched quarters; that is, we derive the maximum values for (7) for each algorithm.
The number of FSUs required by each S1(ADx,C) and each S2(ADx,C) depends on the
elements of H4×4 surrounded by solid and dashed lines, respectively. Similarly, as in the
description of the algorithms, we provide a detailed analysis for AD1 and present the final
equations for the remaining algorithms. From Table 1, we obtain

|S1(ADx,C)| = max
C
{max{h1,1; h2,2}+ max{h1,2; h2,1}; max{h3,3; h4,4}+ max{h3,4; h4,3}} (8)

and

|S2(ADx,C)| = max
C
{max{h1,3; h2,4}+ max{h2,3; h1,4}; max{h3,1; h4,2}+ max{h3,2; h4,1}}. (9)

In general, each element of each pair in (8) and (9) can be greater. Therefore, we must
consider all the cases to determine the maximum needed value of k. When the first sums
in (8) and (9) are greater, we choose the maximum between pairs (h1,1;h2,2), (h1,2;h2,1),
(h1,3;h2,4), and (h2,3;h4,1). The elements in these pairs form the subregion AD1.1 (see Fig-
ure 3a). In the subregions ADx.1 and ADx.4, quarters are placed horizontally (H), while in
ADx.2 and ADx.3, quarters are placed vertically (V). The elements with maximum values
in the subregions can be located in four scenarios: HH, HV, VH, and VV (see Figure 4),
while in each scenario we have four cases denoted by (a), (b), (c), and (d). These cases for
scenario HH in AD1.1 are presented in Figure 5.

Sensors 2023, 23, 3615 9 of 22

Qrd

Qbd

HH VV HV VH HH

VV

HV

VH

Scenarios in AD1.1 and AD1.4Scenarios in AD1.2 and AD1.3

Figure 4. Location of elements with the maximum value in horizontally (H) and vertically (V)
stacked quarters.

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

VV scenario in AD1.1

Set (a) Set (b) Set (c) Set (d)

HH scenario in AD1.1

Set (a)

Set (b)

Set (c)

Set (d)

Figure 5. Four cases with maximum values of elements hi,j in VV and HH scenarios in AD1.1.

In the equations listed in Appendix A, we provide the results for the possible maximum
values of Equation (7) for all the scenarios and cases for AD1. When creating these formulas,
we take into account the properties (3) and (5). Here we explain two cases. In the AD1.1
scenario HH and case (a) h1,1, h1,2, h1,3, and h1,4 are the maximum values. This means that
max
C
{k4×4(AD1.1;C)} = h1,1 + h1,2 + h1,3 + h1,4, and this sum is equal to n (3). In the same

scenario, but in case (c), we have |S1(ADx,C)| = h2,1 + h2,2 and |S2(ADx,C)| = h1,3 + h1,4.
The maximum value of h2,1 + h2,2 can be n. However, since h1,1 > h2,2 we get h1,1 > dn/2e
and h2,2 6 bn/2c Since h1,1 > dn/2e, the maximum value of h1,3 + h1,4 = n − h1,1, i.e.,
h1,3 + h1,4 = bn/2c. As the result, k4×4(AD1.1;C) = n + bn/2c.

The listed equations give the maximum values of k for a given subregion, scenario,
and case. Now, we have to find for which of these equations k reaches the highest value
through all possible Cs, that is

k4×4(AD1) = max
C
{k4×4(AD1.1;C); k4×4(AD1.2;C); k4×4(AD1.3;C); k4×4(AD1.4;C)}. (10)

When we look at Table 2, where we included the results of all subregions, scenarios,
and cases for algorithms AD1, AD2, and AD6, we can conclude that n ≤ k4×4(AD1) ≤ 2n.
This means that there are Cs for which we can realize all connections in less than 2n slots,
but there are also cases where C requires 2n slots. However, when we need 2n slots for C
in the algorithm AD1, we may need less than 2n slots when using another algorithm, for
example AD2 or AD6. The results of these algorithms are also included in Table 2. We omit
AD3 and AD5, because the arrangement of elements in AD2 is similar to the transpose of
AD3, and the arrangement of elements in AD6 is similar to the transpose of AD5; moreover,
the results for these algorithms are exactly the same as for AD2 and AD6, respectively. The
problem of finding the best value of k when all the algorithms are used is the subject of the
next section.

Sensors 2023, 23, 3615 10 of 22

Table 2. AD1 Algorithm scenarios comparison.

Subregions Scenarios
Algorithm AD1

set(a) set(b) set(c) set(d)

AD1.1

HH n n+b2n/3c n+bn/2c n
VV n+bn/2c n+bn/2c n+bn/2c n+bn/2c
VH n+bn/2c n+b2n/3c n n+bn/2c
HV n+bn/2c n+bn/2c n+bn/2c n+bn/2c

AD1.2

HH n+bn/2c n+bn/2c n+bn/2c n+bn/2c
VV n n+b2n/3c n+bn/2c n
VH n+bn/2c n+bn/2c n+bn/2c n+bn/2c
HV n+bn/2c n+b2n/3c n n+bn/2c

AD1.3

HH n+bn/2c n+bn/2c n+bn/2c n+bn/2c
VV n n+bn/2c 2n, 2n− 1 n
VH n+bn/2c n n+b2n/3c n+bn/2c
HV n+bn/2c n+bn/2c n+bn/2c n+bn/2c

AD1.4

HH n n+bn/2c 2n, 2n− 1 n
VV n+bn/2c n+bn/2c n+bn/2c n+bn/2c
VH n+bn/2c n+bn/2c n+bn/2c n+bn/2c
HV n+bn/2c n n+b2n/3c n+bn/2c

Subregions Scenarios
Algorithm AD2

set(a) set(b) set(c) set(d)

AD2.1

HH n 2n n+bn/2c n
VV n+b3n/4c 2n n+bn/3c n+bn/2c
VH n+bn/2c 2n n n+bn/2c
HV n+bn/2c 2n n+bn/2c n+bn/2c

AD2.2

HH 2n n+bn/2c n+bn/2c b2n/3c+b2n/3c
VV n 2n b2n/3c+b2n/3c n
VH 2n n+bn/2c n+bn/2c bn/2c+b2n/3c
HV n+bn/2c 2n n n+bn/2c

AD2.3

HH b2n/3c+b2n/3c n+bn/2c n+bn/2c 2n
VV n n+bn/2c 2n n
VH n+bn/4c n+bn/2c n+bn/2c 2n
HV n+bn/2c n+bn/2c 2n n+bn/2c

AD2.4

HH n 2n b3n/4c+b2n/3c n
VV n+bn/2c n+bn/3c 2n n+b3n/4c
VH bn/2c+b2n/3c n+bn/2c n+bn/2c 2n
HV 2n n+bn/2c n+bn/2c n+bn/4c

Subregions Scenarios
Algorithm AD3

set(a) set(b) set(c) set(d)

AD6.1

HH n 2n b3n/4c+b2n/3c n
VV 2n n+b3n/4c n+bn/2c n+bn/3c
VH n+bn/2c 2n n n+bn/2c
HV 2n n+bn/2c n+bn/2c n+bn/4c

AD6.2

HH 2n n+bn/2c n+bn/2c n+bn/4c
VV n 2n b2n/3c+b2n/3c n
VH 2n n+bn/2c n+bn/2c bn/2c+b2n/3c
HV n+bn/2c 2n n n+bn/2c

AD6.3

HH n+bn/2c n+bn/2c n+bn/2c 2n
VV n 2n n+bn/2c n
VH n+bn/2c 2n n+bn/2c n+bn/2c
HV n+bn/4c n+bn/2c n+bn/2c 2n

AD6.4

HH n 2n n+bn/2c n
VV n+bn/3c n+bn/2c n+b3n/4c 2n
VH bn/2c+b2n/3c n+bn/2c n+bn/2c 2n
HV n+bn/2c 2n n+bn/2c n+bn/2c

4. The New Algorithm AD7 and RNB Conditions

The results of allocating FSUs to connections by algorithms AD1–AD6 vary widely.
The question is which algorithm should be used to minimize the number of required

Sensors 2023, 23, 3615 11 of 22

FSUs in ILs, yet make it possible to realize any C. This minimum value of k makes the
WSW1(4, n, k) rearrangeable and is given by the following formula:

k4×4
RNB > max

C
{min{k4×4(AD1;C); k4×4(AD2;C); k4×4(AD3;C); k4×4(AD4;C); k4×4(AD5;C); k4×4(AD6;C)}}. (11)

As stated in the previous section, we have k4×4(AD2;C) = k4×4(AD3;C) and
k4×4(AD5;C) = k4×4(AD6;C); therefore, we can exclude AD3 and AD5 from (11). When
we compared the results for AD1, AD2, and AD6 (see Table 2) with the results for AD4,
we concluded that for any C we had min{k4×4(AD1;C); k4×4(AD2;C); k4×4(AD6;C)} 6
k4×4(AD4;C); therefore, we could also exclude AD4 from (11). Consequently, we finally obtain

k4×4
RNB = k4×4(AD7) = max

C
{min{k4×4(AD1;C); k4×4(AD2;C); k4×4(AD6;C)}}, (12)

where AD7 is given as Algorithm 2.

Algorithm 2: (AD7)
Data: C
Result: FSUs assigned to connections in C

1 Create matrix H4×4 for C
2 Calculate k1 = k4×4(AD1;C)
3 Calculate k2 = k4×4(AD2;C)
4 Calculate k6 = k4×4(AD6;C)
5 Calculate k = min{k1; k2; k6}
6 switch k do
7 case k1 do
8 x = 1;

9 case k2 do
10 x = 2;

11 case k6 do
12 x = 6;

13 Assign FSUs to the connections according to ADx.

We explain the idea of AD7 performance by means of the example presented in Figure 6.
This example shows two matrices H4×4 representing connections in two switching fabrics,
WSW1(4, 4, k) and WSW1(4, 5, k) (see Figure 6a,b). In Figure 6a, we have n = 4 (n is even)
and when we use AD1 to assign FSUs, we need k4×4(AD1,C) = 2n = 8 slots. This maxi-
mum value is obtained for the subregion AD1.3, scenario VV, and case (c) (see Table 2) for
which k = h1,4 + h2,4 + h3,3 + h4,3 = 2 + 2 + 2 + 2 = 8. However, when we use AD2 for
the same subregion, scenario and case, we see that these connections can be realized by us-
ing only k = h2,4 + h3,4 + h1,3 + h4,3 = 2 + 0 + 0 + 2 = 4 slots. For AD6, we also have
k = h2,4 + h4,4 + h1,3 + h3,3 = 2 + 0 + 0 + 2 = 4 slots. However, this number of slots is not
sufficient to realize connections in other the subregions by AD2 or AD6. Both algorithms need
6 FSUs for subregions AD2.2 and AD6.2. On the other hand, there may be other connection
patterns, for which AD2 and AD6 need more FSUs. We see this in Table 2 since for AD2.3, VV
scenario and case (c), the maximum number of required k is 2n but for AD6.3—only n + bn/2c.
Similarly, we can analyze Figure 6b, where we have n = 5 (n is odd). For AD1, we need k = 9
FSUs, while AD2 and AD6 can fit connections in k = 5 FSUs. The role of AD7 is to determine,
for a given C, which of the algorithms AD1, AD2, or AD6 requires the fewest number of FSUs
in ILs, and to use this algorithm for assigning slots to connections.

Sensors 2023, 23, 3615 12 of 22

2

AD1

0

AD1

0

AD1

2

AD1

0

AD1

2

AD1

0

AD1

2

AD1

1

AD1

1

AD1

2

AD1

0

AD1

1

AD1

1

AD1

2

AD1

0

AD1

2

AD2

0

AD2

0

AD2

2

AD2

0

AD2

2

AD2

0

AD2

2

AD2

1

AD2

1

AD2

2

AD2

0

AD2

1

AD2

1

AD2

2

AD2

0

AD2

2

AD6

0

AD6

0

AD6

2

AD6

0

AD6

2

AD6

0

AD6

2

AD6

1

AD6

1

AD6

2

AD6

0

AD6

1

AD6

1

AD6

2

AD6

0

AD6

(a) Even number of FSUs at n = 4.

3

AD1

0

AD1

0

AD1

2

AD1

0

AD1

3

AD1

0

AD1

2

AD1

1

AD1

1

AD1

3

AD1

0

AD1

1

AD1

1

AD1

2

AD1

1

AD1

3

AD2

0

AD2

0

AD2

2

AD2

0

AD2

3

AD2

0

AD2

2

AD2

1

AD2

1

AD2

3

AD2

0

AD2

1

AD2

1

AD2

2

AD2

1

AD2

3

AD6

0

AD6

0

AD6

2

AD6

0

AD6

3

AD6

0

AD6

2

AD6

1

AD6

1

AD6

3

AD6

0

AD6

1

AD6

1

AD6

2

AD6

1

AD6

(b) Odd number of FSUs at n = 5.

Figure 6. Example of applying AD2 and AD6 instead of AD1 to achieve lower value for k.

The question now is what the minimum number of required FSUs in ILs is sufficient
to ensure that AD7 always ends with success for any C. The answer to this question is
given in the following theorem.

Theorem 1. The WSW1(4, n, k) switching fabric is RNB for m-slot connections, 1 6 m 6 n, and
when n > 4 under the algorithm AD7 if

k > k4×4
RNB = n + b2n/3c. (13)

Proof. In AD7, for a given C, we check for which of the algorithms AD1, AD2, or AD6 we
need the lowest number of FSUs. Then, these minimum values calculated for each C must
be maximized (see (12)). We can find the better algorithm by calculating the number of
FSUs for each algorithm in each subregion for each scenario and case. These values are
shown in Table 3, which we obtained from Table 2. We see that the maximum value in
this table is n + b2n/3c; therefore, this number of FSUs is sufficient to realize all possible
compatible connection patterns.

Sensors 2023, 23, 3615 13 of 22

Table 3. Algorithm AD7 scenarios.

Algorithm AD7
Subregions Scenarios a b c d

AD7.1

HH n n+b2n/3c b3n/4c+b2n/3c n
VV n+bn/2c n+bn/2c n+bn/3c n+bn/3c
VH n+bn/2c n+b2n/3c n n+bn/2c
HV n+bn/2c n+bn/2c n+bn/2c n+bn/4c

AD7.2

HH n+bn/2c n+bn/2c n+bn/2c n+bn/4c
VV n n+b2n/3c b2n/3c+b2n/3c n
VH n+bn/2c n+bn/2c n+bn/2c bn/2c+b2n/3c
HV n+bn/2c n+b2n/3c n n+bn/2c

AD7.3

HH b2n/3c+b2n/3c n+bn/2c n+bn/2c n+bn/2c
VV n n+bn/2c n+bn/2c n
VH n+bn/4c n n+bn/2c n+bn/2c
HV n+bn/4c n+bn/2c n+bn/2c n+bn/2c

AD7.4

HH n n+bn/2c b3n/4c+b2n/3c n
VV n+bn/3c n+bn/3c n+bn/2c n+bn/2c
VH bn/2c+b2n/3c n+bn/2c n+bn/2c n+bn/2c
HV n+bn/2c n n+bn/2c n+bn/4c

5. Comparisons and Numerical Results

Algorithm AD7 gives the best results of all the algorithms proposed in this paper. Now,
we compare this algorithm with the algorithms CA6 and CA7 proposed in [15]. We first
consider the WSW1(4, n, k) switching fabric. The values of k4×4

RNB are compared in Table 4
and plotted in Figure 7. As for the CA6, AD7 allows reducing the number of FSUs in ILs
by more than 16%. In case of CA7, this reduction is greater than 40%. For instance, when
n = 160 (a typical value for band C in optical fibers when frequency slot is 25 GHz wide),
CA6 requires 320 FSUs, CA7—448 FSUs, while AD7 finishes with success when there are
only 266 FSUs in ILs. This is illustrated in Table 4 and Figure 7, where kr×r

RNB(CA6) = dr/2en
and kr×r

RNB(CA7) = dr/3e(n + b2n/5c) [15]. Those previously developed algorithms (CA6,
CA7) are based on the analysis of r = 2 and r = 3; however, AD7 is developed based on the
analysis of r = 4, which delivers the most optimal and efficient result represented by the
lowest number of FSUs in ILs. In addition, both algorithms CA6 and CA7 are multiplied
by the factor of dr/2e, and dr/3e, respectively, which results in multiplication by 2 in case
of r = 4. That would affect the overall result to be multiplied by a factor of 2, which
eventually leads to an increase of the number of FSUs in ILs. Hence, k4×4

RNB(CA6) = 2n and
k4×4

RNB(CA7) = 2(n + b2n/5c), which means that both algorithms give greater value than
k4×4

RNB(AD7) = n + b2n/3c. Therefore, we notice that AD7, when applied for H4×4, yields a
better result than previously published algorithms. For instance, k4×4

RNB(AD7) = 8, where
k4×4

RNB(CA6) = 10 and k4×4
RNB(CA7) = 14.

When r > 4, we compare some results for r = 8, 16 and 32 and selected values of n.
FSUs are assigned to connections by dividing Hr×r into submatrices H4×4, similar to what
is proposed in [15], and by using AD7 for each submatrix. The number of FSUs in ILs is
calculated in this case by the following equation:

kr×r
RNB(AD8)>kr×r(AD8) = dr/4e × k4×4

RNB(AD7). (14)

The results are compared in Table 5 with kr×r
RNB(CA6) and kr×r

RNB(CA7) [15], where
kr×r

RNB(CA6) = dr/2en and kr×r
RNB(CA7) = dr/3e(n + b2n/5c). We can see that AD7, when

employed for kr×r
RNB, outperforms all the algorithms published. For example, when n = 20

we get k8×8
RNB(CA6) = 80 and k8×8

RNB(CA7) = 84, where k8×8
RNB(AD8) = 66. This shows how

AD8 yields better results when compared with other previously known algorithms.
In addition, as we illustrated previously, CA6 and CA7 are developed based on the

analysis of H2×2 and H3×3, respectively, where AD7 is developed based on the analysis
of H4×4. Therefore, when it comes to finding the number of FSUs in ILs, each algorithm
is multiplied by a factor representing the value of r, i.e., algorithm CA6 is multiplied by

Sensors 2023, 23, 3615 14 of 22

a factor of dr/2e, algorithm CA6 is multiplied by a factor of dr/3e, and algorithm AD7 is
multiplied by a factor of dr/4e donated as AD8. In case of r = 8, the factor for CA6, CA7,
and AD8, respectively, will be (4, 3, and 2); similarly for r = 16 the factor will be (8, 6,
and 4), and finally, for r = 32 the factor will be (16, 11, and 8). Accordingly, as r increases,
the factor difference between algorithms increases, which can cause CA7 to have a lower
number of FSUs in ILs than CA6 (see r = 32 in Table 5).

Table 4. Comparison of k4×4
RNB presented in [15] and required by Theorem 1.

k4×4
RNB

n CA6 [15] CA7 [15] AD7 AD7 to
CA6 [15] AD7 to CA7 [15]

5 10 14 8 20% 42.857%

10 20 28 16 20% 42.857%

15 30 42 25 16.7% 40.476%

20 40 56 33 17.5% 41.071%

40 80 112 66 17.5% 41.071%

60 120 168 100 16.7% 40.476%

80 160 224 133 16.875% 40.625%

160 320 448 266 16.875% 40.625%

320 640 896 533 16.7% 40.513%

40 80 120 160 200 240 280 320
0

100

200

300

400

500

600

700

800

900

The number of FSUs in input/output fibers n

Th
e

nu
m

be
r

of
FS

U
s

in
in

te
rs

ta
ge

lin
ks

k CA6
CA7
AD7

Figure 7. Comparison of k4×4
RNB presented in [15] and required by Theorem 1.

Sensors 2023, 23, 3615 15 of 22

Table 5. Comparison of kr×r
RNB presented in [15] and required by Theorem 1.

n r = 8 r = 16 r = 32

CA6 CA7 AD8 CA6 CA7 AD8 CA6 CA7 AD8

20 80 84 66 160 168 132 320 308 264

40 160 168 132 320 336 264 640 616 528

60 240 252 200 480 504 400 960 924 800

80 320 336 266 640 672 532 1280 1232 1064

100 400 420 332 800 840 664 1600 1540 1328

120 480 504 400 960 1008 800 1920 1848 1600

140 560 588 466 1120 1176 932 2240 2156 1864

160 640 672 532 1280 1344 1064 2560 2464 2128

180 720 756 600 1440 1512 1200 2880 2772 2400

200 800 840 666 1600 1680 1332 3200 3080 2664

220 880 924 732 1760 1848 1464 3520 3388 2928

240 960 1008 800 1920 2016 1600 3840 3696 3200

260 1040 1092 866 2080 2184 1732 4160 4004 3464

280 1120 1176 932 2240 2352 1864 4480 4312 3728

300 1200 1260 1000 2400 2520 2000 4800 4620 4000

320 1280 1344 1066 2560 2688 2132 5120 4928 4264

We compared the proposed algorithm result with other results presented in [15]. We also
investigated the results presented in [27] and found that they were not better than that presented
in [15]. For instance, when kr×r

RNB(CA6) = 20, kr×r
RNB(CA7) = 28, and kr×r

RNB(AD7) = 16, the
algorithms in [27] achieves kr×r

SNB = 124, and kr×r
RNB = 40. Furthermore, SNB derived in [13]

requires even more FSUs than that presented in [15], as k8×8
SNB = 225, where k8×8

RNB(AD7) = 132.
Similarly, the WNB proposed in [35] is not better than [15]. Therefore, it is sufficient to compare
result for the proposed algorithms to the best-known result to date.

Finally, we should mention that the algorithm is very simple. The complexity of
the algorithm is determined mainly by matrix preparation and rearranging such that the
property (3) is fulfilled. When the matrix H4×4 is given, AD7 chooses the final algorithm to
assign FSUs to connections in O(1) time, and then the selected algorithm assigns slots by
using a fixed table. For AD1 this assignment is given in Table 1.

6. Conclusions

In this paper, we proposed seven algorithms for assigning frequency slots to connec-
tions in WSW1(4, n, k) switching fabrics serving multislot connections. Algorithms AD1
to AD6 are based on matrix decomposition, while AD7 uses all the algorithms mentioned
before. For a given connection pattern, it uses those algorithms that require the fewest fre-
quency slots. This approach was previously proposed in [15] but was limited to switching
fabrics with r = 3. When r = 4, the number of slot assignment patterns increases rapidly,
and many more cases must be analyzed to find the number of frequency slots, which en-
sures that the algorithms always end with success. The number that makes WSW1(4, n, k)
rearrangeably nonblocking is given in Theorem 1. Algorithm AD7 improves the previously
known results by more than 16% or even 40%, depending on which algorithm is used.
We also extrapolated the number of required frequency slots for WSW1(r, n, k) switching
fabrics with r > 4. In this case, the proposed algorithm also outperforms the previously
known algorithms. It should be noted that the proposed solutions provide sufficient con-
ditions for RNB. The necessity is not shown; this means that there is still place for other
algorithms, which reduces the number of required frequency slots. However, we know that
this number cannot be lower than n + bn/4c [15].

Sensors 2023, 23, 3615 16 of 22

In this work, k is the only parameter we can use to obtain RNB conditions. When
we have these conditions, we can consider how much power or how many elements the
switching fabric needs. However, the number of tunable wavelength converters is rather
determined by the switching fabric capacity and architecture (r switches in the input/output
stages, one switch in the center stage). Therefore, k is more important since it determines
the range of required converters. Moreover, the complexity of the algorithm is very low,
since we have to calculate the result according to three simple algorithms from the algorithm
AD8 (12), as shown in (2), and use that with the lowest result. Then FSUs are assigned to
connections by using the assignment given for each algorithm, such as in Table 1. The most
time-consuming task is to prepare the matrix from the set of connections and sort it in such a
way that conditions (3) and (5) are fulfilled.

Author Contributions: E.A.: conceptualization, methodology, investigation, formal analysis, writing—
original draft preparation, visualization; M.Ż.: conceptualization, methodology, formal analysis,
writing—original draft preparation, visualization, supervision; W.K.: writing—review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: The work was financed from the funds of the Ministry of Science and Higher Education for
year 2023 (0313/SBAD/1310).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

BV-WBCS Bandwidth-Variable Wavelength-Converting Switch,
BV-WSSS Bandwidth-Variable Wavelength-Selective Space Switch,
CWDM Coarse Wavelength Division Multiplexing,
DWDM Dense Wavelength Division Multiplexing,
EON Elastic Optical Network,
FaaS Function as a Service,
FSU Frequency Slot Unit,
HH Horizontal–Horizontal scenario,
HV Horizontal–Vertical scenario,
IaaS Infrastructure as a Service,
ICT Information and Computing Technology,
PaaS Platform as a Service,
RNB Rearrangeable Non-Blocking,
SWS Space–Wavelength–Space,
WDM Wavelength Division Multiplexing,
WSW Wavelength–Space–Wavelength,
VH Vertical–Horizontal scenario,
VV Vertical–Vertical scenario,

Appendix A. Calculation for Subregions

In the following Sections A.1–A.4, we provide the equations we used for considerations
included in Section 3.3. All scenarios and cases for AD1 contain at least the result for the
possible maximum values of Equation (7). In order to make it easier to understand how we
obtained the results, for almost all cases, we added the dependencies that result from the
properties defined by the formulas (3) and (5). Obvious cases have been omitted.

Sensors 2023, 23, 3615 17 of 22

Appendix A.1. Subregion AD1.1

Scenario HH set (a): k4×4(AD1.1HH
a ,C) = h1,1 + h1,2 + h1,3 + h1,4 = n

Scenario HH set (b): h1,1 + h1,2 = n, h2,3 + h2,4 = b2n/3c
k4×4(AD1.1HH

b ,C) = h1,1 + h1,2 + h2,3 + h2,4 = n + b2n/3c

Scenario HH set (c): h2,1 + h2,2 = n, h1,3 + h1,4 = bn/2c
k4×4(AD1.1HH

c ,C) = h2,1 + h2,2 + h1,3 + h1,4 = n + bn/2c

Scenario HH set (d): k4×4(AD1.1HH
d ,C) = h2,1 + h2,2 + h2,3 + h2,4 = n

Scenario VV set (a): h1,1 + h2,1 = n, h1,3 + h2,3 = bn/2c
k4×4(AD1.1VV

a ,C) = h1,1 + h2,1 + h1,3 + h2,3 = n + bn/2c

Scenario VV set (b): h1,1 + h2,1 = n, h1,4 + h2,4 = bn/2c
k4×4(AD1.1VV

b ,C) = h1,1 + h2,1 + h1,4 + h2,4 = n + bn/2c

Scenario VV set (c): h1,2 + h2,2 = n, h1,3 + h2,3 = bn/2c
k4×4(AD1.1VV

c ,C) = h1,2 + h2,2 + h1,3 + h2,3 = n + bn/2c

Scenario VV set (d): h1,2 + h2,2 = n, h1,4 + h2,4 = bn/2c
k4×4(AD1.1VV

d ,C) = h1,2 + h2,2 + h1,4 + h2,4 = n + bn/2c

Scenario VH set(a): h1,1 + h1,3 + h1,4 = n, h2,1 = bn/2c
k4×4(AD1.1VH

a ,C) = h1,1 + h2,1 + h1,3 + h1,4 = n + bn/2c

Scenario VH set (b): h1,1 + h2,1 = n, h2,3 + h2,4 = b2n/3c
k4×4(AD1.1VH

b ,C) = h1,1 + h2,1 + h2,3 + h2,4 = n + b2n/3c

Scenario VH set (c): h1,2 + h1,3 + h1,4 = n− h1,1, h2,2 ≤ h1,1
k4×4(AD1.1VH

c ,C) = h1,2 + h2,2 + h1,3 + h1,4 = n

Scenario VH set (d): h2,2 + h2,3 + h2,4 = n, h1,2 = bn/2c
k4×4(AD1.1VH

d ,C) = h1,2 + h2,2 + h2,3 + h2,4 = n + bn/2c

Scenario HV set (a): h1,1 + h1,2 + h1,3 = n, h2,3 = n− h2,2 = bn/2c
k4×4(AD1.1HV

a ,C) = h1,1 + h1,2 + h1,3 + h2,3 = n + bn/2c

Scenario HV set (b): h1,1 + h1,2 + h1,4 = n, h2,4 = n− h2,2 = bn/2c
k4×4(AD1.1HV

b ,C) = h1,1 + h1,2 + h1,4 + h2,4 = n + bn/2c

Scenario HV set (c): h2,1 + h2,2 + h2,3 = n, h1,3 = n− h1,1 = bn/2c
k4×4(AD1.1HV

c ,C) = h2,1 + h2,2 + h1,3 + h2,3 = n + bn/2c

Scenario HV set (d): h2,1 + h2,2 + h2,4 = n, h1,4 = n− h1,1 = bn/2c
k4×4(AD1.1HV

d ,C) = h2,1 + h2,2 + h1,4 + h2,4 = n + bn/2c

Sensors 2023, 23, 3615 18 of 22

Appendix A.2. Subregion AD1.2

Scenario HH set (a): h1,1 + h1,2 = n, h3,1 + h3,2 = bn/2c
k4×4(AD1.2HH

a ,C) = h1,1 + h1,2 + h3,1 + h3,2 = n + bn/2c

Scenario HH set (b): h1,1 + h1,2 = n, h4,1 + h4,2 = bn/2c
k4×4(AD1.2HH

b ,C) = h1,1 + h1,2 + h4,1 + h4,2 = n + bn/2c

Scenario HH set (c): h2,1 + h2,2 = n, h3,1 + h3,2 = bn/2c
k4×4(AD1.2HH

c ,C) = h2,1 + h2,2 + h3,1 + h3,2 = n + bn/2c

Scenario HH set (d): h2,1 + h2,2 = n, h4,1 + h4,2 = bn/2c
k4×4(AD1.2HH

d ,C) = h2,1 + h2,2 + h4,1 + h4,2 = n + bn/2c

Scenario VV set (a): k4×4(AD1.2VV
a ,C) = h1,1 + h2,1 + h3,1 + h4,1 = n

Scenario VV set (b): h1,1 + h2,1 = n, h3,2 + h4,2 = b2n/3c
k4×4(AD1.2VV

b ,C) = h1,1 + h2,1 + h3,2 + h4,2 = n + b2n/3c

Scenario VV set (c): h1,2 + h2,2 = n, h3,1 + h4,1 = bn/2c
k4×4(AD1.2VV

c ,C) = h1,2 + h2,2 + h3,1 + h4,1 = n + bn/2c

Scenario VV set (d): k4×4(AD1.2VV
d ,C) = h1,2 + h2,2 + h3,2 + h4,2 = n

Scenario VH set (a): h1,1 + h2,1 + h3,1 = n, h3,2 = n− h2,2 = bn/2c
k4×4(AD1.2VH

a ,C) = h1,1 + h2,1 + h3,1 + h3,2 = n + bn/2c

Scenario VH set (b): h1,1 + h2,1 + h4,1 = n, h4,2 = n− h2,2 = bn/2c
k4×4(AD1.2VH

b ,C) = h1,1 + h2,1 + h4,1 + h4,2 = n + bn/2c

Scenario VH set (c): h1,2 + h2,2 + h3,2 = n, h3,1 = n− h1,1 = bn/2c
k4×4(AD1.2VH

c ,C) = h1,2 + h2,2 + h3,1 + h3,2 = n + bn/2c

Scenario VH set (d): h1,2 + h2,2 + h4,2 = n, h4,1 = n− h1,1 = bn/2c
k4×4(AD1.2VH

d ,C) = h1,2 + h2,2 + h4,1 + h4,2 = n + bn/2c

Scenario HV set (a): h1,1 + h3,1 + h4,1 = n, h1,2 = bn/2c
k4×4(AD1.2HV

a ,C) = h1,1 + h1,2 + h3,1 + h4,1 = n + bn/2c

Scenario HV set (b): h1,1 + h1,2 = n, h3,2 + h4,2 = b2n/3c
k4×4(AD1.2HV

b ,C) = h1,1 + h1,2 + h3,2 + h4,2 = n + b2n/3c

Scenario HV set (c): h2,1 + h3,1 + h4,1 = n− h1,1, h2,2 ≤ h1,1
k4×4(AD1.2HV

c ,C) = h2,1 + h2,2 + h3,1 + h4,1 = n

Scenario HV set (d): h2,2 + h3,2 + h4,2 = n, h2,1 = bn/2c
k4×4(AD1.2HV

d ,C) = h2,1 + h2,2 + h3,2 + h4,2 = n + bn/2c

Sensors 2023, 23, 3615 19 of 22

Appendix A.3. Subregion AD1.3

Scenario HH set (a): h3,3 + h3,4 = n, h1,3 + h1,4 = bn/2c
k4×4(AD1.3HH

a ,C) = h3,3 + h3,4 + h1,3 + h1,4 = n + bn/2c

Scenario HH set (b): h4,3 + h4,4 = n, h1,3 + h1,4 = bn/2c
k4×4(AD1.3HH

b ,C) = h4,3 + h4,4 + h1,3 + h1,4 = n + bn/2c

Scenario HH set (c): h3,3 + h3,4 = n, h2,3 + h2,4 = bn/2c
k4×4(AD1.3HH

c ,C) = h3,3 + h3,4 + h2,3 + h2,4 = n + bn/2c

Scenario HH set (d): h4,3 + h4,4 = n, h2,3 + h2,4 = bn/2c
k4×4(AD1.3HH

d ,C) = h4,3 + h4,4 + h2,3 + h2,4 = n + bn/2c

Scenario VV set (a): k4×4(AD1.3VV
a ,C) = h1,3 + h2,3 + h3,3 + h4,3 = n

Scenario VV set (b): h3,4 + h4,4 = n, h1,3 + h2,3 = bn/2c
k4×4(AD1.3VV

b ,C) = h3,4 + h4,4 + h1,3 + h2,3 = n + bn/2c

Scenario VV set (c): h3,3 + h4,3 = n, h1,4 + h2,4 = 2bn/2c
k4×4(AD1.3VV

c ,C) = h3,3 + h4,3 + h1,4 + h2,4 = n + 2bn/2c=

=

{
2n for n even,

2n− 1 for n odd,
Scenario VV set (d): k4×4(AD1.3VV

d ,C) = h1,4 + h2,4 + h3,4 + h4,4 = n

Scenario VH set (a): h1,3 + h2,3 + h3,3 = n, h3,4 = bn/2c
k4×4(AD1.3VH

a ,C) = h3,3 + h3,4 + h1,3 + h2,3 = n + bn/2c

Scenario VH set (b): h1,3 + h2,3 + h4,3 = n− h3,3, h4,4 ≤ h3,3
k4×4(AD1.3VH

b ,C) = h4,3 + h4,4 + h1,3 + h2,3 = n

Scenario VH set (c): h3,3 + h3,4 = n, h1,4 + h2,4 = b2n/3c
k4×4(AD1.3VH

c ,C) = h3,3 + h3,4 + h1,4 + h2,4 = n + b2n/3c

Scenario VH set (d): h1,4 + h2,4 + h4,4 = n, h4,3 = bn/2c
k4×4(AD1.3VH

d ,C) = h4,3 + h4,4 + h1,4 + h2,4 = n + bn/2c

Scenario HV set (a): h3,3 + h4,3 = n, h1,3 + h1,4 = bn/2c
k4×4(AD1.3HV

a ,C) = h3,3 + h4,3 + h1,3 + h1,4 = n + bn/2c

Scenario HV set (b): h3,4 + h4,4 = n, h1,3 + h1,4 = bn/2c
k4×4(AD1.3HV

b ,C) = h3,4 + h4,4 + h1,3 + h1,4 = n + bn/2c

Scenario HV set (c): h3,3 + h4,3 = n, h2,3 + h2,4 = bn/2c
k4×4(AD1.3HV

c ,C) = h3,3 + h4,3 + h2,3 + h2,4 = n + bn/2c

Scenario HV set (d): h3,4 + h4,4 = n, h2,3 + h2,4 = bn/2c
k4×4(AD1.3HV

d ,C) = h3,4 + h4,4 + h2,3 + h2,4 = n + bn/2c

Sensors 2023, 23, 3615 20 of 22

Appendix A.4. Subregion AD1.4

Scenario HH set (a): k4×4(AD1.4HH
a ,C) = h3,1 + h3,2 + h3,3 + h3,4 = n

Scenario HH set (b): h4,3 + h4,4 = n, h3,1 + h3,2 = bn/2c
k4×4(AD1.4HH

b ,C) = h4,3 + h4,4 + h3,1 + h3,2 = n + bn/2c

Scenario HH set (c): h3,3 + h3,4 = n, h4,1 + h4,2 = 2bn/2c
k4×4(AD1.4HH

c ,C) = h3,3 + h3,4 + h4,1 + h4,2 = n + 2bn/2c =

=

{
2n for n even,

2n− 1 for n odd,
Scenario HH set (d): k4×4(AD1.4HH

d ,C) = h4,1 + h4,2 + h4,3 + h4,4 = n

Scenario VV set (a): h3,3 + h4,3 = n, h3,1 + h4,1 = bn/2c
k4×4(AD1.4VV

a ,C) = h3,3 + h4,3 + h3,1 + h4,1 = n + bn/2c

Scenario VV set (b): h3,4 + h4,4 = n, h3,1 + h4,1 = bn/2c
k4×4(AD1.4VV

b ,C) = h3,4 + h4,4 + h3,1 + h4,1 = n + bn/2c

Scenario VV set (c): h3,3 + h4,3 = n, h3,2 + h4,2 = bn/2c
k4×4(AD1.4VV

c ,C) = h3,3 + h4,3 + h3,2 + h4,2 = n + bn/2c

Scenario VV set (d): h3,4 + h4,4 = n, h3,2 + h4,2 = bn/2c
k4×4(AD1.4VV

d ,C) = h3,4 + h4,4 + h3,2 + h4,2 = n + bn/2c

Scenario VH set (a): h3,3 + h3,4 = n, h3,1 + h4,1 = bn/2c
k4×4(AD1.4VH

a ,C) = h3,3 + h3,4 + h3,1 + h4,1 = n + bn/2c

Scenario VH set (b): h4,3 + h4,4 = n, h3,1 + h4,1 = bn/2c
k4×4(AD1.4VH

b ,C) = h4,3 + h4,4 + h3,1 + h4,1 = n + bn/2c

Scenario VH set (c): h3,3 + h3,4 = n, h3,2 + h4,2 = bn/2c
k4×4(AD1.4VH

c ,C) = h3,3 + h3,4 + h3,2 + h4,2 = n + bn/2c

Scenario VH set (d): h4,3 + h4,4 = n, h3,2 + h4,2 = bn/2c
k4×4(AD1.4VH

d ,C) = h4,3 + h4,4 + h3,2 + h4,2 = n + bn/2c

Scenario HV set (a): h3,3 + h4,3 = n, h3,1 + h3,2 = bn/2c
k4×4(AD1.4HV

a ,C) = h3,3 + h4,3 + h3,1 + h3,2 = n + bn/2c

Scenario HV set (b): h3,1 + h3,2 + h3,4 = n− h3,3, h4,4 ≤ h3,3
k4×4(AD1.4HV

b ,C) = h3,1 + h3,2 + h3,4 + h4,4 = n

Scenario HV set (c): h3,3 + h4,3 = n, h4,1 + h4,2 = b2n/3c
k4×4(AD1.4HV

c ,C) = h3,3 + h4,3 + h4,1 + h4,2 = n + b2n/3c

Scenario HV set(d): h4,1 + h4,2 + h4,4 = n, h3,4 = n− h3,3 = bn/2c
k4×4(AD1.4HV

d ,C) = h4,1 + h4,2 + h3,4 + h4,4 = n + bn/2c

References
1. Prajapati, A.G.; Sharma, S.J.; Badgujar, V.S. All About Cloud: A Systematic Survey. In Proceedings of the 2018 International

Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; pp. 1–6. [CrossRef]
2. Kächele, S.; Spann, C.; Hauck, F.J.; Domaschka, J. Beyond IaaS and PaaS: An Extended Cloud Taxonomy for Computation,

Storage and Networking. In Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing,
Dresden, Germany, 9–12 December 2013; pp. 75–82. [CrossRef]

3. Miyachi, C. What is “Cloud”? It is time to update the NIST definition? IEEE Cloud Comput. 2018, 5, 6–11. [CrossRef]

http://doi.org/10.1109/ICSCET.2018.8537277
http://dx.doi.org/10.1109/UCC.2013.28
http://dx.doi.org/10.1109/MCC.2018.032591611

Sensors 2023, 23, 3615 21 of 22

4. Jinno, M.; Takara, H.; Kozicki, B.; Tsukishima, Y.; Sone, Y.; Matsuoka, S. Spectrum-efficient and scalable elastic optical path
network: Architecture, benefits, and enabling technologies. IEEE Commun. Mag. 2009, 47, 66–73. [CrossRef]

5. López, V.; Velasco Esteban, L. Elastic Optical Networks: Architectures, Technologies, and Control; Springer Publishing Company,
Incorporated: Cham, Switzerland, 2016. [CrossRef]

6. Farrel, A.; King, D.; Li, Y.; Zhang, F. Generalized Labels for the Flexi-Grid in Lambda Switch Capable (LSC) Label Switching Routers;
Seties Number 7699; RFC: Fremont, CA, USA, 2015. [CrossRef]

7. ITU-T. ITU-T Recommendation G.694.1. Spectral Grids for WDM Applications: DWDM Frequency Grid; International Telecommunica-
tion Union (ITU): Geneva, Switzerland, 2020.

8. ITU-T. Spectral Grids for WDM Applications DWDM Frequency Grid; Technical Report; International Telecommunication Union-
Telecommunication Standardization Secton; International Telecommunication Union (ITU): Geneva, Switzerland, 2020.

9. Chen, Y.; Li, J.; Zhu, P.; Niu, L.; Xu, Y.; Xie, X.; He, Y.; Chen, Z. Demonstration of Petabit scalable optical switching with
subband-accessibility for elastic optical networks. In Proceedings of the 2014 OptoElectronics and Communication Conference,
OECC 2014 and Australian Conference on Optical Fibre Technology, ACOFT 2014, Melbourne, VIC, Australia, 6–10 July 2014;
pp. 350–351.

10. Kabaciński, W.; Rajewski, R.; Al-Tameemi, A. Rearrangeable 2× 2 elastic optical switch with two connection rates and spectrum
conversion capability. Photonic Netw. Commun. 2020, 39, 78–90. [CrossRef]

11. Ping, Z.; Juhao, L.; Bingli, G.; Yongqi, H.; Zhangyuan, C.; Hequan, W. Comparison of node architectures for elastic optical
networks with waveband conversion. China Commun. 2013, 10, 77–87. [CrossRef]

12. Danilewicz, G.; Kabaciński, W.; Rajewski, R. Strict-sense nonblocking space-wavelength-space switching fabrics for elastic optical
network nodes. J. Opt. Commun. Netw. 2016, 8, 745–756. [CrossRef]

13. Kabaciński, W.; Michalski, M.; Rajewski, R. Strict-Sense Nonblocking W-S-W Node Architectures for Elastic Optical Networks.
J. Light. Technol. 2016, 34, 3155–3162. [CrossRef]

14. Danilewicz, G. Asymmetrical Space-Conversion-Space SCS1 Strict-Sense and Wide-Sense Nonblocking Switching Fabrics for
Continuous Multislot Connections. IEEE Access 2019, 7, 107058–107072. [CrossRef]

15. Kabaciński, W.; Al-Tameemie, A.; Rajewski, R. Necessary and Sufficient Conditions for the Rearrangeability of WSW1 Switching
Fabrics. IEEE Access 2019, 7, 18622–18633. [CrossRef]

16. Chadha, D. Optical WDM Networks: From Static to Elastic Networks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–373.
[CrossRef]

17. Chatterjee, B.C.; Oki, E. Elastic Optical Networks: Fundamentals, Design, Control, and Management; CRC Press: Boca Raton, FL,
USA, 2020. [CrossRef]

18. Chatterjee, B.C.; Sarma, N.; Oki, E. Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial. IEEE Commun.
Surv. Tutorials 2015, 17, 1776–1800. [CrossRef]

19. Chatterjee, B.C.; Ba, S.; Oki, E. Fragmentation Problems and Management Approaches in Elastic Optical Networks: A Survey.
IEEE Commun. Surv. Tutor. 2018, 20, 183–210. [CrossRef]

20. Kitsuwan, N.; Pavarangkoon, P.; Chatterjee, B.C.; Oki, E. Performance of elastic optical network with allowable spectrum
conversion at intermediate switches. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks
(ICTON), Girona, Spain, 2–6 July 2017; pp. 3–6. [CrossRef]

21. Lin, B.C. Nonblocking Multirate 2-Stage Networks. IEEE Commun. Lett. 2018, 22, 716–719. [CrossRef]
22. Kabaciński, W.; Rajewski, R. Wide-Sense Nonblocking Converting-Converting Networks with Multirate Connections. Sensors

2022, 22, 6217. [CrossRef]
23. Gła̧bowski, M.; Ivanov, H.; Leitgeb, E.; Sobieraj, M.; Stasiak, M. Simulation studies of elastic optical networks based on 3-stage

Clos switching fabric. Opt. Switch. Netw. 2020, 36, 100555. [CrossRef]
24. Sabrigiriraj, M.; Karthik, R. Wide-sense nonblocking multicast in optical WDM networks. Clust. Comput. 2019, 22, s13021–s13026.

[CrossRef]
25. Kabaciński, W.; Michalski, M.; Rajewski, R.; Żal, M. Optical Datacenter Networks with Elastic Optical Switches. In Proceedings

of the IEEE International Conference on Communications, Paris, France, 21–25 May 2017. [CrossRef]
26. Ohta, S. Meta-Slot Schemes to Enhance Nonblocking Elastic Optical Switching Networks. In Proceedings of the 2019 International

Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 17–19 October 2019; pp. 252–257. [CrossRef]
27. Lin, B.C. Rearrangeable nonblocking conditions for four elastic optical data center networks. Appl. Sci. 2020, 10, 7428. [CrossRef]
28. Rajewski, R.; Kabaciński, W.; Al-Tameemi, A. Combinatorial Properties and Defragmentation Algorithms in WSW1 Switching

Fabrics. Int. J. Electron. Telecommun. 2020, 66, 99–105. [CrossRef]
29. Danilewicz, G. Supplement to “Asymmetrical Space-Conversion Space SCS1 Strict-Sense and Wide-Sense Nonblocking Switching

Fabrics for Continuous Multislot Connections”—The SCS2 Switching Fabrics Case. IEEE Access 2019, 7, 167577–167583. [CrossRef]
30. Lin, B.C. Rearrangeable W-S-W elastic optical networks generated by graph approaches: Erratum. IEEE/OSA J. Opt. Commun.

Netw. 2019, 11, 282–284. [CrossRef]
31. Lin, B. New upper bound for a rearrangeable non-blocking WSW architecture. IET Commun. 2019, 13, 3425–3433. [CrossRef]
32. Lin, B.C. Rearrangeable and Repackable S-W-S Elastic Optical Networks for Connections with Limited Bandwidths. Appl. Sci.

2020, 10, 1251. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2009.5307468
http://dx.doi.org/10.1007/978-3-319-30174-7
http://dx.doi.org/10.17487/RFC7699
http://dx.doi.org/10.1007/s11107-019-00858-8
http://dx.doi.org/10.1109/CC.2013.6633747
http://dx.doi.org/10.1364/JOCN.8.000745
http://dx.doi.org/10.1109/JLT.2016.2560624
http://dx.doi.org/10.1109/ACCESS.2019.2932871
http://dx.doi.org/10.1109/ACCESS.2019.2896283
http://dx.doi.org/10.1002/9781119393399
http://dx.doi.org/10.1201/9780429465284
http://dx.doi.org/10.1109/COMST.2015.2431731
http://dx.doi.org/10.1109/COMST.2017.2769102
http://dx.doi.org/10.1109/ICTON.2017.8024846
http://dx.doi.org/10.1109/LCOMM.2018.2790908
http://dx.doi.org/10.3390/s22166217
http://dx.doi.org/10.1016/j.osn.2020.100555
http://dx.doi.org/10.1007/s10586-017-1180-1
http://dx.doi.org/10.1109/ICC.2017.7997410
http://dx.doi.org/10.1109/ATC.2019.8924505
http://dx.doi.org/10.3390/app10217428
http://dx.doi.org/10.24425/ijet.2019.130271
http://dx.doi.org/10.1109/ACCESS.2019.2954014
http://dx.doi.org/10.1364/JOCN.11.000282
http://dx.doi.org/10.1049/iet-com.2019.0242
http://dx.doi.org/10.3390/app10041251

Sensors 2023, 23, 3615 22 of 22

33. Abuelela, E.; Żal, M. A New Control Algorithms for Simultaneous Connections Routing in Elastic Optical Networks. In
Proceedings of the 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), IEEE, Paris,
France, 7–10 June 2021; pp. 1–5.

34. Al-Tameemi, A. Simultaneous Connections Routing in Wavelength-Space-Wavelength Elastic Optical Switching Fabrics.
Ph.D, Thesis, Poznan University of Technology, Poznan, Poland, 2020.

35. Kabaciński, W.; Abdulsahib, M. Wide-Sense Nonblocking Converting-Space-Converting Switching Node Architecture Under
XsVarSWITCH Control Algorithm. IEEE/ACM Trans. Netw. 2020, 28, 1550–1561. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNET.2020.2989639

	Introduction
	Rearrangeable Switching Fabric Architecture and Operation
	Switching Fabric Architecture
	A New Connection Processing

	Control Algorithms
	State Matrix
	FSU Assignment Algorithms for WSW1(4, n, r) Switching Fabrics
	The Maximum Number of FSU in the Algorithms

	The New Algorithm AD7 and RNB Conditions
	Comparisons and Numerical Results
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4

	References

