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Abstract: Ambulatory EEGs began emerging in the healthcare industry over the years, setting a
new norm for long-term monitoring services. The present devices in the market are neither meant
for remote monitoring due to their technical complexity nor for meeting clinical setting needs in
epilepsy patient monitoring. In this paper, we propose an ambulatory EEG device, OptiEEG, that
has low setup complexity, for the remote EEG monitoring of epilepsy patients. OptiEEG’s signal
quality was compared with a gold standard clinical device, Natus. The experiment between OptiEEG
and Natus included three different tests: eye open/close (EOC); hyperventilation (HV); and photic
stimulation (PS). Statistical and wavelet analysis of retrieved data were presented when evaluating
the performance of OptiEEG. The SNR and PSNR of OptiEEG were slightly lower than Natus, but
within an acceptable bound. The standard deviations of MSE for both devices were almost in a similar
range for the three tests. The frequency band energy analysis is consistent between the two devices.
A rhythmic slowdown of theta and delta was observed in HV, whereas photic driving was observed
during PS in both devices. The results validated the performance of OptiEEG as an acceptable EEG
device for remote monitoring away from clinical environments.

Keywords: EEG; wearable; remote monitoring; signal quality; epilepsy

1. Introduction

Epilepsy is a class of chronic, non-communicable neurological conditions marked by
recurrent spontaneous seizures [1,2]. According to the World Health Organization (WHO),
approximately 50 million people from all walks of life are affected by epilepsy, putting it
among the most prevalent neurological conditions worldwide [3]. Additionally, the WHO has
also reported that with adequate diagnosis and treatment, up to 70% of epilepsy sufferers have
the potential to achieve a seizure-free life [3]. Meanwhile, the increasing cost of healthcare, the
pandemic, and limitation in access to healthcare services has further enhanced the trend of
shifting healthcare services from clinics to the home [4]. Early in 2021, telehealth usage was
38 times greater than it was before the COVID-19 pandemic [5]. The emergence of a vast array
of wearable technology in the field of neuro- and biotechnology, which provides real-time and
continuous monitoring of physiologic as well as neurological activities, has been a catalyst
in this shift towards remote healthcare [6–12]. The development of these wearable devices
and smartphone applications has been identified as a clear step in assisting epilepsy patients
to monitor the progression of their condition [13]. Usually, EEG tests are used to diagnose
brain-related diseases, and they may help to pinpoint specific symptoms, such as seizures,
and to identify seizure focus [14].

Currently, EEG is a crucial diagnostic tool for several neurological conditions, in-
cluding epilepsy [15,16]. EEG signals are mostly low-voltage electrical impulses that are
recorded by electrodes during brain activity and analyzing them can uncover critical human
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health issues [17]. In the investigation of seizure disorders, an EEG test aids in determining
the type of seizure syndrome that patients are experiencing [18]. There are various types
of EEG tests, including routine EEG, sleep EEG or sleep-deprived EEG, ambulatory EEG,
video telemetry, and invasive EEG telemetry [19]. The current protocol used in the early
diagnosis of epilepsy is a routine EEG test, which typically consists of a hyperventilation
test, photic simulation test, and sleep test [20]. These steps in a routine EEG test are attempts
to trigger a seizure while capturing the EEG signals.

Standard clinical EEGs have historically been somewhat expensive, had a limited
range of motion for patients, and required a significant amount of time to prepare for.
They are also usually bound to clinically controlled environments and are technologist
dependent [21]. In general, home techniques are thought to be less expensive than in-
patient EEG recordings. Moreover, at home, epilepsy patients may be subjected to their
usual triggering circumstances, such as sleep deprivation [15]. In the past, commercially
available wearable EEG devices have been studied for reliability in diagnostic usage [17,22].
However, the cost of the device can be a factor of obstruction in real-life applications of
remote monitoring, as 80% of people with epilepsy are in low- and middle-income nations,
according to WHO in 2022 [3].

There are several initiatives to solve remote monitoring needs using wearable devices.
Despite the fast growth in digital health, EEG monitoring is still a challenge in remote
monitoring due to its high cost and availability. Today, many researchers have chosen
to develop new devices rather than using commercially available devices. In 2022, Gao
et al. [23] investigated a new wearable EEG device’s signal quality for a brain computer
interface (BCI). The device was constructed using an ADS1234 analog-to-digital converter
(ADC) and had four dry electrode channels. However, the device is limited to frontal lobe
application with only four electrodes available. Sintosky and Hinrichs [24], in 2020, devised
an in-ear EEG for home monitoring. The device, which had a headphone design, was
created to record biosignals within the ear canal using an ADS1299 ADC chip from Texas
Instruments. The device is only applicable for single channel hearing-related biopotential
capturing. In 2018, Lin et al. [25], created a single channel EEG with the purpose of detecting
epileptic seizures in real-time. The system used an updated Open-RISC1200 processor
core and a sigma-delta analog-to-digital converter (SD-ADC). The single-channel EEG was
integrated into a headband for easy application. As per the clinical needs, a single channel
will not serve the purpose to assist in diagnosis and treatment. In 2021, Valentin et al. [26]
and Mai et al. [27], developed a custom-made EEG for on-the-go BCI acquisition and human
emotion recognition, respectively. Both devices were based on Texas Instrument’s ADS1299
ADC which can provide up to 8 EEG channels with 24-bit resolution. An eight-channel
EEG will limit the capacity of remote monitoring to a specific group rather than creating an
opportunity for anyone clinically diagnosed with epilepsy.

The evolution of development in EEGs can be observed in numerous studies through-
out the past; however, the trend highlights that a large portion of the studies has focused
primarily on non-clinical applications, such as BCI and emotion monitoring [12,27–32].
Most of the devices have limited channels between one and eight. As such, advancement
in mobile EEG for clinical-based remote monitoring for epilepsy treatment management is
still in demand. The purpose of this study is to develop a home-based scalable 16-channel
EEG device for the remote monitoring of epilepsy patients. This approach is expected to
provide a patient-centric EEG device to aid in personalized epilepsy management with
comprehensive monitoring systems.

2. Materials and Methods
2.1. EEG System Modelling

The proposed EEG device architecture was designed based on IoT key building blocks,
as in Figure 1 [33]. There are four blocks in the device architecture design: (1) smart things,
(2) network, (3) middleware, and (4) application. Smart things refer to the physical device
and controller, which in this model is the EEG device. Network is the communication
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gateway that handles the transmission of data. Middleware is responsible for data storage
and signal processing, while visualization is carried out in the application block.
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Figure 1. Proposed EEG system architecture.

The proposed EEG device’s hardware architecture was constructed with Cyton and
Daisy DAQ boards, which are built upon ADS1299 ADC and PIC32MX250F128B micro-
controllers. For a better understanding of our proposed EEG device architecture, we will
briefly explain the ADC and microcontroller. ADS1299 is an 8-channel customizable ADC
used for bioelectrical measurements, whereas PIC32MX250F128B is a 32-bit RISC CPU with
low current consumption. The integrated circuit provides the necessary criteria for EEG
measurements with 1 µVpp input noise, 110 dB CMRR, programmable gain, 24-bit data
resolution, and up to 256 Hz of sampling frequency [34–37].

The development process of the EEG device is categorized into three different develop-
ment groups: (1) hardware development, (2) software development, and (3) communication
gateway development. Upon completion of all developments, device integration was per-
formed to complete the device.

2.1.1. Hardware Development

The EEG hardware was developed through an experimental method, which consisted
of an exploratory study to select and develop a suitable device for remote monitoring.
The hardware consists of data acquisition (DAQ) boards, headwear, and electrodes. The
development process consists of: (1) DAQ board selection, (2) headwear development, and
(3) electrode configuration.

The hardware development commenced with the exploration of DAQ boards in the
market. A new board development was not considered as there were many types of
DAQ boards commercially available in the market. In this study, we aimed to explore the
limitations of current boards that are experienced by various developers in the field. As
such, four different commercially available EEG boards were compared with a focus on six
different aspects, as defined in Table 1. The decision of the board selection was prioritized
on the number of channels, cost, and communication technology. The DAQ board was
targeted to be ambulatory, as such wireless communication was preferred in the selection.
Moreover, a scalable and minimum of 16 channels were essential in developing an EEG
device with option to personalize. Finally, the cost of the DAQ board will play a crucial role
in the overall cost of the device, as such the most cost-effective DAQ board in the market
was also desirable.

Table 1. EEG DAQ boards comparison.

Features/Device HackEEG Texas Instrument
ADS1299EEGFE WallySci E3K OpenBCI Cyton

and Daisy

EEG Channel 8 to 32 8 6 8 to 16

Sampling Rate (Hz) 4000 250 to 16,000 1 to 2000 125 or 256

Connectivity USB USB Bluetooth Bluetooth

Raw EEG Data Access Yes Yes Yes Yes

Wireless No No Yes Yes

Cost High Low Low Low

Reference [38] [39] [40] [41]
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The headwear is a helmet-shaped structure, created to hold the electrodes and the
DAQ boards. The frame was fabricated with adaptations of 3D printing technology with an
open-source design from OpenBCI. The 3D printing method applied was fused deposition
modeling (FDM), where a Creality CR-6 SE 3D printer was used to print parts of the frame.
Polylactic acid (PLA) filament, a bio-sourced and biodegradable substance, was used to
print the pieces [42]. PLA was chosen since it is the most straightforward polymer to
print with and has decent visual quality [43]. The parts were printed with a heated bed
temperature of 70 ◦C and nozzle temperature of 200 ◦C. Figure 2a shows the 3D printed
parts for a complete unit of headwear, printed using turquoise-colored PLA filament. The
parts were then cleaned and assembled, as shown in Figure 2b.
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Figure 2. 3D printed headwear. (a) Printed parts; (b) assembled headwear.

The DAQ boards and electrodes were then positioned on the completed frame. Comb-
type dry EEG electrodes composed of acrylonitrile butadiene styrene (ABS) plastic with a
silver chloride (AgCl) coating (Figure 3a) were used. Unlike wet electrodes, dry electrodes
do not require additional gels or conducting agents, which reduces the device setup time.
The comb electrodes have 5 mm blunt prongs to accommodate longer hair while providing
high signal quality and comfort to the user. The combs are attached to a wired holder
(Figure 3b) which typically holds and connects the comb to the board, supported by a
spring to provide sufficient pressure required to make feasible contact with the scalp. The
holders are assembled by screwing them into the corresponding nodes available on the
frame, the circular holes. Each node on the frame is an electrode location assigned based on
the internationally recognized 10–20 system for electrode placement [44]. The EEG device
runs on a rechargeable lithium polymer (LiPo) battery which can power the device for up
to 20 h, suitable for long-term remote monitoring applications.
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2.1.2. Communication Gateway Development

The role of the communication gateway in device development is to manage data
transmission and data storage. An agile method was applied in the development of the
communication gateway to ensure the developed gateway met the requirements of the
device in remote monitoring and to avoid further changes. The gateway device handles
data transfer between the EEG hardware (host device) and the slave devices eliminates the
need for bulky hardware, such as a laptop to monitor the EEG while recording. This further
enhances the remote monitoring quality of the device. A Raspberry Pi 3 Model B+ (Rpi)
was utilized to host a server. The server program was created by modifying a Raspberry Pi
Buster operating system. It is a lightweight program and runs as a background daemon
upon powering ‘On’ the Rpi. The server can connect to the DAQ boards for wireless data
receiving and transmission. The EEG hardware transmits data through Bluetooth to a USB
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dongle, which is connected to the USB port of the Rpi. The server receives data from the
EEG hardware and streams it to be viewed from client devices.

2.1.3. Software Integration

Digital lifestyles today focus on mobile applications, and continuous growth in the
field has paved way for an endless possibility of applications. A mobile application can be
an ideal replacement for visualization and control hardware, such as a laptop to monitor,
and can control the EEG device. As such, a mobile application was obtained and integrated
into the EEG device. The application is an Android-based app that enables users to view
real-time EEG data and record it when necessary.

2.1.4. Device Integration

Device integration refers to the integration of the EEG hardware, mobile application,
and communication gateway. The integration is necessary to allow interoperability of
EEG data sourcing, recording, and visualization. The overall architecture of the integrated
system is shown in Figure 4. Real-time EEG signals are transmitted from the hardware to
the Rpi (local server). The local server receives the data and streams it while also saving
the data locally in the memory card of RPi. The streamed data is viewed from the mobile
application as a client. The future idea is to store the captured data in the cloud for further
analysis and analytic reports.
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2.2. Device Verification

Device verification is a standard practice in the process of device development to
ensure that the outputs match the user requirements. A series of lab tests were conducted
to ensure the ability of the device in recording quality EEG signals. In addition to the signal
quality assessment, a reproducibility test was conducted, as advised by a neurologist. The
proposed reproducibility test was conducted at the Neurology Lab of Hospital Canselor
Tuanku Muhriz (HCTM), UKM. This test was conducted to assess the ability of the device
to respond to the clinical EEG routine test. The reproducibility test included preparation
and a series of tests as shown in Figure 5. The test was conducted under the supervision of
a neurologist and a technologist.
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I. EEG Setup and Subject Preparation

The test was conducted on a 30-year-old healthy male with no history of an epileptic
seizures. Medium-sized headwear was chosen based on the subject’s head circumference of
55 cm. The EEG device was placed on the subject’s head while the subject was in a seated
position, and the electrode units were gradually tightened until the electrode tips touched
the scalp. An impedance check was carried out to ensure that every electrode relates to an
acceptable impedance threshold, which in this study was set below 2000 ohms.

II. Eye Blinking Test

The eye blinking test was conducted to test sensitivity of the EEG device in detecting
eye blinking artifacts. The subject was instructed to blink once and then blink rapidly while
in a seated position.

III. Eye Open and Close Test

The eye open and close test was conducted to verify the ability of the device in
obtaining EEG signals during eye opened and closed states. For this test, the subject was
instructed to repeatedly open and close his eyes at an interval of 10 s for 10 times, to study
the effect of the stimuli.

IV. Photic Simulation Test

The photic stimulation test was conducted to verify the ability of the device in ob-
taining signals during photic simulation. A light source was shifted toward the subject
and carefully placed above the eye line about 50 cm from the eyes, while the subject was
in a seated position. The subject was instructed to keep his eyes closed before and after
flashing followed by flashing in the eye open condition at a frequency of 1 Hz for 10 s. The
procedure was repeated with different frequencies of 3 Hz, 6 Hz, 8 Hz, 10 Hz, 12 Hz, 14 Hz,
16 Hz, 18 Hz, 20 Hz, 25 Hz, and 30 Hz.

V. Sleep Test

The sleep test was conducted to verify the comfortability of the device while in a
sleeping position. The subject was instructed to lie in a supine position and to sleep during
the recording.

2.3. Clinical Device Validation

Device validation is vital in assessing any device, especially a medical device intended
for a selected clinical procedure. In this study, signal quality of the EEG device was
compared to a conventional, clinical EEG device at HCTM. Thirteen control subjects were
recruited from various backgrounds for the experiment. Participants were made aware of
the details and procedures of the study, and then participants’ written consent was obtained.
This study was approved by the Research Ethics Committee of UKM (JEP-2022-430). The
clinical EEG device used was the NicoletOne EEG System, Natus.

2.3.1. Signal Quality Experiment Design

A routine EEG test at HCTM consists of four tests, namely the eye open and close (EOC)
test, hyperventilation (HV) test, photic stimulation (PS) test, and sleep test. Three of these
tests were conducted on the subjects with both devices, with the sleep test avoided due to
the time factor. EEG signals from Natus were collected using gold cup gel electrodes, while
OptiEEG used dry electrodes. A total of 21 channels were utilized for Natus, whereas for
OptiEEG 16 channels were used, both based on the 10–20 system. The subjects had different
head circumferences and, as such, suitable sizes of OptiEEG were assigned accordingly.
Prior to the experiment, two medium and one large size units of OptiEEG were fabricated.

OptiEEG employed a sampling rate of 125 Hz, while Natus used a sampling rate of
500 Hz. In this experiment, a similar recording setup (environment and body position) was
applied for both devices, where the subject laid on a bed with the upper body slanted about
45◦ upwards. The room was also dimly lit to avoid interference from external light sources.
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2.3.2. EEG Pre-Processing

The EEG data collected in the clinical experiment was pre-processed using MATLAB
for further analysis. The steps taken in pre-processing are as follows:

Step 1: Raw EEG signals collected from Natus and OptiEEG are segmented according
to each of the tests, namely the EOC test, HV test, and PS test.

Step 2: The segments are then filtered with a Butterworth bandpass filter of order 5
(0.5 Hz and 40 Hz).

Step 3: The filtered signals are then normalized for standardization between the two devices.

2.3.3. Statistical Analysis

The EEG data collected from both devices were compared by computing signal-to-
noise ratio (SNR), peak signal-to-noise ratio (PSNR), and mean square error (MSE) using
MATLAB. In this study, noise, N, was classified as power frequency noise, which consists of
baseline noise (below 0.5 Hz) and high-frequency noise (above 40 Hz). The clean EEG signal,
b, is the signal obtained after filtering and normalizing the raw EEG signal, a [45]. The
SNR which represents the power ratio of the clean EEG signal and the noise is computed
based on this assumption. MSE is calculated by dividing the squared norm of the difference
between the data and the approximation by the number of elements, n. PSNR is the peak
signal-to-noise ratio, measured in decibels [28,46,47]. The SNR, MSE, and PSNR were
computed based on the following formulas:

SNR = 10× log10

(
Pa

PN

)
. (1)

MSE =
1
n ∑n

i=1(a− b)2 (2)

PSNR = 20 log10

( MAX f√
MSE

)
(3)

where a is the original signal, b is the cleaned signal, n is number of samples, Pa is power of
the original signal, Pn is the power of noise, and MAXf is the maximum signal value that
exists in the cleaned signal.

2.3.4. Wavelet Analysis

Decomposing non-stationary EEG data into time–frequency sub-bands and then ana-
lyzing the signals is a common method of processing non-stationary EEG signals [48,49].
Wavelet transform simultaneously provides time and frequency viewing of a signal, al-
lowing exact capture and localization of transient features, such as epileptic spikes in
the data [50]. We have decomposed the collected data using discrete wavelet transform
(DWT) [51] and adopted Daubechies as the mother wavelet [52,53]. Five frequency sub-
bands were extracted from each signal based on clinical interest, that is delta (0–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–50 Hz) [48,54–56]. Table 2 shows
the level of decompositions for Natus and OptiEEG EEG signals, and the corresponding
frequency band. The energy of selected frequency bands was then computed.

Table 2. DWT decomposition levels and corresponding frequency bands.

Frequency Band Frequency (Hz) OptiEEG Decomposition Level Natus Decomposition Level

Gamma 31.3–62.5 Detail 2 Detail 4

Beta 15.6–31.3 Detail 3 Detail 5

Alpha 7.8–15.6 Detail 4 Detail 6

Theta 3.9–7.8 Detail 5 Detail 7

Delta 0–3.9 Approximation 5 Approximation 7
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3. Results

The proposed EEG device was fabricated for the remote monitoring of epilepsy pa-
tients. As such, the device was targeted to be ambulatory and optimized with low set-up
complexity to allow the patients to use the device with minimum training. In this section,
details and functions of the developed device are presented.

3.1. EEG Device

The market study conducted on DAQ boards resulted in opting for OpenBCI’s Cyton
and Daisy EEG boards, as they correspond to the preferred requirements while being
cost-effective. The two DAQ boards are connected end-to-end, resulting in a 16-channel
amplifier. Three complete units of the EEG device were developed as shown in Figure 6.
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Figure 6. EEG devices.

The EEG device can record up to 16 channels of EEG signals. Real-time EEG can be
visually monitored using the developed mobile application or the OpenBCI Graphical User
Interface (GUI). Figure 7 below shows a screenshot of 16-channel real-time EEG obtained
from the device using OpenBCI GUI. The recorded EEG can be saved directly on a memory
card that is fitted into the DAQ board, in the Raspberry pi, or in the computer while
recording.
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The app is features the ability to display real-time raw or filtered EEG data with a
variable filter option. Other features include the option to start or stop EEG recording,
view the EEG band in real-time, and shut down the EEG device. The ‘Filtered EXG’ screen
displays real-time filtered EEG for an 8-channel configuration as shown in Figure 8a. There
is a built-in filtering option to choose the frequency of the notch filter that will be applied to
the acquired raw EEG signal in order to visualize the raw data in a graphical format, as in
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Figure 8a. Altering the graph’s vertical (amplitude) and horizontal (time) scales is another
option. The ‘Raw Data’ screen is depicted in Figure 8b, where the device’s real-time raw
EEG data can be viewed in numeric form and the recording can be started or stopped as
well. The recording’s preferred name can also be specified by users. The ‘Band Power’
screen displays the real-time band power of the channels, as shown in Figure 8c.
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3.2. Device Verification Observations

The device verification session was carried out in the Neurological Unit, in the presence
of a neurologist with a specialty in electrophysiology and epileptology. The test was
conducted in the standard clinical setting for any EEG recording for epilepsy patients. The
following are the test observations:

I. Eye Blinking Test

The results of this test were observed in the frontal lobe (Fp1 and Fp2). The neurologist
verified the presence of eye blinking artifacts in the frontal electrode for a single blink
(Figure 9a) and rapid blink (Figure 9b), indicating the device’s sensitivity to test stimuli.
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II. Eye Open and Close Test

The response of this test was observed in the occipital lobe (O1 and O2). The neurolo-
gist verified that the alpha wave is dominant during the ‘eye close’ state, indicating that
the hardware manages to detect changes in EEG signals between opened eyes (Figure 10a)
and closed eyes (Figure 10b).
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III. Photic Stimulation Test

The observation of this test was found to be in the occipital region as well. During
PS, a widespread rhythmic activity that follows the frequency of the flickering light was
observed. Figure 11 shows the EEG signals of the occipital region before photic (Figure 11a)
and during photic stimulation (Figure 11b).
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IV. Sleep Test

The patient was unable to fall asleep during the assessment; hence, the sleep test was
not conducted.

3.3. Device Validation Results

This section includes responses of the OptiEEG device signal analysis in comparison
to Natus, the EEG device used in HCTM’s Neurological Unit clinical setting.

3.3.1. Statistical Analysis

Data from the two different devices were compared visually for the response from
the clinical epilepsy EEG patient routine assessment. These observations were conducted
based on the neurologist’s request to evaluate the routine assessment response in OptiEEG.
The OptiEEG and Natus EEG devices in the neurological clinic were used for the recording.
The figure below presents recorded signals of OptiEEG (Figure 12a) and Natus (Figure 12b),
which represent 16 channels each. As observed, the recorded signals had a good degree of
accuracy and sensitivity.

The routine EEG test time includes two phases, namely the device preparation time
(OptiEEG: 12 min, Natus: 28 min) and the recording time, varied between 12 to 14 min
for OptiEEG and Natus, which includes the EOC test, HV test, and PS test. In reference to
current practice in the clinical setting using a gold cup and gel, the proposed dry electrode
has reduced 50% of the setting time. Gold cup setting needs trained technologists, whereas
the proposed dry electrode can be managed by patients themselves or family members with
minimum training. In terms of complexity, the patient’s involvement in electrode setting
is just to ensure the electrode is tightened to touch the scalp since the EEG headwear has
been designed to comply with the 10–20 system and sized to the patient’s head size. The
second part focuses on raw EEG signals acquired from both devices, which were segmented
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according to the length of each test, and each segment was pre-processed to compute SNR,
PSNR, and MSE. The segmented signals were filtered using the Butterworth bandpass filter
of order 5, with 0.5 Hz and 40 Hz cutoff frequencies.
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The SNR, PSNR, and MSE assessment that was conducted for both OptiEEG and
Natus’s recorded signals were found to have a very low standard deviation, as stated in
Table 3. A lower standard deviation indicates less variation in the recorded 13 subjects’
signals in both devices. The SNR and PSNR analysis also identified that there is a variation
in Natus channel values compared to OptiEEG, which has consistent SNR and PSNR
values across the channels. This difference is due to the reference position in these two
devices. OptiEEG was referenced at A1 and A2, positioned at the ear, whereas Natus
was referenced at Cz, according to the 10–20 electrode placement system [44,57–59]. The
SNR and PSNR of OptiEEG were slightly lower than for Natus, but within an acceptable
bound. The standard deviations of MSE for both devices are almost in the similar range for
all three different tests.

Table 3. Signal analytics results.

OptiEEG Natus

SNR PSNR MSE SNR PSNR MSE

Eye Open/close Average −2.74 −2.74 1.88 −0.19 −0.19 1.07
Standard Deviation 0.24 0.24 0.12 0.71 0.71 0.17

Hyperventilation Average −2.48 −2.48 1.78 1.04 1.04 0.88
Standard Deviation 0.46 0.46 0.19 1.26 1.26 0.21

Photic
Average −2.71 −2.71 1.86 −0.05 -0.05 1.05

Standard Deviation 0.29 0.29 0.14 0.96 0.96 0.20

3.3.2. Wavelet Analysis

Wavelet decompositions were performed on signals recorded from both devices for
three different routine EEG clinical tests. The first two activities were observing physio-
logical responses, whereas the third activity was observing an external triggering factor.
The past literature has indicated that the selected three routine test responses are mostly
observed in the occipital region that is represented by channel O1 and O2 in the 10–20
electrode placement system [60–62].

A rhythmic EOC test with intervals of 10 s was recorded for a duration of 4 min in
both devices. Lal Hussain et al. [63] have stated that values of eyes closed and eyes open of
subjects over 19 channels were obvious at occipital electrodes, and there is a clear depiction
between eye open and closed even though the differentiating threshold is very small. In
this study, the researchers have found that the energies of the different frequency bands are
consistent between the two devices, as in Figure 13.
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Figure 13. Power of time–frequency components for EOC test.

HV is a standard activation method practiced in routine EEG recording among epilepsy
patients [64]. HV is a condition where a person breathes faster and deeper, which can lead
to changes in brain activity, including a bifrontal preponderance pattern. The activation
technique generally results in a physiological slowing of brain rhythms. The typical HV
response in EEG shows moderate to high voltage, often rhythmic with delta and theta
slowing in conjunction with bifrontal preponderance [61]. Bifrontal preponderance is a
term used in EEG to describe an abnormality in the distribution of electrical activity in the
brain. Specifically, it refers to an excessive amount of activity in the frontal lobes of the
brain relative to the posterior regions. In this study, the HV test is used as a validation
method to verify the capacity of OptiEEG in capturing HV response in comparison to the
Natus EEG device, as in Figure 14.
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The next common activation technique used in a routine EEG is PS. PS induces photic
drive, a rhythmic frequency in the occipital derivations that consists of harmonically related
activity to the flickering light [61]. Photic driving involves synchronization of the occipital
alpha rhythm with the stimulus frequency [60]. The study also used this test to verify the
capacity of OptiEEG response towards capturing the photic rhythmic response from Natus,
as in Figure 15.
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4. Discussion

In the past few decades, EEG recordings and assessments in epilepsy treatment moni-
toring have only focused on clinical settings, even though Penry and Dreifuss discussed the
significance of long-term EEG monitoring among seizure patients way back in 1969 [65].
The advancement of research and the recent pandemic challenge has introduced a new
trend in disease management and monitoring. This study is proposing a potential home-
based EEG monitoring solution using dry electrodes with a personalized 10–20 electrode
placement system that provides self-setting facilities. In more detail, we aim to personalize
the headwear using additive manufacturing technology and a scalable channel setting
based on the clinical assessment. The need for ambulatory EEGs was identified as early as
1962 using radio telemetry [66], and in 1975 a 4-channel 24-h cassette recorder was used for
long-term recording, yet EEG tests were often performed during working hours, and it was
impractical for patients who had attacks outside of regular business hours [67]. In 1979,
commercial use of cassette tape recorder-based ambulatory EEG monitoring began [68].
It held considerable potential for aiding in the differential diagnosis of episodic loss or
alteration of consciousness by offering portable, outpatient and inpatient enhanced EEG
temporal sampling and other physiological parameters. Patients were also allowed to
engage in their daily activities without the requirement to be hospitalized. Other benefits
were the ability to recreate the relevant occurrences in a natural home or work environment
with the accompanying typical stress [68].

Remote monitoring medical devices are also known as wearable sensing instruments
that are growing in reputation both in general physiological monitoring and for health
applications, such as seizure monitoring. However, there are limited data about these
devices’ reliability [69]. In addition to these challenges, there are several separate issues to
be considered, such as data transmission and availability. The OptiEEG device developed
in this study is complemented by IoT technology. The IoT module comprises a Raspberry
Pi for storage and a mobile application as a visualizer.

The 16-channel dry electrode OptiEEG is expected to cater to the usability challenges
faced in most of the present EEG devices, including the ones in the clinical setting. The need
for a dedicated neurotechnologist to set up the devices and the time taken for the setting
has been eliminated in OptiEEG. OptiEEG is designed using a 10–20 electrode placement
system that is customizable for the client through additive manufacturing technology.
OptiEEG also provides a more comfortable option by using dry electrodes instead of wet
electrodes that need more preparation time and eliminates the drying gel limitations in
long-term recordings. Even though the electrode has a significant advantage in terms of
patient preparation, there is a substantial gap identified in the OptiEEG headwear design
that is limiting patients’ comfort during recording in a supine position. This limitation
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is suspected to contribute to the high gamma and beta values in some of the recordings.
The next phase of the study is expected to explore a better headwear design that allows
more comfortable supine position recording. In 2022, Andrea Biondi et al. have carried
out an extensive review on the use of noninvasive mobile EEG for seizure monitoring and
management. The study comprehensively reviewed the different components of the EEG
device that includes electrodes and electrode placement, battery, sampling rate, resolution,
data transmission, seizure detection algorithm, and the support team availability. This
study concluded that when seizure detection and management are performed remotely,
there is a high potential for change in terms of time, technical assistance, cost, usability, and
reliability [70].

In this study, we have carried out clinical studies to verify and validate the reliability
and usability of the device against the clinical device at HCTM. A total of 13 subjects have
undergone recording from both devices using the routine EEG tests, namely EOC, HV,
and PS tests. As discussed in the results, the outcome of both recordings was assessed for
their reliability in terms of data quality using SNR, PSNR, and MSE. The average standard
deviation of the SNR, PSNR, and MSE for OptiEEG is below 0.5 compared to Natus (<1.5).
Further assessment was carried out on the energy of the frequency bands between the two
devices. Figures 13–15 indicate a similar pattern of the energy bands in the three different
routine EEG tests conducted.

Currently, there are various devices that can be applied for EEG monitoring, as detailed
in Table 4. Among the different monitoring devices, g.tec devices are one of the most used
for EEG [71]. Compared with g.tec, the developed EEG monitoring system has better
flexibility to be used for remote monitoring among epileptic patients due to the simplicity
in setting up and the customization of the electrode channels. The user can use the device in
a home setting without the assistance of an expert. The device is designed with local storage
capacity in the absence of wireless communication support, which enables monitoring to
be carried out in remote rural locations. Thus, compared with most EEG devices in the
market, this system can be customized for home-based monitoring both with and without
wireless infrastructure, that accommodates the needs of rural locations without sufficient
communication infrastructures.

Table 4. Comparison of ambulatory devices.

Key Feature g.Nautilus PRO 16
g.SAHARA SAGA (TMSI) B-Alert X-Series OptiEEG

Type Ambulatory Ambulatory Ambulatory Ambulatory

Input Channel 16 32 20 16

Setup Time Fast Slow Slow Fast

Operator Dependency Not Dependent Dependent Dependent Not Dependent

Electrode Positions Pre-set 10–20 System Pre-set 10–20 System Requires measurement Pre-set 10–20 System

Electrode Type Hybrid (Dry and Gel) Gel Dry Dry

Connectivity Wireless (Bluetooth) Wireless (Bluetooth) Wireless (Bluetooth) Wireless (Bluetooth)

Battery Life 10 h 6 h 8 h 20 h

Cost (US$) 12,600 32,377 14,950 2520

Reference [72] [73] [74] Proposed

In future work, we aim to evaluate OptiEEG’s performance among epilepsy patients
with general and focal epilepsies. A revised test protocol to include 20 min of resting
between the three routine test procedures is recommended. This recommendation is based
on the limitations faced in the current statistical data analysis. Even though the data
recorded using the present protocol produced reliable outcomes in signal quality, it limits
the options in advanced data analytics to explore the reliability and usability of the data for
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clinical decision-making and monitoring. The research team is also considering a machine
learning or deep learning approach to assist in seizure presence detection [75] from all
the 16 channels and to categorize the severity of the identified seizure. As part of phase
two of the device testing and design review process, this study also includes the device
certification initiative and intellectual property (IP) filling to ensure OptiEEG would be
clinically applicable.

5. Limitations

The study presented in this manuscript is focused on measuring the dynamics of the
EEG recordings of the two devices, namely OptiEEG and Natus. Three different tests were
conducted to indicate the signal state change. The study produced interesting findings,
but it has several gaps, which include a small sample size and lack of analysis, such as by
gender and age. Furthermore, at this stage of the study, no epileptic subjects are recorded
for analysis. Future research can be designed to quantify the dynamic reliability for a larger
group based on healthy and epileptic subjects, considered with age and gender as well, to
ensure the reliability of OptiEEG over a wider range of users.

6. Conclusions

In this study, a practical wearable 16-channel EEG remote monitoring device, OptiEEG,
has been proposed, and a comprehensive assessment of the signal quality was carried out
on OptiEEG in comparison to Natus, a clinically approved EEG device. In addition, we
further verify OptiEEG’s feasibility in clinical simulation applications to track the attention
states. The simulated signal test results demonstrated that OptiEEG circuit is compatible,
and the collected EEG data reflects a similar activity to Natus. Another test comparing
OptiEEG’s signal quality to that of the industry’s gold standard for EEG acquisition, Natus,
revealed that OptiEEG can replicate Natus’s results. Based on EEG data of eye open/close,
hyperventilation, and photic stimulation tests, the consistent signal quality of OptiEEG was
proved by the SNR, PSNR, and MSE. The above results provide evidence that the OptiEEG
as a monitoring device can reliably record the different simulation tests that have been
in practice to trigger events among epilepsy patients during clinical visits. The obtained
results have provided the baseline indication of the OptiEEG’s reliability to be used as a
home-based monitoring device for epilepsy patients.
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