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Abstract: This paper proposes a new pose and focal length estimation method using two vanishing
points and a known camera position. A vanishing point can determine the unit direction vector of
the corresponding parallel lines in the camera frame, and as input, the unit direction vector of the
corresponding parallel lines in the world frame is also known. Hence, the two units of direction
vectors in camera and world frames, respectively, can be transformed into each other only through
the rotation matrix that contains all the information of the camera pose. Then, two transformations
can be obtained because there are two vanishing points. The two transformations of the unit direction
vectors can be regarded as transformations of 3D points whose coordinates are the values of the
corresponding unit direction vectors. The key point in this paper is that our problem with vanishing
points is converted to rigid body transformation with 3D–3D point correspondences, which is the
usual form in the PnP (perspective-n-point) problem. Additionally, this point simplifies our problem
of pose estimation. In addition, in the camera frame, the camera position and two vanishing points
can form two lines, respectively, and the angle between the two lines is equal to the angle between
the corresponding two sets of parallel lines in the world frame. When using this geometric constraint,
the focal length can be estimated quickly. The solutions of pose and focal length are both unique.
The experiments show that our proposed method has good performances in numerical stability,
noise sensitivity and computational speed with synthetic data and real scenarios and also has strong
robustness to camera position noise.

Keywords: pose estimation; vanishing point; focal length; camera position; unit direction vector

1. Introduction

The camera pose estimation, using accurate inputs, is an old but still widely studied
topic. The accurate inputs are mainly points, lines and planes. If the relative pose needs
to be estimated, the 2D–2D point or line correspondences are used, and many algorithms
have been proposed [1–5]. If the absolute pose needs to be estimated, the 2D–3D point or
line correspondences are used, and the corresponding methods are called PnP (perspective-
n-point) solvers [6–9] and PnL (perspective-n-line) solvers [10–13]. In addition, there is a
category of methods between the point-based and line-based correspondences, such as the
pose estimation methods using vanishing points [14,15]. The 3D parallel lines in space will
intersect at a point in the image plane called the vanishing point. When these methods
estimate the pose, the 3D parallel lines and 2D vanishing points will be used. The method
proposed in this paper is based on the vanishing points to estimate the focal length and
pose. It also needs accurate inputs, which are similar to the PnP and PnL solvers. Hence,
we briefly introduce the two categories of methods as follows.

When there is no other prior knowledge, the minimum point set for solving the PnP
problem is three, and the corresponding methods are called P3P (perspective-three-point)
solvers [16–19], which have a maximum of four solutions, showing the phenomenon of
multiple solutions. One more constraint must be given in order to obtain the unique
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solution, and these solvers cannot solve the intrinsic parameters, such as the focal length
or principal point. Hence, some works of literature [20,21] proposed that the focal length
could be estimated simultaneously as the pose estimation, and the minimum number of
point correspondence sets is four. These methods solved the problem that the camera
lens is unknown or the zoom lens is used. When the short focal lens or fisheye lens is
used, image distortion exists. In this case, the distortion should be estimated to improve
the accuracy. The literature from [22] proposed a method to estimate the pose, distortion
and focal length simultaneously by using five 2D–3D point correspondences, called P5Pfr.
However, it should be noted that the distortion here refers to the radial distortion—most
of the distortion is radial distortion. Although the pose only contains six DOF (degrees
of freedom), each degree of freedom contains trigonometric functions and is coupled to
each other. If the minimum point set is used for estimation, the computational process is
nonlinear and computational complexity is high. However, when the number of points
used is not less than six, the pose estimation can be directly solved linearly [23–25], and
the corresponding method is called DLT (direct linear transform). As the number of
points used increases, the number of estimable parameters increases or the computational
complexity decreases from a nonlinear to a linear solution. Of course, the difficulty of
obtaining more accurate points also increases. Therefore, the choice of estimation method
depends on the number of accurate points that can be obtained in the FOV (field of view)
and whether the partial intrinsic parameters need to be estimated. In order to reduce
complexity and improve precision, some parameters of the pose measured by the sensors
can be used as prior knowledge. For example, the IMU (inertial measurement unit) is used
to obtain a vertical direction [26–29], or RTK (real-time kinematic) is used to obtain camera
positions [30–32]. These methods can reduce the number of required point correspondences
while the number of estimated parameters is unchanged, and the accuracy and calculation
speed are both improved.

Similar to the PnP problem, the minimum line set required to solve the PnL problem
is also three, which is called the P3L (perspective-3-line) method [33,34]. The difference
is that these methods have up to eight solutions, the computational complexity is higher,
and the accuracy and computational speed are both decreased. More parameters can
be estimated by using more 2D–3D line correspondences, reducing the computational
complexity. When the number of 2D–3D line correspondences used is not less than six,
it can be directly solved linearly [35]. Simultaneously, the computational complexity
changes from the nonlinear solution of the P3L methods to a linear solution, which can
improve the computational speed and accuracy. In addition, some methods use sensors
to measure the partial pose information in advance, such as vertical direction [36,37]
or camera position [38], to reduce the number of 2D–3D line correspondences required
and improve the accuracy and computational speed. Furthermore, without reducing the
number of 2D–3D line correspondences, some intrinsic parameters, such as focal length,
can be simultaneously estimated.

There is a category of methods between the point-based and line-based correspon-
dences, such as the pose estimation methods using vanishing points [39,40]. These methods
use 2D vanishing point-3D parallel line correspondences, and our proposed method in
this paper belongs to this category. One vanishing point can provide two constraints;
hence, when there is no other prior knowledge, at least three vanishing points are needed
to estimate the pose, and at least four vanishing points are needed if the focal length is
estimated simultaneously. Grammatikopoulos [41] used two vanishing points to estimate
the camera pose when two parallel line sets are perpendicular to each other and when
the origin of the world frame is the intersection. Guo [42] used a single vanishing point
to complete this job, but the disadvantage is that one orientation needs to be measured
in advance.

In this paper, we propose a new method for estimating the focal length and pose by
using two vanishing points and the camera’s position. In the camera frame, the camera’s
position and each vanishing point can determine two lines. Additionally, according to the
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definition of vanishing point, the angle between the two lines, which is a function of the
focal length, is equal to the angle between the corresponding two parallel line sets, which
are known in the world frame. Hence, an equation can be obtained with an unknown
parameter, i.e., the focal length. Then, the focal length is estimated efficiently. In addition,
the vanishing point can determine the unit direction vector of the corresponding parallel
lines in the camera frame after the focal length estimation. Because the unit direction
vector in the world frame is the input, it is known. Then, the transformation between the
two unit direction vectors in the camera frame and the world frame, respectively, can be
obtained using the rotation matrix between the camera frame and the world frame. There
are two vanishing points; hence, two transformations can be obtained. The transformation
of the unit direction vectors can be regarded as the transformation of 3D points; that is, a
3D point in a camera frame, whose coordinates are equal to the values of the corresponding
unit direction vector in the camera frame, can be transformed to a 3D point in a world
frame whose origin is located at the origin of the camera frame, whose coordinates are
equal to the values of the corresponding unit direction vector in the world frame. This is the
key point to estimate the pose in this paper. The experimental results show our proposed
method performs well in terms of numerical stability, noise sensitivity and computational
speed in synthetic data and real images.

The remainder of the paper is organized as follows. In Section 2, we provide the
derivation of the focal length and pose estimation; Section 3 provides the experiments and
results to show how well our method performs; Sections 4 and 5 are the discussion and
conclusions, respectively.

2. Proposed Method

This paper provides two sets Li (i = 1,2) of parallel lines with known direction vectors
and a camera position Oc in the world frame Sw1 (Ow_XwYwZw) to estimate the pose and
focal length. To simplify the derivation, we assume each set has two 3D lines, namely Li−j
(j = 1,2), and then the corresponding projections of them on the image plane are denoted as
li−j. The geometric construction is illustrated in Figure 1.
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Next, we will use two steps to estimate the pose and focal length, respectively.
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2.1. Focal Length Estimation

In the camera frame Sc1 (Oc_XcYcZc), the unit direction vector of the 3D line Li−j

is denoted as di =
(
di−x di−y di−z

)
, which is unknown. Additionally, a 3D point

Pi−j
(

pi−jx pi−jy pi−jz
)
, which is also unknown, is on the 3D line Li−j. Now, the line Li−j

can be written as
Li−j = Pi−j + ki−j · di (1)

Here, ki−j is an arbitrary scale factor. The vanishing point on the image plane is the
projection of the 3D point located at the infinity spatial place. Here, we assume these 3D
points can be seen and denoted as Pv1, Pv2 in this paper. According to Equation (1), their
coordinates can be written as

Pv1 = kv1 · d1 , kv1 → ∞
Pv2 = kv2 · d2, kv2 → ∞

(2)

where kv1, kv2 are the scale factors of the 3D points located at the infinity spatial place. Their
projections on the image plane are denoted as pv1

(
u1−vp v1−vp

)
, pv2

(
u2−vp v2−vp

)
. The

geometric construction is illustrated in Figure 2.
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In Figure 2, α is not only the angle between the lines OcPv1 and OcPv2 in the world
frame Sw1 but is also the angle between the lines Oc pv1 and Oc pv2 in the camera frame
Sc1. The expressions of the unit direction vectors of the lines OcPv1 and OcPv2 in the world
frame Sw1 can be written as

dv1 = lim
kv1→∞

kv1d1−Oc
‖kv1d1−Oc‖ = d1

dv2 = lim
kv2→∞

kv2d2−Oc
‖kv2d2−Oc‖ = d2

(3)
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Then, we can calculate the angle α using

cos α =
dv1 · dv2

‖dv1‖ · ‖dv2‖
(4)

In the camera frame Sc1, the expressions of the direction vectors of the lines Oc pv1 and
Oc pv2 can be written as

Oc pv1 =
(

u1−vp v1−vp f
)

Oc pv2 =
(

u2−vp v2−vp f
) (5)

Here, f is the focal length in pixels. According to the characteristic of angle α, we
can obtain

cos α =
Oc pv1 ·Oc pv2

‖Oc pv1‖ · ‖Oc pv2‖
=

u1−vp · u2−vp + v1−vp · v2−vp + f 2√
u2

1−vp + v2
1−vp + f 2 ·

√
u2

2−vp + v2
2−vp + f 2

(6)

Let cos α = m1, u1−vp · u2−vp + v1−vp · v2−vp = m2, u2
1−vp + v2

1−vp = m3 and
u2

2−vp + v2
2−vp = m4. Then, we can simplify Equation (6) as(

m2
1 − 1

)
· f 4 +

(
m2

1m3 + m2
1m4 − 2m2

)
· f 2 + m2

1m3m4 −m2
2 = 0 (7)

Here, f 2 is regarded as the unknown parameter, and the equation is a quadratic
equation with one unknown. Two solutions of f 2 exist. Since f > 0 and f 2 > 0, we can
obtain a unique solution.

2.2. Pose Estimation

Using the standard pinhole camera model, we can obtain the projection li−j
(
ui−j vi−j

)
of the line Li−j as follows.

ui−j = f
pi−jx+ki−j ·di−x
pi−jz+ki−j ·di−z

vi−j = f
pi−jy+ki−j ·di−y
pi−jz+ki−j ·di−z

(8)

Here, f is the focal length. If ki−j goes to infinity and di-z is not zero, the projection is
the vanishing point and can be written as

ui−vp = lim
ki−j→∞

f
pi−jx+ki−j ·di−x
pi−jz+ki−j ·di−z

= f di−x
di−z

vi−vp = lim
ki−j→∞

f
pi−jy+ki−j ·di−y
pi−jz+ki−j ·di−z

= f
di−y
di−z

(9)

It can be seen that the vanishing point is decided only by the direction vector of the
corresponding parallel lines in the camera frame.

Through feature extraction, we can obtain the expression of the line li−j. Actually,
two expressions can be obtained for each set of parallel lines. Then, we can calculate the
position of the vanishing point on the image plane using the two expressions. That means(

ui−vp vi−vp
)

is known. Consequently, according to Equation (9), the direction vector of
the corresponding 3D lines in the camera frame can be given using

di = di−z

( ui−vp
f

vi−vp
f 1

)
(10)

Then, the corresponding unit direction vector in the camera frame can be written as

di−c =
1√

u2
i−vp + v2

i−vp + f 2

(
ui−vp vi−vp f

)
(11)

It can be seen that the unit direction vector of the parallel lines in the camera frame
can be determined by the corresponding vanishing point. Since the vanishing point can
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be calculated, the unit direction vector di−c of the parallel lines in the camera frame Sc1 is
known. In addition, as the input, the unit direction vector di−w of the parallel lines in the
world frame Sw1 is also known. According to the rigid body transformation, an Equation
can be given as follows.

di−c = Rw−c · di−w (12)

Here, Rw−c is the rotation matrix between the world frame Sw1 and camera frame
Sc1, which is unknown and contains all the parameters of pose that we require for the
estimate in this paper. This equation is similar to the traditional frame transformation that
is written as

Pc = Rw−c · Pw + t (13)

The meaning of Equation (13) is that a 3D point Pw in the world frame Sw1 can be
transformed to Pc in the camera frame Sc1 through the rotation matrix Rw−c and the
translation vector t. If we let t = 0, the world frame and camera frame have the same origin,
and then we can assume

Pc = di−c
Pw = di−w

(14)

Now, Equations (12) and (13) are the same. Then, we can say that Equation (12) is the
transformation for the 3D point when the translation vector is zero, and the coordinate of
the 3D point is equal to the value of the unit direction vector. Note that this is the paper’s
key point for estimating the camera pose. In detail, here we regard the transformation
between the unit direction vectors as the transformation between the 3D points is a PnP
problem when the translation vector is zero. To obtain the case where the translation vector
is zero, we must establish a new world frame and two virtual 3D points, as shown in
Figure 3.
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A new world frame, Sw2 (Ow2_Xw2Yw2Zw2), is established in Figure 3. It is parallel to
the original world frame Sw1, and only translation exists between the two world frames.
When the origin of the world frame Sw2 is located at the camera position Oc, we can obtain
the transformation between the two world frames as follows.

Sw2 = Sw1 −Oc (15)

In addition, according to the unit direction vectors, we established two virtual spatial
points plotted in red in Figure 3. Their coordinates, both in the camera frame Sc1 and world
frame Sw2, are also shown in Figure 3, and then their transformation can be written as
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Pci = Rw−c · Pwi (16)

Here, Rw−c is both the rotation matrix between world frame Sw2 and camera frame
Sc1 and the rotation matrix between world frame Sw1 and camera frame Sc1. Next, the
two virtual spatial points will be used to estimate the rotation matrix that contains all
the information for the camera pose. Before that, two intermediate frames need to be
established, i.e., a new world frame, Sw3 (Ow3_Xw3Yw3Zw3), and a new camera frame, Sc2
(Oc2_Xc2Yc2Zc2). The two frames coincide in space, and their origin is located at the camera
position Oc, as shown in Figure 4.
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Each axis of the new camera frame Sc2 can be calculated using

→
Oc2Xc2 =

→
OcPc1

‖
→

OcPc1‖
→

Oc2Zc2 =
→

Oc2Xc2×
→

OcPc2

‖
→

Oc2Xc2×
→

OcPc2‖
→

Oc2Yc2 =
→

Oc2Zc2 ×
→

Oc2Xc2

(17)

Then, the camera frame Sc2 can be transformed into the camera frame Sc1 using

Sc2 = Tc_c2 · Sc1

Tc_c2 =
[ →

Oc2Xc2
→

Oc2Yc2
→

Oc2Zc2

]T (18)

Each axis of the new world frame Sw3 can be calculated using

→
Ow3Xw3 =

→
OcPw1

‖
→

OcPw1‖

→
Ow3Zw3 =

→
Ow3Xw3×

→
OcPw2

‖
→

Ow3Xw3×
→

OcPw2‖
→

Ow3Yw3 =
→

Ow3Zw3 ×
→

Ow3Xw3

(19)

Then, the world frame Sw3 can be transformed into the world frame Sw2 using
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Sw3 = Tw2_w3 · Sw2

Tw2_w3 =
[ →

Ow3Xw3
→

Ow3Yw3
→

Ow3Zw3

]T (20)

Now, we have obtained the transformations between different frames, as shown
in Figure 5.
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According to the known transformations between different frames, the pose estimation,
that is, the transformation from world frame Sw1 to camera frame Sc1, can be given using

Sc1 = Tw_c · Sw1 + tw_c

Tw_c = T−1
c_c2 · Tw2_w3

tw_c = −T−1
c_c2 · Tw2_w3 ·Oc

(21)

Now, the pose estimation is finished. Note that the solving process is similar to
the method proposed in [38] but has an essential difference, which will be discussed in
Section 4.

3. Experiments and Results

In this Section, first, we will thoroughly and directly test our proposed method with
synthetic mass data, including numerical stability, noise sensitivity and computational
speed of both pose and the focal length estimation. Simultaneously, the performance of
our proposed method will be compared with that of some other existing SOTA (state-
of-the-art) solvers (i.e., P3P [16], P3L [11], GPnPf (the Gauss–Newton method for the
perspective-n-point and focal length) [20], RPnP (the robust O (n) solution to the perspective-
n-point) [6], and DLT [23]), which involves a nonlinear algorithm, linear algorithm, point-
based algorithm and line-based algorithm. In addition, some can only estimate the pose,
and some can estimate both the pose and the focal length.

Second, the prior knowledge (i.e., camera position) used in our proposed method
cannot be absolutely correct, which may affect the accuracy of the pose and focal length
estimation, seriously or not. Hence, the robustness of our proposed method of camera
position noise needs to be tested.

Last, we indirectly evaluate the performance of our proposed method with real images
and compare it with the SOTA solvers to show if it can work well with real scenarios or not.



Sensors 2023, 23, 3694 9 of 17

3.1. Synthetic Data

Here, synthetic mass data is generated by a virtual perspective camera with a standard
pinhole camera model, whose resolution is 1280 × 800, the principal point is the center of
the image, and the pixel size is 14 µm. In order to simplify the experiments, no distortion
was added to the image, and this is reasonable in many cases where a short lens and fisheye
lens are not used. Another reason is that the manufacturing and installation of the lens
are both accurate, which means the distortion is small. The camera is located at [2, 2, 2] in
meters in the world frame, and the focal length is 50 mm.

For the P3P, GPnPf, RPnP and DLT solvers, 2D–3D point correspondences are needed.
For the P3L solver, 2D–3D line correspondences are needed, and for our proposed method,
2D vanishing point-3D parallel line correspondences are needed. Hence, random 3D points,
lines and parallel lines are generated in a box of [−17 17] × [−11 11] × [50 60] in meters
in the camera frame. Then, the 2D correspondences are generated through the virtual
perspective camera. The numbers of the 2D–3D correspondences are all three thousand
for all the methods in this paper. Now, the synthetic data is generated and contains three
thousand 2D–3D point correspondences, three thousand 2D–3D line correspondences, and
three thousand 2D vanishing point-3D parallel line correspondences.

In this section, according to the minimal set of 2D–3D correspondences for each
method, three 2D–3D point correspondences, four 2D–3D point correspondences, five
2D–3D point correspondences, six 2D–3D point correspondences, three 2D–3D line corre-
spondences and two 2D vanishing point-3D line correspondences are randomly selected
from the synthetic data for P3P, GPnPf, RPnP, DLT, and P3L and our proposed method,
respectively, for each trial.

3.1.1. Robustness to Camera Position Noise

The camera position can be measured by equipment mounted on a camera, such as
the IMU (inertial measurement unit) and RTK (real-time kinematic), or by other tools,
such as the total station. They have high positioning accuracy, better than 3 cm [19]. In
this section, we want to know how the camera position noise affects the accuracy of our
proposed method because the camera position is prior knowledge, which differs from other
methods. Hence, we solely analyze the robustness of the camera position noise for our
proposed method.

Here, Gaussian noise, whose deviation level varies from 0 to 3 cm, is added to the
camera position. For each noise level, 10,000 random trials are independently performed.
Then, the mean errors of rotation, translation, reprojection and focal length are reported
in Figure 6.

In Figure 6, the rotation error and focal length error are both low, which can be
regarded as zero, even though error spikes exist. The reason is that the rotation and
focal length estimation do not involve the camera position, which can be explained with
Equations (6) and (21). In addition, as the camera position noise increases, so do the
translation and reprojection errors. The reason is that the translation estimation involves
the camera position, which can be explained with Equation (21). For reprojection, it is
related to rotation, focal length and translation; hence, it is affected by the camera’s position.
When the camera position noise is 3 cm, the translation and reprojection errors both reach
the maximums, which are 0.028 m and 0.26 pixels, respectively. The errors are both small
and show that our proposed method has strong robustness to the camera position noise.

3.1.2. Numerical Stability

We tested our proposed method in terms of numerical stability in this section. A total
of 10,000 trials were performed independently using synthetic data with no noise added.
The performance of the rotation, translation and projection estimation was compared to the
other five methods, and the performance of the focal length estimation was compared only
to the GPnPf method because the other four methods could not estimate the focal length.
The results of numerical stability are reported in Figure 7.
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Figure 7 shows the distribution of the rotation, translation, projection and focal length
error, and all six methods have good numerical stability. To be specific, the DLT method
has the best performance, and our proposed method has the second in terms of rotation
error; our proposed method has the best performance, and the P3L method has the second
in terms of translation error; the RPnP method has the best performance, and our proposed
method has the fourth in terms of reprojection error; our proposed method has the best
performance, and the GPnPf method has the second in terms of focal length error. As a
whole, our proposed method has the best performance in terms of numerical stability.

3.1.3. Noise Sensitivity

We tested our proposed method in terms of noise sensitivity in this section. The trials
were performed independently using synthetic data with noise added. Noise may exist
in the 2D feature or 3D feature. Because the 3D feature will be transformed into a 2D
feature, 2D noise can reflect the 3D noise. Hence, we only added zero-mean Gaussian
noise onto the 2D points and lines, and the noise deviation level varies from 0 to 1 pixel.
A total of 10,000 trials were performed independently for each method, respectively, and
the performance of the rotation, translation and projection estimation was compared to the
other five methods. The performance of the focal length estimation was compared only to
the GPnPf method because the other four methods could not estimate the focal length. The
results of noise sensitivity are reported in Figure 8.
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From Figure 8, it can be seen that as the noise increases, so does the rotation error, the
translation error, the reprojection error and the focal length error. To be specific, the RPnP,
DLT and our proposed method have similar performances, and the RPnP method performs
slightly better than our proposed method in terms of rotation error; our proposed method
has the best performance, and the RPnP method has the second in terms of translation
error, and they both perform much better than the other four methods. The RPnP and P3P
methods have similar performances, and both perform better than the other four methods
in terms of reprojection error. In addition, our proposed method has the third in terms of
reprojection error. Our proposed method has the best performance, and the GPnPf method
has the second in terms of focal length error, and our proposed method performs much
better than the GPnPf method. As a whole, our proposed method has the best or second
performance in terms of noise sensitivity.

3.1.4. Computational Speed

In this section, 10,000 independent trials using synthetic data with no noise added
were conducted on a 3.3 GHz two-core laptop for all six methods, respectively, to test the
computational speed. Then, the mean computational times are reported in Table 1.

From Table 1, we can see that our proposed method has the best performance in
terms of computational speed, and the DLT has the second. Specifically, our proposed
method’s computational speed is 3.2 times, 3.8 times, 14.6 times, 1.5 times and 3.0 times
that of the latter five methods, respectively. This shows that our proposed method has
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fast computational speed while having a good performance of numerical stability and
noise sensitivity.
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Table 1. Computational time.

Method Our Proposed Method P3P RPnP GP4Pf DLT P3L

Computational time 0.43 ms 1.37 ms 1.64 ms 6.26 ms 0.65 ms 1.31 ms

3.2. Real Images

In Section 3.1, we have shown that our proposed method can work well with synthetic
data directly. To fully test our proposed method, we will now use real images to show
whether it works well with real scenarios. The cameras were placed in real scenarios, but
the ground truths of their poses are not known. This problem suggests that we cannot
directly test our proposed method. Here, an indirect method was established to test it.

First, many lines and points, whose positions are known as ground truth, were placed
in the FOV, and then we chose some of them to estimate the pose and focal length for
our proposed method and other SOTA methods. After estimating, stereo vision [43] was
used to measure the 3D positions of the left points as the measured values. The accuracy
of the measured value is affected by the camera’s pose and focal length. The pose and
focal length were estimated by our proposed method and other SOTA methods. Hence,
the measurement accuracy between the measured value and ground truth can reflect the
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accuracy of our proposed method. Next, we set up the real scenarios and captured real
images from two different views by the cameras [38], shown in Figure 9.
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The checkerboard was placed in the FOV, and the size was known. Hence, there are
many sets of parallel lines, and their unit direction vectors are known. We chose two sets
for our proposed method to estimate the focal length and pose, as shown in Figure 10.
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Figure 10. Two vanishing points were extracted for the focal length and pose estimation.

The world frame (yellow) was established, as shown in Figure 10, and two vanishing
points were obtained from the two sets of parallel lines (red). In addition, for the P3P,
GPnPf, RPnP, DLT and P3L solvers, three points, four points, five points, six points and
three lines from the checkerboards were randomly chosen to estimate the focal length and
pose. The camera positions were measured by a total station for our proposed method.
After the focal length and pose estimations, the stereo vision was used to measure the
positions of the left points on the checkerboards as measured values. Then, we obtained the
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mean relative position errors between the measured values and ground truths, as shown in
Table 2. Moreover, the reprojections of the left points can then be obtained, and the mean
reprojection errors between the reprojection and projection are also reported in Table 2.

Table 2. Mean relative position errors and mean reprojection errors.

Method Proposed Method P3P RPnP GPnPf DLT P3L

Mean relative error % 0.45 0.54 1.81 1.17 0.59 0.72

Mean reprojection/pixel 0.61 0.56 0.49 0.79 0.72 0.67

Our proposed method and P3P have the best performance in terms of the mean relative
position error; our proposed method has the third performance, and RPnP has the first in
terms of the mean reprojection error. As a whole, our proposed method performs best in
real images.

In addition, we obtained the computational time of all the methods and our proposed
method has the best performance. Specifically, the computational speed of our proposed
method is 2.5 times, 3.4 times, 14.2 times, 1.6 times and 3.1 times that of the latter five
methods, respectively. This is basically consistent with the results in the synthetic data.

For real images, there are many factors here that affect our proposed method, such as
noise and error in the camera’s position. In fact, we took these factors into account when
setting up our real scenario in this section. When extracting the feature points, we used
the sub-pixel extraction algorithm, which will introduce noise. This is also related to the
imaging quality, so the noise cannot be quantified. In addition, in the experiment, we used
the total station to obtain the camera position because the total station itself has an error;
hence, the error of the camera position is also introduced in the real scenario. It is clear that
we should consider the influence of these factors when analyzing the performance of our
proposed method for the real scenario. Under the influence of these factors, our method
still shows good performance. In addition, due to the real scenario limitations, it is difficult
to set up many real scenarios. Therefore, we adopted synthetic data to simulate different
scenarios in Section 3.1. Using a combination of a small number of real scenarios and a
large number of synthetic scenarios, and in the case of introducing various types of errors,
shows our proposed method has good performance.

4. Discussion

This paper uses two vanishing points and a camera’s position to estimate the focal
length and pose simultaneously. To our best knowledge, this is the first paper to perform
this job using vanishing points and a camera’s position. Using the camera position as
the prior knowledge can simplify the estimation problem and improve accuracy and
efficiency. Unlike other existing methods, our proposed method does not involve nonlinear
computation and multi-solution phenomenon and needs only two vanishing points. In
computer vision, our proposed method can estimate the camera pose more quickly in the
case of multiple vanishing points. It is another idea to be used to estimate the pose, which
is complementary to other calibration methods. The differences and advantages of the
proposed method and future work will be discussed as follows.

4.1. Differences and Advantages

The first difference is that our proposed method uses the camera position as the prior
knowledge, and it can simplify the problem. In fact, many existing methods also use
some prior knowledge and also simplify the problem. However, the costs of using prior
knowledge for different methods are different. Additionally, the corresponding benefits
are different. Some methods require expensive equipment with large sizes and precision
mechanical structures to obtain prior knowledge and might not achieve a very good effect.
However, the camera’s position can be given by RTK, which is cheap and has a small
size. In addition, it has strong robustness (Section 3.1.1) to the camera’s position and good
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performance in terms of numerical stability, noise sensitivity and computational speed
(Sections 3.1.2–3.1.4). This means we can obtain good benefits at a low cost. The advantage
can also be seen indirectly in Section 3.2. Last, the rotation and focal length estimation do
not involve the camera position; hence, they have no error when the camera noise exists
(Section 3.1.1).

The second difference is that our proposed method does not involve nonlinear iter-
ations. Some existing methods, e.g., P3P, RPnP and GPnPf, need to solve the nonlinear
equation, and in order to avoid the optimal local solution, iteration is needed. Although
nonlinear iteration could improve the accuracy, the computational speed is decreased, as
shown in Section 3.1.4. This is the main reason why our proposed method and DLT have
the best performance in terms of computational speed. In addition, improving the accuracy
does not mean we can always obtain the optimal global solution, and this leads to our
proposed method perhaps having higher accuracy, as shown in Section 3.1.3.

The third difference is that our proposed method has no multi-solution phenomenon.
When we estimate the focal length, a quadratic equation with one unknown must be solved.
When we estimate the pose, the computational process mainly involves multiplication
and matrix operations. Hence, there is no multi-solution phenomenon. Because one more
constraint is needed to disambiguate the multi-solution phenomenon, the computational
speed will decrease, and this is another reason why our proposed method has the best
performance in terms of computational speed.

Last, the calculating process is similar to another method that we proposed in [38];
however, they have essential differences. The method in [38] needs to establish two planes
in the world frame and camera frame and obtain their normal unit vectors. However, this
paper directly uses the unit direction vectors of lines and does not establish the planes.
Additionally, when we estimate the focal length, this paper uses the angle between two lines,
not the two planes in [38]. This paper only requires the unit direction vectors of the 3D
lines but does not need the positions in the space. The method in [38] needs both. It can
be seen (although the forms of the equations and calculating process are similar) that the
meanings of the two methods are totally different.

The main disadvantage is that our proposed method does not perform best in terms
of reprojection error. The reason is that some other methods, such as P3P and RPnP,
use iteration to refine the solution, and the corresponding cost function is to make the
reprojection error minimal. Our proposed method has no refining process, which leads to
the main disadvantage.

Briefly, our proposed method has the following advantages. (1) Only two vanishing
points are needed; (2) it has no multi-solution phenomenon; (3) it has strong robustness
to camera noise; (4) as a whole, it performs well in terms of numerical stability and noise
sensitivity; (5) the computational speed is fast. The main disadvantage is that it does not
perform best in terms of reprojection error.

4.2. Future Work

As described in Section 4.1, our proposed method has a main disadvantage for re-
projection error. Hence, the main work in the future is to establish the cost function to
minimize the reprojection error and simultaneously refine the solution. Another work will
use other sensors to obtain additional prior knowledge, such as the IMUs, which can give
two orientations of the camera. It also can simplify the problem. Additionally, it may be
possible that the camera’s position and partial orientation are both used as prior knowledge
to improve accuracy or estimate more intrinsic parameters.

5. Conclusions

This paper proposed a new method to estimate the focal length and pose based on
two vanishing points and a camera’s position. The key point is to convert the transformation
between the unit direction vectors to the transformation between the 3D points without
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translation. The experimental results show that, as a whole, our proposed method performs
better than some existing state-of-the-art methods.
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