Voltammetric Detection of Vanillylmandelic Acid and Homovanillic Acid Using Urea-Derivative-Modified Graphite Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Density Functional Theory Calculations
2.3. FTIR Spectroscopic Characterization of Modified Electrode Surfaces
2.4. Electrochemical Studies
3. Results and Discussion
3.1. Density Functional Theory Calculations
3.2. FTIR Spectroscopy: Modified Electrode Surface Characterization
3.3. Electrochemical Impedance Spectroscopy: Recognition at Electrode–Solution Interface
3.4. Differential Pulse Voltammetry: Detection of Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cebula, J.; Fink, K.; Boratyński, J.; Goszczyński, T.M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023, 477, 214940. [Google Scholar] [CrossRef]
- Hirao, T.; Kishino, S.; Haino, T. Supramolecular chiral sensing by supramolecular helical polymers. Chem. Commun. 2023, 59, 2421–2424. [Google Scholar] [CrossRef]
- Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular fluorescent sensors: An historical overview and update. Coord. Chem. Rev. 2021, 427, 213560. [Google Scholar]
- Goel, N.; Kumar, N. Supramolecules: Future Challenges and Perspectives. In Pharmaceutical Applications of Supramolecules; Goel, N., Kumar, N., Eds.; Springer: Cham, Switzerland, 2022; pp. 319–328. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhu, A.; Tian, Y. In vivo electrochemical biosensors: Recent advances in molecular design, electrode materials, and electrochemical devices. Anal. Chem. 2023, 95, 388–406. [Google Scholar]
- Ross, J.A.; Davies, S.M. Screening for neuroblastoma: Progress and pitfalls. Cancer Epidemiol. Biomark. Prev 1999, 8, 189–194. [Google Scholar]
- Parisi, M.T.; Eslamy, H.; Park, J.R.; Shulkin, B.L.; Yanik, G.A. 131I-Metaiodobenzylguanidine theranostics in neuroblastoma: Historical perspectives; practical applications. Nucl. Med. 2016, 46, 184–202. [Google Scholar] [CrossRef]
- Miekus, N.; Kowalski, P.; Oledzka, I.; Plenis, A.; Bien, E.; Miekus, A.; Krawczyk, M.; Adamkiewicz-Drozynska, E.; Baczek, T. Cyclodextrin-modified MEKC method for quantification of selected acidic metabolites of catecholamines in the presence of various biogenic amines. Application to diagnosis of neuroblastoma. J. Chromatogr. B 2015, 1003, 27–34. [Google Scholar]
- Khamlichi, R.E.; Bouchta, D.; Anouar, E.H.; Atia, M.B.; Attar, A.; Choukairi, M.; Tazi, S.; Ihssane, R.; Faiza, C.; Khalid, D.; et al. A novel l-leucine modified sol-gel-carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis. Mater. Sci. Eng. C 2017, 71, 870–878. [Google Scholar] [CrossRef]
- Shishkanova, T.V.; Broncová, G.; Fitl, P.; Král, V.; Barek, J. Voltammetric detection of catecholamine metabolites using Tröger’s base modified electrode. Electroanalysis 2018, 30, 734–739. [Google Scholar] [CrossRef]
- Baluchová, S.; Barek, J.; Tomé, L.I.N.; Brett, C.M.A.; Schwarzová-Pecková, K. Vanillylmandelic and homovanillic acid: Electroanalysis at non-modified and polymer-modified carbon-based electrodes. J. Electroanal. Chem. 2018, 821, 22–32. [Google Scholar] [CrossRef]
- Shishkanova, T.V.; Sinica, A. Electrochemically deposited cobalt bis(dicarbollide) derivative and the detection of neuroblastoma markers on the electrode surface. J. Electroanal. Chem. 2022, 921, 116674. [Google Scholar] [CrossRef]
- Boiocchi, M.; Del Boca, L.; Esteban-Go’mez, D.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Nature of urea−fluoride interaction: incipient and definitive proton transfer. J. Am. Chem. Soc. 2004, 126, 16507–16514. [Google Scholar] [CrossRef]
- Salvadori, K.; Páleš, J.M.; Shishkanova, T.V.; Trchová, M.; Fajgar, R.; Matějka, P.; Cuřínová, P. An electrochemical sensor for detection of neuroblastoma markers: Complexation studies as a tool for the selection of a suitable receptor for electrode coating. ChemPlusChem 2022, 87, e202200165. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Brett, C.M.A. Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules 2022, 27, 1497. [Google Scholar] [CrossRef]
- Millner, P.A.; Caygill, R.L.; Conroy, D.J.; Shahidan, M.A. Impedance Interrogated Affinity Biosensors for Medical Applications: Novel Targets and Mechanistic Studies; Woodhead Publishing Ltd.: Cambridge, UK, 2012; Volume 45. [Google Scholar]
- Randviir, E.P.; Banks, C.E. Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Anal. Methods 2013, 5, 1098–1115. [Google Scholar] [CrossRef]
- Rushworth, J.V.; Ahmed, A.; Griffiths, H.H.; Pollock, N.M.; Hooper Millner, P.A. A label-free electrical impedimetric biosensor for the specific detection of Alzheimers amyloid-beta oligomers. Biosens. Bioelectron. 2014, 56, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.K.; Wu, Y.; Zhang, B.B.; Li, M.; Jia, S.R.; Jiang, S.H.; Zhou, H.; Zhang, Y.; Zhang, C.Z.; Turner, A.P.F. Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor. Anal. Lett. 2012, 45, 986–992. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S.; Kant, R. Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance. Chem. Sci. J. 2017, 129, 1277–1292. [Google Scholar] [CrossRef] [Green Version]
- Guler, Z.; Erkoc, P.; Sarac, A.S. Electrochemical impedance spectroscopic study of single-stranded DNA-immobilized electroactive polypyrrole-coated electrospun poly(ε-caprolactone) nanofibers. Mater. Express 2015, 5, 269–279. [Google Scholar] [CrossRef]
- Yan, J.; Yuan, W.; Tang, Z.; Xie, H.; Mao, W.; Ma, L. Synthesis and electrochemical performance of Li3V2(PO4)3−xClx/C cathode materials for lithium-ion batteries. J. Power Sources 2012, 209, 251–256. [Google Scholar] [CrossRef]
- Kütt, A.; Selberg, S.; Kaljurand, I.; Tshepelevitsh, S.; Heering, A.; Darnell, A.; Kaupmees, K.; Piirsalu, M.; Leito, I. pKa values in organic chemistry—Making maximum use of the available data. Tetrahedron Lett. 2018, 59, 3738–3748. [Google Scholar] [CrossRef]
- Li, Q.; Batchelor-McAuley, C.; Compton, R.G. Electrooxidative decarboxylation of vanillylmandelic acid: Voltammetric differentiation between the structurally related compounds homovanillic acid and vanillylmandelic acid. J. Phys. Chem. B 2010, 114, 9713–9719. [Google Scholar] [CrossRef] [PubMed]
- Gates, S.C.; Sweeley, C.C.; Krivit, W.; DeWitt, D.; Blaisdell, B.E. Automated metabolic profiling of organic acids in human urine. II. Analysis of urine samples from “healthy” adults, sick children, and children with neuroblastoma. Clin. Chem. 1978, 24, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
Analyte | ΔE (kJ/mol) | KAss 1:1 |
---|---|---|
Acetate | −56.4 | 7.6 × 109 |
Benzoate | −55.3 | 4.9 × 109 |
VMA | −48.6 | 3.0 × 108 |
HVA | −55.2 | 4.7 × 109 |
Analyte | pKa/pKb | Receptor (a) | G/Receptor | Pt/Receptor | |
---|---|---|---|---|---|
KAss 1:1 | βAss 1:2 | KAds | KAds | ||
Acetate | 4.756/9.244 | 1.97 × 103 (c) | 9.65 × 105 | (5.32 ± 2.99) × 105 | (3.86 ± 1.61) × 105 |
Benzoate | 4.2/9.8 | 1.01 × 103 (b) | 2.53 × 105 | (1.3 ± 0.4) × 106 | (5.30 ± 3.77) × 105 |
VMA | 3.4/10.6 | 4.20 × 102 (b) | 4.41 × 104 | (5.18 ± 1.95) × 105 | (1.84 ± 0.61) × 105 |
HVA | 4.4/9.6 | 1.72 × 103 (b) | 7.40 × 105 | (4.78 ± 1.58) × 104 | (2.76 ± 0.77) × 105 |
Analyte | Polymer-Layer/Electrode | Detected Concentration, μM | Supporting Electrolyte | References |
---|---|---|---|---|
VMA | Tröger’s Base/G | 40–100 10–100 | 0.1 M PB, pH = 7.0 | [10] |
Nafion/GCE 1 | 8–100 | 0.1 M PB 2, pH = 3.0 | [11] | |
Poly(neutral red)/GCE | 4–10 20–100 | 0.1 M PB 2, pH = 3.0 | [11] | |
Urea-derivative/G | 9.96–158 | 0.1 M PBS, pH = 6.0 | This work | |
HVA | l-Leucine/Sol-Gel-C | 0.4–100 | 0.1 M PBS, pH = 4.0 | [9] |
Tröger’s Base/G | 40–100 | [10] | ||
Nafion/GCE 1 | 2–10 10–100 | 0.1 M PB 2, pH = 3.0 | [11] | |
Poly(neutral red)/GCE | 4–100 | 0.1 M PB 2, pH = 3.0 | [11] | |
Urea-derivative/G | 9.96–624 | 0.1 M PBS, pH = 6.0 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishkanova, T.V.; Králík, F.; Synytsya, A. Voltammetric Detection of Vanillylmandelic Acid and Homovanillic Acid Using Urea-Derivative-Modified Graphite Electrode. Sensors 2023, 23, 3727. https://doi.org/10.3390/s23073727
Shishkanova TV, Králík F, Synytsya A. Voltammetric Detection of Vanillylmandelic Acid and Homovanillic Acid Using Urea-Derivative-Modified Graphite Electrode. Sensors. 2023; 23(7):3727. https://doi.org/10.3390/s23073727
Chicago/Turabian StyleShishkanova, Tatiana V., František Králík, and Alla Synytsya. 2023. "Voltammetric Detection of Vanillylmandelic Acid and Homovanillic Acid Using Urea-Derivative-Modified Graphite Electrode" Sensors 23, no. 7: 3727. https://doi.org/10.3390/s23073727
APA StyleShishkanova, T. V., Králík, F., & Synytsya, A. (2023). Voltammetric Detection of Vanillylmandelic Acid and Homovanillic Acid Using Urea-Derivative-Modified Graphite Electrode. Sensors, 23(7), 3727. https://doi.org/10.3390/s23073727