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Abstract: Late blight, caused by Phytophthora infestans, is a major disease of the potato crop with a
strong negative impact on tuber yield and tuber quality. The control of late blight in conventional
potato production systems is often through weekly application of prophylactic fungicides, moving
away from a sustainable production system. In support of integrated pest management practices,
machine learning algorithms were proposed as tools to forecast aerobiological risk level (ARL) of
Phytophthora infestans (>10 sporangia/m3) as inoculum to new infections. For this, meteorological and
aerobiological data were monitored during five potato crop seasons in Galicia (northwest Spain). Mild
temperatures (T) and high relative humidity (RH) were predominant during the foliar development
(FD), coinciding with higher presence of sporangia in this phenological stage. The infection pressure
(IP), wind, escape or leaf wetness (LW) of the same day also were significantly correlated with
sporangia according to Spearman’s correlation test. ML algorithms such as random forest (RF) and
C5.0 decision tree (C5.0) were successfully used to predict daily sporangia levels, with an accuracy
of the models of 87% and 85%, respectively. Currently, existing late blight forecasting systems
assume a constant presence of critical inoculum. Therefore, ML algorithms offer the possibility
of predicting critical levels of Phytophthora infestans concentration. The inclusion of this type of
information in forecasting systems would increase the exactitude in the estimation of the sporangia
of this potato pathogen.

Keywords: aerobiology; Solanum tuberosum L.; Phytophthora infestans; weather factors; infection
pressure; machine learning

1. Introduction

Late blight, caused by Phytophthora infestans, is a major disease of potato crop, with
a strong negative impact on tuber yield and quality [1–3]. The pathogen is regarded as a
threat to global food security because worldwide losses due to late blight are estimated
to exceed annually $5 billion [4,5]. P. infestans is described as a lower water oomycete and
infects the potato crop through the tuber and soil during cool and wet weather. Infection of
shoots can be caused by mycelium growing from the tuber into the developing shoot or
through sporangia and zoospores formed on the tuber surface under wet conditions [6].
Then, the potential risk of disease development depends in part on the aerial transport of
P. infestans sporangia to potato fields from neighbor’s infection fields [7–10]. Depending
on host susceptibility and environmental conditions, the first symptoms can be visible
3–4 days after infection [1]. Night temperatures of 10–16 ◦C accompanied by light rain,
fog or heavy dew and followed by days of 13–16 ◦C with high relative humidity are ideal
conditions for late blight infection and development [11]. The first symptoms are followed
by the production of new sporangia and the infection cycle is repeated as many times as
the weather conditions allow the viability of the released sporangia [6,8,12,13].
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Potato crops contributed to alleviating world hunger and potatoes remain one of
the agricultural resources needed in line with the zero-hunger sustainable development
goal. However, the crop management strategies increasingly require the application of
phytochemicals, which may cause undesirable effects on the environment and on human
health, with an increasing production costs for growers. For effective and ecofriendly man-
agement of potato late blight, scientific and technical efforts must be made to understand
how the disease progresses and how this progression can be slowed down. One of the
important issues in late blight management is to forecast when, where and how abundant
airborne inoculum will be, to prevent the onset of the epidemic. The airborne inoculum of
the pathogen appears to have a significant impact on the disease epidemic. However, the
prediction of airborne spores of plant pathogens is difficult because they are influenced
by a plethora of factors (temperature, relative humidity, leaf wetness, wind, phenological
stage) [7,10,12,14,15]. Hence, the efforts towards understanding and predicting airborne
sporangia of P. infestans based on multiple factors that condition its development, with a
significant impact on the management of late blight, with less fungicide applications are
sought.

In recent years, the agricultural sector was able to adopt the main technological
innovations relying on artificial intelligence (AI), artificial neural networks (NN) and
machine learning (ML). The goal is to digitize itself and increase the autonomy of many
processes by making better data-driven decisions, reducing the workload, inputs and
increase the quality of the final product [16–20]. The multi-view spectral information from
unmanned aerial vehicles (UAV) based color-infrared images combined with machine
learning algorithms was used to improve the estimation of nitrogen nutrition status in
winter wheat and optimize the fertilization [17]. Classification methods and clustering
trough image analyses such as neural networks (CNN) were used to simulate the humans’
decision-making process. CNNs were shown to have great potential for fine classification
problems using an image of the same object from different views [18,19]. Decision trees,
support vector machines or k-means together with information from foliage of the crop were
used in precision agriculture and the effective detection, identification and quantification
of plant diseases [21,22]. In the case of potato crop, ML algorithms were recently applied
for monitoring diseases through image-based techniques [20,23–27]. Sugiura et al. [24]
proposed a phenotyping system for mapping late blight on potato crop by analyzing pixel
change between consecutive images. The assessment of late blight severity in potato by
acquiring high resolution multispectral images with a low-cost camera and ML algorithms
was also reported [25]. More recently, the early detection and severity assessment of late
blight in potato crops by multispectral imagine were evaluated [26,27]. However, these
studies focused on the detection and identification of disease after the onset of the infection
process. The preceding step is the early detection of inoculum in the environment of the
crop able to cause first late blight symptoms on the potato canopy. Aerobiology is an
excellent discipline for this purpose, allowing real time knowledge of sporangia in the
potato atmosphere [9,10,14,15,28–30].

There were some aerobiological studies that focused on understanding the influence
of climatic factors on the dynamics of spores in the atmosphere of the potato crop using dif-
ferent multivariate statistical techniques and ML algorithms [31–33]. However, there were
fewer studies trying to predict P. infestans sporangia levels in the environment crop [10,15].
Furthermore, despite the great available scientific information on late blight, few studies
focused on the specific value of airborne sporangia concentration as a monitoring tool
for late blight control [10,14,15,29,34,35]. In this sense, with the purpose of estimating
the late blight risk during the early stages of potato crop development, ML algorithms
were applied. The goals of the present study were: (i) to assess the concentration of P.
infestans in each phenological stage of potato crop in northwest Spain; (ii) to derive a simple
binary classification model for predicting the days exceeding the aerobiological risk level of
pathogen; and (iii) to validate ML algorithms as a tool for forecasting late blight outbreaks.
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2. Materials and Methods
2.1. General Aspects of the Experimental Potato Field

The experimental field was located in A Limia (Galicia, northwest Spain) and the study
was conducted over five crop seasons (2017–2021). A 4-hectare field was planted with the
potato cultivar Agria, considered as a medium resistant to late blight disease. The field
plot was managed under an annual wheat–potato rotation system. The dates of planting
and the main phenological stages for each season are shown in Table 1. The phenological
monitoring started when 50% of plants emerged, and weekly observations until crop
senescence were performed. Three main phenological stages considering the BBCH scale
of Hack et al. [36] with some modifications [37] were monitored: foliar development (FD),
flowering (FL), senescence (SE).

Table 1. Dates of phenological stages in five studied crop seasons.

Date (DAE)

Stage 2017 2018 2019 2020 2021

Planting 22 April 15 May 16 May 26 May 22 May
Emerging 16 May (1) 1 June (1) 4 June (1) 10 June (1) 10 June (1)
Begining

Flowering 13 June (29) 4 July (34) 13 July (40) 13 July (34) 14 July (35)

Start of senescence 19 July (65) 15 August (76) 17 August (75) 14 August (66) 7 August (59)
End of senescence 12 August (89) 14 September (106) 1 September (90) 31 August (83) 26 August (78)

DAE: days after emergence.

2.2. Weather Monitoring

Weather data were registered hourly using a portable weather station i-METOS 3.3.
(Pessl Instruments, Weiz, Austria) placed in the middle of the experimental potato field, at
1.5 m height since 50% of plants were emerged. Daily mean temperature (T, ◦C), relative
humidity (RH, %), leaf wetness (LW, h) and wind speed (Wind, m/s) were calculated with
hourly data registered.

The release of sporangia from the sporangiophore (expressed as spore release, SR) was
calculated using hourly RH and a critical value of 88% of RH [7]. The escape of sporangia
from the canopy into the atmosphere (escape) was calculated with the hourly wind speed
data according to the formula proposed by Skelsey et al. [7].

Following the Danish late blight model (BlightManager), the daily risk value (DRV)
based on hourly temperature and relative humidity was calculated [38]. Subsequently, the
infection pressure (IP), which is a running sum of the DRV of five days, was calculated as
described previously [10,38].

2.3. Aerobiological Sampling

The surveillance of the atmosphere of the crop was performed through an aerobi-
ological sampler type Lanzoni VPPS 2000 (Lanzoni S.r.l., Bologna, Italy) placed in the
potato plot at 1.5 m high close to the weather station since the 50% of plants emerged.
The equipment contained a vacuum pump to aspirate the airborne particles surrounding
through a horizontal aperture, which was connected with the melinex tape covered where
these particles were retained. A clockwork-driven drum containing the tape was moving
continuously for 7 days, and each week, the tape was replaced. The methodology used
for the assembly and counting of airborne particles was based on the proposal by Galán
et al. [39], expressing the concentration of P. infestans in sporangia/m3.

Based on field experiences, a daily aerobiological risk level (ARL) of 10 sporangia/m3

was established. This level defines the concentration of sporangia likely to cause late
blight infection in the potato crop, considered in the statistical treatment of ML algorithms
(Figure 1).
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Figure 1. Visual abstract about the inputs (weather and aerobiological variables) used in the machine
learning (ML) algorithms. ARL: daily aerobiological risk level.

2.4. Data Analyses

Data curation and statistical analyses were performed with the R language and envi-
ronment for statistical computing version 4.1.3 [40] and IBM SPSS Statistics 22 program.
Spearman correlation test was applied to analyze the relationships between weather factors
and presence of sporangia until seven previous days, with a significance level of p < 0.05.

Prior to the treatment of ML algorithms, a binary code based on the ARL established
by the aerobiological method explained above was proposed. The code established the zero
(0) value for days with a concentration lower than 10 sporangia/m3, while the days that
exceeded this concentration threshold were classified as 1 (Figure 1). Then, ML algorithms
C5.0 and random forest (RF) to predict ARL were applied. The C5.0 algorithm is a decision
tree ML algorithm that uses entropy (a measure of the randomness in a partition) for
splitting trees. The C5.0 model uses adaptive boosting to improve the predictive power
of the final model. The RF algorithms, also known as decision tree ensemble algorithms,
combine the results of multiple independent decision trees to make predictions about new
data sets [41]. Each tree in the forest assigns the most probable class label to each input.

Implementing the Machine Learning Algorithms

The data set was split into 80% (469 values/rows) training and 20% (117 values/rows)
test data sets. As the tested algorithms were not based on distance metrics, no standardiza-
tion was carried for the data. These algorithms were implemented with “train” function
in the caret R package version 6.0-92 [42]. The method option in “train” function was
set to “C5.0” and “rf” for implementing the C5.0 and RF algorithms, respectively. For
all algorithms, 10-fold cross-validation (CV) was used to optimize the models. For the
C5.0, both the tree and rule-based models with or without winnowing (i.e., a process of
removing uninformative predictors) were evaluated and the best model was selected. The
hyperparameter (the node size) in the RF algorithm by comparing the accuracy of models
from different node sizes (1 to 10) was also optimized. The node size that resulted in the
highest accuracy was selected for building the RF model.

The following metrics were used to evaluate the models: (a) accuracy (the percentage
of correct predictions by the model), and kappa statistics/accuracy (an adjustment to
predictive accuracy by accounting for the possibility of a correct prediction by chance
alone). These metrics were computed from the “confusionMatrix” function in the caret R
package version 6.0-92 [42]. In order to evaluate the performance of the proposed models,
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sensitivity and specificity were considered. Sensitivity refers to a proportion of days with
sporangia concentrations >10 that correctly give, a positive result using the test in question.
Specificity means the proportion of days with a concentration <10 sporangia/m3 that
correctly give a negative result using the test in question.

Model performance was also assessed using receiver operating characteristics (ROC).
A ROC curve is a graphical representation of sensitivity versus specificity for a binary
classifying system. Thus, in ROC analysis, the area under the curve (AUC) represents the
power of a parameter to discriminate between two classes. ROCs are used to evaluate the
trade-off between true and false positives. A ROC curve shows the model’s prediction
based on the positive class when the actual result is positive. Thus, in ROC analysis, the
area under the curve represents the power of a parameter to discriminate between two
classes. AUC values are interpreted as follows: <0.6 (no discrimination), 0.6–0.7 (poor), 0.7–
0.8 (acceptable), 0.8–0.9 (excellent), >0.9 (outstanding). The ROC and AUC was computed
with the ROCR package (version 1.0-11) [43].

3. Results
3.1. Crop Phenology during Period of Study

Planting dates in the five years took place between April and May (Table 1). The earliest
planting year was 2017, while the latest planting year was 2020. Emergence occurred at 15
days, except in 2017, when it was delayed by 25 days. Flowering occurred in the 34–40 days
after emerging, except in 2017, when it happened a few days earlier. Considering the days
that elapsed since emergence, flowering occurred between days 29 (2017) and 40 (2019).
The longer crop cycle (2018) reached the end of senescence at 106 days after emergence and
the last two crop cycles, 2021 and 2020, were the shortest cycles and reached senescence at
78 and 83 days after emergence, respectively.

3.2. Overview of Weather Conditions by Phenological Stage

Specific mean values by phenological stage are presented in Table 2. Of the five years
studied, the 2018 growing season was the wettest, with approximately 297 mm of water on
37 rainy days. In contrast, 2020 was the warmest and driest year. During the whole cycle,
only 15 mm of rainfall was recorded in 7 days. In general, the foliar development (FD)
was the stage with the mildest temperatures and the rainiest days, although not the most
abundant in terms of rain amount. The average temperature in this phenological stage was
16.4 ◦C, with a mean of 10.6 days of rain. Additionally, this phenological stage was the one
with the highest RH: 78.1% on average. On the contrary, during the senescence stage (SE),
the lowest RH was recorded, with an average of 72.6%. In addition, in this final period,
there were fewer rainy days and, consequently, less accumulated water (a mean of 4 days
and 29.0 mm). The flowering (FL) was the stage with the highest average temperatures
(19.4 ◦C) and mean RH (73.7%).

3.3. Daily Sporangia Concentration by Main Phenological Stage

The most abundant seasons in terms of daily sporangia concentration were 2018 and
2021, with 2271 and 1836 accumulated sporangia in each crop cycle, respectively (Table 3).
Conversely, the year that stood out for its low concentration of sporangia was 2020, with
a total of 36 sporangia in the whole cycle. In addition, in 2020, days with ARL were not
found. In terms of phenological phase, the foliar development stage (FD) was the stage in
which the highest daily sporangia concentrations were recorded. Additionally, the highest
number of days with ARL was recorded during the foliar development stage (FD) except
in 2017. In 2019, 100% of days with ARL was recorded during FD stage (Table 3).
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Table 2. Descriptive analysis of weather parameters by phenological stage during five studied crop
seasons.

Season Stage T (◦C) RH (%) Accumulated
Rain (mm) Rainy Days Rainy Days (%)

2017 FD 16.7 76.0 21.4 6 31.6
FL 19.6 72.9 155.8 10 52.6
SE 17.7 69.6 84.2 3 15.8

2018 FD 16.3 82.7 123.4 20 54.1
FL 19.3 76.3 121.4 9 24.3
SE 19.2 69.8 52.0 8 21.6

2019 FD 15.7 76.9 42.8 13 48.1
FL 18.5 76.5 33.6 10 37.0
SE 18.9 72.4 4.0 4 14.8

2020 FD 17.0 74.2 8.2 2 28.6
FL 21.4 65.4 4.2 2 28.6
SE 16.6 77.9 2.6 3 42.9

2021 FD 16.3 80.7 68.0 12 54.5
FL 17.9 77.4 38.4 8 36.4
SE 19.2 73.2 2.4 2 9.1

Temperature (T) and relative humidity (RH) expressed in mean values.

Table 3. Sporangia information by phenological stage during the five studied crop seasons.

Season Stage Total P. infestans
Sporangia

Days ≥ 10
Sporangia/m3

Days ≥ 10
Sporangia (%)

2017 FD 311 11 39.3
FL 521 17 60.7
SE 15 0 0

2018 FD 1723 25 55.6
FL 509 20 44.4
SE 39 0 0

2019 FD 481 11 100
FL 37 0 0
SE 5 0 0

2020 FD 28 0 0
FL 7 0 0
SE 1 0 0

2021 FD 1134 22 56.4
FL 540 13 33.3
SE 162 4 10.3

FD: foliar development; FL: flowering; SE: senescence.

3.4. Relationships between the Sporangia Concentration and the Meteorological Parameters

Spearman correlation coefficients were calculated between the meteorological variables
and sporangia concentration. The highest positive and significant coefficients were found
between the presence of sporangia of one and two previous days with daily sporangia
concentration. Significantly negative coefficients between T and SR and the daily sporangia
concentration were found (p < 0.05), while significantly positive coefficients between the
sporangia and RH and IP were found. Wind and escape were positively correlated with
sporangia from the second previous day until the fifth previous day. For LW, the correlation
between sporangia concentration and the same-day recording (LW_0) was significantly
positive, in contrast to the previous days (Table 4).
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Table 4. Spearman correlation coefficients between daily weather parameters and sporangia concen-
tration until seven previous days.

Previous Days T RH LW Wind SR Escape IP Sporangia

0 −0.162 ** 0.198 ** 0.125 ** 0.020 −0.179 ** 0.030 0.258 ** 1
1 −0.207 ** 0.218 ** 0.081 0.026 −0.169 ** 0.062 0.259 ** 0.669 **
2 −0.229 ** 0.221 ** 0.039 0.158 ** −0.156 ** 0.182 ** 0.256 ** 0.555 **
3 −0.221 ** 0.243 ** 0.072 0.153 ** −0.180 ** 0.162 ** 0.247 ** 0.485 **
4 −0.224 ** 0.249 ** 0.069 0.146 ** −0.185 ** 0.158 ** 0.254 ** 0.427 **
5 −0.250 ** 0.268 ** 0.078 0.165 ** −0.198 ** 0.178 ** 0.252 ** 0.430 **
6 −0.272 ** 0.322 ** 0.089 0.106 * −0.247 ** 0.114 * 0.247 ** 0.402 **
7 −0.253 ** 0.259 ** 0.104 * 0.056 −0.200 ** 0.066 0.224 ** 0.421 **

* p <0.05; ** p <0.01. T: mean temperature; RH: mean relative humidity; LW: leaf wetness; SR: spore release; IP:
infection pressure.

3.5. Machine Learning Algorithms to Predict the Daily Sporangia Risk Level

In order to develop a model to predict the ARL, ML algorithms (RF and C5.0) were
applied using airborne daily sporangia and weather data. A binary prediction of 1 and
0 were designed (1: corresponded with days in which sporangia concentrations were
equal or higher than 10 sporangia/m3; 0: days with concentrations lower than this value).
Depending on the model, the ranking of the importance of the variables used for the
developed model varied (Table 5). The C5.0 algorithm ranked the variables according
to the usage ratio of each variable in the final result. The most decisive variables in the
prediction performed by the C5.0 algorithm were Wind (_6, _2), the sporangia (_7, _1), T_7,
LW_0, IP_0, SR_5 and RH (_7, _0). According to the RF algorithm, sporangia was the most
influenced variable on the accuracy of model followed by SR_6, Escape_2 and IP_0. The
sporangia of previous days (Sporangia_1) was ranked as the most important variable with
a 36% decrease in accuracy.

Table 5. Weather and sporangia variables in order of importance of selection according to ML
algorithm.

C5.0 Algorithm RF Algorithm

Weather Variable Usage Rate (%) Weather Variable Decrease in
Accuracy (%)

Wind_2 100 Sporangia_1 36
Wind_6 100 Sporangia_3 14

Sporangia_7 100 Sporangia_2 13
Sporangia_1 100 Sporangia_4 11

T_7 100 Sporangia_5 10
LW_0 100 Sporangia_7 10
IP_0 100 Sporangia_6 9
SR_5 100 SR_6 6
RH_7 100 Escape_2 6
RH_0 99 IP_0 6

T: mean temperature; RH: mean relative humidity; LW: leaf wetness; SR: spore release; IP: infection pressure.

Aerobiological variables related to the presence of sporangia on previous days were
the most important variables in the prediction performed by the RF algorithm, coinciding
with the higher significant Spearman correlation coefficients (p < 0.01) (Table 4). However,
the weather variables selected (SR_6, Escape_2, IP_0) for the prediction by this algorithm
were those with the highest significant Spearman correlation coefficients (p < 0.01). Most of
the weather variables selected by the C5.0 algorithm (T_7, Wind_2, LW_0, IP_0) also had
the highest significant correlation coefficients (p < 0.01) within their weather category.

The accuracy of two ML algorithms applied is shown in Table 6. The suitable node size
was 1 for the RF model. For the C5.0 model, a tree-based model without winnowing was the
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best model. The results of prediction showed an accuracy of 87% and 85% for RF and C5.0,
respectively. The Kappa values were 0.70 for RF and 0.65 for C5.0, which indicated that the
RF results were less conditioned by chance than those provided by C5.0 algorithm. In both
cases, the results were acceptable. Considering the parameter that indicates the percentage
of success in the prediction of days with a sporangia concentration equal to or greater than
10 (Sensitivity), the C5.0 model was more accurate. On the contrary, the prediction of the
models with the daily concentration of sporangia lower than the established threshold
(specificity), RF model had a higher prediction of 0.92. However, despite using different
relevance variables in the classification algorithms, the sporangia prediction accuracies
were similar.

Table 6. Relevant information about predictions by machine learning algorithms.

Algoritm Accuracy Kappa Sensitivity Specificity

C5.0 0.85 0.65 0.81 0.87
RF 0.87 0.70 0.77 0.92

For the choice of the best algorithm, ROC curves were used to compare the ratio of
false positives versus true positives (Figure 2). Both algorithms presented high and similar
areas under the curve (AUC), 0.904 and 0.903 for the algorithm C5.0 and RF, respectively.
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3.6. Checking Aerobiological Risk Level Prediction by Machine Learning Algorithms

The resulting predictions from each model algorithm with the observed SRL (aerobio-
logical data) were compared. The prediction result of applying each of the algorithms to
the sporangia level from the five growing seasons based on the SRL is shown in Figure 3.
Overall, the algorithms made an accurate prediction in all five years of the study, even in
the anomalous year of 2020. In this year, no day with a daily concentration of more than
10 sporangia/m3 was recorded and the algorithms did not predict risk for that year. The
season with the highest number of days with a daily concentration above 10 sporangia/m3
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were 2018 and 2021. In both high-risk and low-risk years, the two algorithms showed the
prediction in agreement with the observed data (Figure 3).
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Figure 3. Comparison between prediction data by ML algorithms C5.0 and random forest (RF) and
observed aerobiological risk level (ARL) by growing season. DAE: days after emergence.

Most of the positive predictions were shown in the first months of crop, coinciding
with the phenological stages of FD and FL, from May to the beginning of July, except for in
the year 2021, where the possibility of infection was extended to the beginning of August.
In 2017, the C5.0 algorithm predicted the first risk day at the end of May a day in advance.

4. Discussion

The understanding of different factors that support the aerial dispersal of P. infestans
for the correct prediction of late blight epidemics is crucial [7,8,10,14,15,34,44]. However,
experimental studies under field conditions with the aim of predicting sporangia are limited.
In this sense, the present study is one of the few that predicted airborne sporangia using the
value of the inoculum quantified in the crop environment and at the same time, considering
climatic factors. Several factors (e.g., wind, temperature, solar radiation, rain) could be
used to forecast the outbreak of late blight [45]. This study focused on the main weather
factors (T, RH, LW and wind) and derived variables (IP, SR and escape) with inoculum
quantity to predict daily sporangia risk level that cause outbreaks of potato late blight. The
results of this research support the importance of considering inoculum to make decisions
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of fungicides applications. This information combined with decision support system for
late blight would improve the exactitude of warnings for a correct management of fungal
treatments. The first application rate could be predicted before the onset of the disease in
the field and consequently, the number of chemical applications would decrease.

According to previous research, linear regression models or neural network can predict
with success disease behavior such as mycotoxin secretion in crops such as grapevine, rice
and wheat or improve the ability of crop-growth monitoring [17,46–50]. In potato, the
publications related with prediction of inoculum of late blight in air using ML algorithms
are non-existent. For effective management of potato late blight, efforts must be made
to slow the progress of the disease, especially by reducing the primary inoculum. In this
sense, ML algorithms were applied because of their usefulness in managing large databases
with multiples variables, images or spectra [17–19]. The performance of the models was
evaluated as a binary classification system, categorizing the daily sporangia into two
classes by aerobiological criteria (ARL) according to the daily sporangia concentration
greater or less than 10 sporangia/m3. The C5.0 and RF algorithms were good and robust
algorithms to predict days with high detached sporulation of P. infestans, resulting a ROC
of 0.903 and 0.902, respectively. These ML algorithms provided good predictions in other
potato pathogen, such as Alternaria spp. [37]. The ranking of the variables of importance
by RF and C5.0 algorithms took the sporangia variables from previous days as the most
influential to develop the prediction models. This suggests a strong influence of previous
sporangia counts in predicting sporangia level at present, as also corroborated by the
Spearman correlation test. A strong influence of sporangia of previous days in the presence
of sporangia of present day was observed. This fact coincides with previous studies on P.
infestans [10,15] and Alternaria [33,37,51,52] on potato crop, as well as Botrytis cinerea [53]
and Uncinula necator [49] on vineyards. This trend emphasizes the need to continually
monitor the airborne spores, as they will be needed to accurately predict future spread
of spores.

To predict the behavior of P. infestans, it is important to know about crop season
and geographical area [7]. Typically, the potato growing seasons in northwest Spain run
from the beginning of May to the end of September. During this period, the tempera-
ture is the key weather factor for the growth of the potatoes. Throughout the growing
season, spring rains are common and contribute to the development of the crop during
the first few weeks. However, temperatures and high humidity also prove to be suitable
for the presence of certain diseases for potato crop, such is the case of late blight. The
production, dissemination and germination of P. infestans sporangia, as well as their pene-
tration into host tissues are particularly influenced by mild temperatures and high relative
humidity [1,7,8,10,14,15,34,44]. According to the Spearman correlation test, the coefficients
between T and the sporangia presence were significantly negative. On the contrary, RH
and LW variables showed a significantly positive relationship with the sporangia presence.
Both algorithms agreed with IP and SR as the variables of higher importance. It is known
that optimum temperatures for late blight epidemics are between 16 and 23 ◦C [6]. The
IP variable combines the effect of T and RH under one variable, considering optimum
values to late blight infection of 10–24 ◦C and RH > 88% [10]. In the studied area, mean
temperatures between 16–21 ◦C were repeated during the whole period. In addition, rains
and high humidity in the first months of crop development can explain higher sporangia
concentration during foliar development stage. Under optimal temperature range to late
blight epidemics, the lack of rain and dry weather could decrease the infection process
and sporulation, as our results showed, with a decrease in rainy days and RH in flowering
and senescence stages. Furthermore, it was shown that temperatures above 28 ◦C nega-
tively affect sporangia production [54,55]. Thus, this could explain the lowest sporangia
concentration trapped during senescence of five studied crop seasons.

The results agree with previous studies that showed changing dynamics of the P. infes-
tans inoculum concentration during the potato growing season [9,10,14,28,34]. However,
these studies focused on the prediction of late blight risk solely based on weather factors,
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while assuming the constant presence of inoculum [55–57]. Although the infection of potato
plants with P. infestans is highly dependent on weather conditions, late blight epidemics
cannot be explained exclusively by weather data [7,54]. Aerobiological information can be
useful to avoid false alarms of infection risk when climatic conditions are favorable, but
if there is no presence of inoculum in the air, there is no risk [34]. The variability in the
sporangia concentrations during each phenological stage confirm that the presence of aerial
inoculum in any place is not an unlimited factor. Thus, the climatic conditions, the local to-
pography, the associated fungal host and the phenological state of the plant condition affect
this variation [9,10,14,15,30]. Despite the scarcity of studies that considered quantification
of the airborne inoculum, the present results agree with researchers that support its pres-
ence as essential to know the real late blight pressure in a particular area and to predict new
reinfections [9,10,13–15,29,35,54]. However, for the success of the proposed methodology,
several key factors are necessary: having several years of study, meteorological stations
on the plot itself or in the vicinity of the monitored area, and specialized personnel for
the extraction of aerobiological and meteorological data, as well as the correct treatment
of algorithms with complex statistical methods. This type of research has great practical
utility in the agricultural sector because it allows farmers to detect the infection before
it manifests itself. Consequently, these professionals achieve greater effectiveness in the
application of chemical treatments, and reduce investment in preventive treatments. The
search for more environmentally sustainable agricultural solutions and tools to minimize
the impact of these changing fungal diseases in recent years will have an impact on the
economic value of the final product placed on the market. At the same time, it will favor
food security and human health in the world.

5. Conclusions

The development of a simple and robust tool to forecast days with a high amount
of inoculum capable of developing infection of late blight in potato crops can be useful
for the sector. The information on the inoculum concentrations of P. infestans in the crop
environment through aerobiological sampling was an important variable to consider in
the development of ML techniques. The two ML algorithms applied (RF and C5.0) were
accurate for the prediction of the aerobiological risk level (ARL) using meteorological
parameters and inoculum of the pathogen from previous days. The different statistical
treatments highlighted the influence of the sporangia from previous days. Furthermore,
the most influential meteorological variables in the two validated ML algorithms were IP
and SR. Therefore, it is interesting to integrate multiple meteorological variables and the
presence of sporangia in the crop environment to guarantee the success of these prediction
systems. This approach of using a classification model to forecast late blight risk may
improve the accuracy of disease risk warning systems for potato plants in the study area.
Thus, the utility of incorporating the inoculum present in the crop environment with
weather variables in ML algorithms for monitoring of plant pathology in sustainable
agricultural systems was demonstrated.
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