Analysis of the Hanging Actions and Operating Heights of Storage Furniture Suitable for the Elderly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Wardrobe and Clothing Samples
2.3. Instrumentation
2.4. Experimental Design and Procedure
2.4.1. Experimental Design
2.4.2. Experimental Procedure
- (1)
- Preparation
- (2)
- MVC measurement
- (3)
- Formal test operation
- (4)
- Subjective evaluation
2.5. Measurement and Data Processing of sEMG Signals
2.6. Statistical Analysis
3. Results
3.1. Analysis of Contribution Rates of Muscles
3.2. Muscle Activities at Different Test Heights
3.2.1. Activities of the AD
3.2.2. Activities of the UT
3.2.3. Activities of the BR
3.2.4. Comprehensive Analysis of sEMG Indexes
3.3. Results of Subjective Evaluation
3.4. Fitting Models of sEMG Indicators and Test Heights
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscle Ligaments Tendons J. 2013, 3, 346–350. [Google Scholar] [CrossRef]
- Doherty, T.J.; Vandervoort, A.A.; Brown, W.F. Effects of ageing on the motor unit: A brief review. Can. J. Appl. Physiol. 1993, 18, 331–358. [Google Scholar] [CrossRef] [PubMed]
- Vandervoort, A.A. Aging of the human neuromuscular system. Muscle Nerve 2002, 25, 17–25. [Google Scholar] [CrossRef]
- Taekema, D.G.; Gussekloo, J.; Maier, A.B.; Westendorp, R.G.J.; De Craen, A.J.M. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 2010, 39, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, L.; Mao, M. The relationships of postural stability with muscle strength and proprioception are different among older adults over and under 75 years of age. J. Exerc. Sci. Fit. 2022, 20, 328–334. [Google Scholar] [CrossRef]
- Chen, X.R.; Wang, J.N. Research on the design of healthcare wardrobes based on the home-based endowment model. For. Mach. Woodwork. Equip. 2021, 49, 53–56+60. [Google Scholar]
- Van Rijn, R.M.; Huisstede, B.M.A.; Koes, B.W.; Burdrof, A. Associations between work-related factors and specific disorders of the shoulder—A systematic review of the literature. Scand. J. Work. Environ. Health 2010, 36, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Li, W.J. Research on inclusive design of furniture suitable for the elderly in the context of active aging. China For. Prod. Ind. 2021, 58, 38–42. [Google Scholar]
- Chen, Y. Research on the Adaptive and Intelligent Design of Elderly Bedroom Facilities. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2019. [Google Scholar]
- Wang, Z.H.; Yang, G.X. Modular furniture based on the needs of the elderly living at home. Packag. Eng. 2020, 41, 276–280. [Google Scholar]
- Fang, Z.J. Explore the functional dimension of elderly furniture. Furniture 2019, 40, 74–78. [Google Scholar]
- Cui, K.Y. Research on the Design of Furniture Suitable for the Elderly Based on Behavior Guidance Model. Master’s Thesis, Shandong University of Art and Design, Jinan, China, 2021. [Google Scholar]
- Li, S.; Li, M.M.; Guo, F.; Liu, L.J. The prediction model of users’ emotion toward product appearance with multiple design features based on eye-tracking and EEG technologies. Chin. J. Ergon. 2019, 25, 26–33. [Google Scholar]
- Arvidsson, I.; Arvidsson, M.; Axmon, A.; Hansson, G.A.; Johansson, C.R.; Skerfving, S. Musculoskeletal disorders among female and male air traffic controllers performing identical and demanding computer work. Ergonomics 2006, 49, 1052–1067. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Merletti, R.; Enoka, R.M. The extraction of neural strategies from the surface EMG: An update. J. Appl. Physiol. 2014, 117, 1215–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyland, J.; Heilskov-Hansen, T.; Alkjær, T.; Koblauch, H.; Mikkelsen, S.; Svendsen, S.W.; Thomsen, J.F.; Hansson, G.Å.; Simonsen, E.B. Sex differences in muscular load among house painters performing identical work tasks. Eur. J. Appl. Physiol. 2014, 114, 1901–1911. [Google Scholar] [CrossRef]
- Nordander, C.; Ohlsson, K.; Balogh, I.; Hansson, G.A.; Axmon, A.; Persson, R.; Skerfving, S. Gender differences in workers with identical repetitive industrial tasks: Exposure and musculoskeletal disorders. Int. Arch. Occup. Environ. Health 2008, 81, 939–947. [Google Scholar] [CrossRef]
- Yüksel, A.; Kulan, C.A.; Akçiçek, F. The investigation of asymptomatic swallowing disorder through surface electromyography in the geriatric population. Aging-Clin. Exp. Res. 2019, 32, 1567–1576. [Google Scholar] [CrossRef]
- Wang, W.L. Research on the Relationship between Body Parameters and sEMG Indicators of STS. Master’s Thesis, Shaanxi University of Science and Technology, Xi’an, China, 2016. [Google Scholar]
- Biagetti, G.; Crippa, P.; Falaschetti, L.; Turchetti, C. Classifier level fusion of accelerometer and sEMG signals for automatic fitness activity diarization. Sensors 2018, 18, 2850. [Google Scholar] [CrossRef] [Green Version]
- Maranesi, E.; Fioretti, S.; Ghetti, G.G.; Rabini, R.A.; Burattini, L.; Merante, O.; Dinardo, F. The surface electromyographic evaluation of the functional reach in elderly subjects. J. Electromyogr. Kinesiol. 2016, 26, 102–110. [Google Scholar] [CrossRef]
- Laksono, P.W.; Kitamura, T.; Muguro, J.; Matsushita, K.; Sasaki, M.; Amri bin Suhaimi, M.S. Minimum Mapping from EMG Signals at Human Elbow and Shoulder Movements into Two DoF Upper-Limb Robot with Machine Learning. Machines 2021, 9, 56. [Google Scholar] [CrossRef]
- Fedorowich, L.; Emery, K.; Gervasi, B.; Cote, J.N. Gender differences in neck/shoulder muscular patterns in response to repetitive motion induced fatigue. J. Electromyogr. Kinesiol. 2013, 23, 1183–1189. [Google Scholar] [CrossRef]
- Johansen, T.I.; Samani, A.; Antle, D.M.; Cote, J.N.; Madeleine, P. Gender effects on the coordination of subdivisions of the trapezius muscle during a repetitive box-folding task. Eur. J. Appl. Physiol. 2013, 113, 175–182. [Google Scholar] [CrossRef]
- Srinivasan, D.; Sinden, K.E.; Mathiassen, S.E.; Cote, J.N. Gender differences in fatigability and muscle activity responses to a short-cycle repetitive task. Eur. J. Appl. Physiol. 2016, 116, 2357–2365. [Google Scholar] [CrossRef] [Green Version]
- White, M.M.; Morejon, O.N.; Liu, S.; Lau, M.Y.; Nam, C.S.; Kaber, D.B. Muscle loading in exoskeletal orthotic use in an activity of daily living. Appl. Ergon. 2017, 58, 190–197. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Hao, J.H.; Miao, W.S.; Wu, X.L. A report on the application of anthropometric data of elderly. Des. Community 2016, 3, 107–112+106. [Google Scholar]
- Kim, Y.K.; Park, J.S.; Kim, D.J.; Im, S. Evaluation of fatigue patterns in individual shoulder muscles under various external conditions. Appl. Ergon. 2021, 91, 103280. [Google Scholar] [CrossRef]
- Song, H.; Zhang, J.; Liu, T.; Gao, S.P. Study on surface electromyography characteristics of human upper limb during daily living activities. J. Biomed. Eng. 2009, 26, 1177–1180. [Google Scholar]
- Fang, N.; Zhang, C.; Lv, J. Effects of vertical lifting distance on upper-body muscle fatigue. Int. J. Environ. Res. Public Health 2021, 18, 5468. [Google Scholar] [CrossRef]
- Valipoor, S.; Pati, D.; Stock, M.S.; Bazuin, D. Safer chairs for elderly patients: Design evaluation using electromyography and force measurement. Ergonomics 2018, 61, 902–912. [Google Scholar] [CrossRef]
- Imrani, L.; Boudaoud, S.; Laforêt, J.; Kinugawa, K. Ageing effect evaluation on HD-sEMG signals using CCA approach. IRBM 2021, 42, 294–299. [Google Scholar] [CrossRef]
- Tavakolan, M.; Xiao, Z.G.; Menon, C. A preliminary investigation assessing the viability of classifying hand postures in seniors. BioMed. Eng. OnLine 2011, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Lin, J.H.; Buchholz, B.; Xu, X. Shoulder muscle fatigue development in young and older female adults during a repetitive manual task. Ergonomics 2014, 57, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.; Schall, M.C.; Zabala, M.E.; Coker, J.; Davis, G.A.; Sesek, R.F.; Gallagher, S. Trunk muscle activity among older and obese individuals during one-handed carrying. Appl. Ergon. 2019, 78, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Decker, M.J.; Hintermeister, R.A.; Faber, K.J.; Hawkins, R.J. Serratus Anterior Muscle Activity During Selected Rehabilitation Exercises. Am. J. Sport. Med. 1999, 27, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; McGorry, R.W.; Lin, J.-H. A regression model predicting isometric shoulder muscle activities from arm postures and shoulder joint moments. J. Electromyogr. Kinesiol. 2014, 24, 419–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tim, K.; Leo, K.; Catherine, D.K. Muscular coordination of biceps brachii and brachioradialis in elbow flexion with respect to hand position. Front. Physiol. 2015, 6, 215. [Google Scholar]
- Coratella, G.; Tornatore, G.; Longo, S.; Esposito, F.; Cè, E. An Electromyographic Analysis of Lateral Raise Variations and Frontal Raise in Competitive Bodybuilders. Int. J. Environ. Res. Public Health 2020, 17, 6015. [Google Scholar] [CrossRef]
- Yang, X.K.; Xiong, X.Q. Design strategy of wardrobe suitable for the elderly based on user analysis. China For. Prod. Ind. 2021, 58, 80–84+87. [Google Scholar]
- Zhou, Y.P.; Zhang, J.Y.; Luo, T.; Guo, F.Y. Study on design of smart home products for bedroom suitable for elderly. West Leather 2021, 43, 87–88. [Google Scholar]
- Zhou, Y.M.; Chen, X.Q.; Lin, J.Y.; Lin, J.Y. Housing for the Elderly; China Architecture & Building Press: Beijing, China, 2011. [Google Scholar]
- Xie, Y.; Szeto, G.P.Y.; Dai, J.; Madeleine, P. A comparison of muscle activity in using touchscreen smartphone among young people with and without chronic neck–shoulder pain. Ergonomics 2016, 59, 61–72. [Google Scholar] [CrossRef]
- Criswell, E.; Cram, J.R. Cram’s Introduction to Surface Electromyography, 2nd ed.; Jones and Bartlett: Sudbury, MA, USA, 2011. [Google Scholar]
- Konrad, P. The ABC of EMG. A Practical Introduction to Kinesiological Electromyography; Noraxon INC.: Scottsdale, AZ, USA, 2005. [Google Scholar]
- Maciukiewicz, J.M.; Whittaker, R.L.; Hogervorst, K.B.; Dickerson, C.R. Wrapping technique and wrapping height interact to modify physical exposures during manual pallet wrapping. Appl. Ergon. 2021, 93, 103378. [Google Scholar] [CrossRef]
- Song, D.; Kim, E.; Bak, H.; Shin, G. Effect of hand loads on upper extremity muscle activity during pushing and pulling motions. Appl. Ergon. 2021, 96, 103504. [Google Scholar] [CrossRef]
- Shankar, S.; Naveen, K.R.; Janaki, R.S.; Cps, H.; Karthik, R.S. Ergonomic evaluation of ergonomically designed chalkboard erasers on shoulder and hand-arm muscle activity among college professors. Int. J. Ind. Ergonom. 2021, 84, 103170. [Google Scholar]
- Zhu, R.X. Study on neck muscle fatigue identification of combine harvester deriver based on sEMG. Ind. Eng. Manag. 2020, 25, 138–144. [Google Scholar]
- Wang, Y.; Wang, W.; Bao, D.F.; Luo, Z.Z. Research on the physiological load of interactive gesture in elderly based on sEMG. CCF Trans. Pervasive Comput. Interact. 2021, 3, 186–198. [Google Scholar] [CrossRef]
- El Falou, W.; Duchêne, J.; Grabisch, M.; Hewson, D.; Langeron, Y.; Lino, F. Evaluation of driver discomfort during long-duration car driving. Appl. Ergon. 2003, 34, 249–255. [Google Scholar] [CrossRef]
- Zhou, E.W. Design and Research of Kitchen Intelligent Countertop Based on Ergonomics. Master’s Thesis, Harbin University of Science and Technology, Harbin, China, 2020. [Google Scholar]
- Potvin, J.R. Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing dynamic contractions. J. Appl. Physiol. 1997, 82, 144–151. [Google Scholar] [CrossRef]
- Ng, J.K.F.; Richardson, C.A.; Jull, G.A. Electromyographic amplitude and frequency changes in the iliocostalis lumborum and multifidus muscles during a trunk holding test. Phys. Ther. 1997, 77, 954–961. [Google Scholar] [CrossRef] [Green Version]
- Luttmann, A.; Jäger, M.; Sökeland, J.; Laurig, W. Electromyographical study on surgeons in urology. II. Determination of muscular fatigue. Ergonomics 1996, 39, 298–313. [Google Scholar] [CrossRef]
- Gonzalez-Izal, M.; Malanda, A.; Gorostiaga, E.; Izquierdo, M. Electromyographic models to assess muscle fatigue. J. Electromyogr. Kinesiol. 2012, 22, 501–512. [Google Scholar] [CrossRef]
- Kuthe, C.D.; Uddanwadiker, R.V.; Ramteke, A.A. Surface electromyography based method for computing muscle strength and fatigue of biceps brachii muscle and its clinical implementation. Inform. Med. Unlocked 2018, 12, 34–43. [Google Scholar] [CrossRef]
- Chaffin, D.B.; Andersson, G.B.J.; Martin, B.J. Occupational Biomechanics; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Alhaag, M.H.; Ramadan, M.Z.; Al-harkan, I.M.; Alessa, F.M.; Alkhalefah, H.; Abidi, M.H.; Sayed, A.E. Determining the fatigue associated with different task complexity during maintenance operations in males using electromyography features. Int. J. Ind. Ergonom. 2022, 88, 103273. [Google Scholar] [CrossRef]
- Dolan, P.; Adams, M.A. The relationship between emg activity and extensor moment generation in the erector spinae muscles during bending and lifting activities. J. Biomech. 1993, 26, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Luger, T.; Bosch, T.; Hoozemans, M.; de Looze, M.; Veeger, D. Task variation during simulated, repetitive, low-intensity work-influence on manifestation of shoulder muscle fatigue, perceived discomfort and upper-body postures. Ergonomics 2015, 58, 1851–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GB/T 10000-1988; Human Dimensions of Chinese Adults. China Standards Publishing Co.: Beijing, China, 1998.
- Fan, J.S. Research and Application Ofmodular Design of Customized Wardrobe Based on Northeast China. Master’s Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- McGill, S.; Marshall, L.; Andersen, J. Low back loads while walking and carrying: Comparing the load carried in one hand or in both hands. Ergonomics 2013, 56, 293–302. [Google Scholar] [CrossRef]
- Cook, T.; Neumann, D. The effects of load placement on the EMG activity of the low back muscles during load carrying by men and women. Ergonomics 1987, 30, 1413–1423. [Google Scholar] [CrossRef]
Participants | Age (Year) | Height (mm) | Weight (kg) | Eye Level (mm) | Arms Forward Horizontally (Standing) (mm) | Hands Up Straight (Standing) (mm) |
---|---|---|---|---|---|---|
All (n = 18) | 69.94 ± 4.22 | 1688.06 ± 74.12 | 66.75 ± 9.54 | 1565.44 ± 76.56 | 1316.33 ± 76.32 | 2025.00 ± 86.48 |
Male (n = 9) | 69.78 ± 4.80 | 1718.44 ± 46.73 | 70.61 ± 8.99 | 1614.89 ± 48.15 | 1374.11 ± 47.22 | 2069.11 ± 62.05 |
Female (n = 9) | 70.11 ± 3.54 | 1617.67 ± 61.03 | 62.89 ± 8.45 | 1516.00 ± 67.19 | 1258.56 ± 52.39 | 1980.89 ± 84.95 |
Muscle | Location |
---|---|
Pectoralis Major | Electrodes need to be placed along the anterior axillary fold away from the chest wall. |
Biceps Brachii | Electrodes need to be placed on the line between the medial acromion and the fossa cubit at 1/3 from the fossa cubit. |
Anterior Deltoid | Electrodes need to be placed at one finger width distal and anterior to the acromion. |
Triceps Brachii | Electrodes need to be places at 1/2 on the line between the posterior crista of the acromion and the olecranon at 2 finger widths medial to the line. |
Brachioradialis | Electrodes need to directly overlay the proximal portion of the muscle just distal to the elbow joint. |
Upper Trapezius | Electrodes need to be placed at 1/2 on the line from the acromion to the spine on vertebra C7. |
Score | −3 | −2 | −1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
Comfort Level | Strongly uncomfortable | Uncomfortable | Less uncomfortable | Neutral | Comfortable | More comfortable | Most comfortable |
PM | BB | AD | TB | BR | UT | ||
---|---|---|---|---|---|---|---|
RMS | Pearson correlation coefficients | 0.726 * | 0.845 ** | 0.986 ** | 0.953 ** | 0.812 * | 0.976 ** |
Sig. | 0.042 | 0.008 | 0.000 | 0.000 | 0.014 | 0.000 | |
iEMG | Pearson correlation coefficients | 0.712* | 0.835 ** | 0.977 ** | 0.950 ** | 0.882 ** | 0.966 ** |
Sig. | 0.048 | 0.010 | 0.000 | 0.000 | 0.004 | 0.000 | |
MF | Pearson correlation coefficients | −0.882 ** | 0.815 * | −0.129 | 0.937 ** | 0.975 ** | 0.991 ** |
Sig. | 0.004 | 0.014 | 0.760 | 0.001 | 0.000 | 0.000 |
sEMG Indicator | Group | PB | BB | AD | TB | BR | UT | F | p |
---|---|---|---|---|---|---|---|---|---|
RMS | G150 | 0.0775 ± 0.0084 | 0.1145 ± 0.0254 | 0.2365 ± 0.0726 ab | 0.0701 ± 0.0151 bc | 0.1741 ± 0.0201 abd | 0.1875 ± 0.0336 abd | 48.245 | 0.000 |
G160 | 0.0801 ± 0.0158 | 0.0862 ± 0.0120 | 0.1593 ± 0.0575 ab | 0.0790 ± 0.0165 c | 0.1248 ± 0.0123 abd | 0.1553 ± 0.0299 abde | 39.386 | 0.000 | |
G170 | 0.0976 ± 0.0220 | 0.0665 ± 0.0084 | 0.1256 ± 0.0426 | 0.0528 ± 0.0081 ac | 0.0928 ± 0.0059 bd | 0.1266 ± 0.0212 bde | 35.436 | 0.000 | |
MF | G150 | 15.3125 ± 2.3820 | 37.5313 ± 5.1763 a | 67.1250 ± 2.4312 ab | 24.0938 ± 10.0897 c | 31.6875 ± 3.6882 ac | 57.0313 ± 3.2989 abcde | 113.965 | 0.000 |
G160 | 13.5938 ± 0.7514 | 36.5313 ± 4.7162 a | 44.1563 ± 3.4073 ab | 15.4562 ± 5.7590 bc | 43.6625 ± 5.5701 abd | 53.4563 ± 2.7044 abcde | 121.484 | 0.000 | |
G170 | 6.1719 ± 2.3773 | 33.1563 ± 3.8867 a | 56.3750 ± 5.4330 ab | 2.7969 ± 4.8564 bc | 34.9844 ± 7.3108 acd | 51.4375 ± 4.3829 abde | 163.394 | 0.000 |
sEMG Indicator | Muscle | G150 | G160 | G170 | F | p |
---|---|---|---|---|---|---|
RMS | PM | 0.0775 ± 0.0084 | 0.0801 ± 0.0045 | 0.0976 ± 0.0220 | 2.741 | 0.106 |
BB | 0.1145 ± 0.0254 | 0.0862 ± 0.0098 a | 0.0665 ± 0.0084 ab | 17.615 | 0.000 | |
AD | 0.2365 ± 0.0726 | 0.1593 ± 0.0583 a | 0.1256 ± 0.0426 a | 7.399 | 0.004 | |
TB | 0.0701 ± 0.0151 | 0.0790 ± 0.0157 | 0.0528 ± 0.0081 ab | 7.851 | 0.003 | |
BR | 0.1741 ± 0.0201 | 0.1248 ± 0.0109 a | 0.0928 ± 0.0059 ab | 73.825 | 0.000 | |
UT | 0.1875 ± 0.0336 | 0.1553 ± 0.0269 a | 0.1266 ± 0.0212 ab | 9.668 | 0.001 | |
MF | PM | 15.3125 ± 2.3820 | 13.5938 ± 0.7514 | 6.1719 ± 2.3773 ab | 36.896 | 0.000 |
BB | 37.5313 ± 5.1763 | 36.5313 ± 4.7162 | 33.1563 ± 3.8867 | 1.966 | 0.165 | |
AD | 67.1250 ± 2.4312 | 44.1563 ± 3.4073 a | 56.3750 ± 5.4330 ab | 115.561 | 0.000 | |
TB | 24.0938 ± 10.0897 | 15.4562 ± 5.7590 a | 2.7969 ± 4.8564 ab | 17.368 | 0.000 | |
BR | 31.6875 ± 3.6882 | 43.6625 ± 5.5701 a | 34.9844 ± 7.3108 b | 9.363 | 0.001 | |
UT | 57.0313 ± 3.2989 | 53.4563 ± 2.7044 | 51.4375 ± 4.3829 a | 5.148 | 0.015 |
PM | BB | AD | TB | BR | UT | ||
---|---|---|---|---|---|---|---|
Correlation | PM | 1.000 | 0.330 | 0.059 | 0.237 | 0.050 | 0.135 |
BB | 0.330 | 1.000 | 0.610 | 0.350 | 0.478 | 0.683 | |
AD | 0.059 | 0.610 | 1.000 | 0.239 | 0.503 | 0.644 | |
TB | 0.237 | 0.350 | 0.239 | 1.000 | 0.187 | 0.277 | |
BR | 0.050 | 0.478 | 0.503 | 0.187 | 1.000 | 0.530 | |
UT | 0.135 | 0.683 | 0.644 | 0.277 | 0.530 | 1.000 | |
Significance | PM | 0.000 | 0.243 | 0.002 | 0.277 | 0.054 | |
BB | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
AD | 0.243 | 0.000 | 0.002 | 0.000 | 0.000 | ||
TB | 0.002 | 0.000 | 0.002 | 0.012 | 0.000 | ||
BR | 0.277 | 0.000 | 0.000 | 0.012 | 0.000 | ||
UT | 0.054 | 0.000 | 0.000 | 0.000 | 0.000 |
Initial Eigenvalue | Extraction Sums of Squared Loadings | |||||
---|---|---|---|---|---|---|
Components | Total | Percentage of Variance | Accumulation | Total | Percentage of Variance | Accumulation |
1 | 2.945 | 49.082 | 49.082 | 2.945 | 49.082 | 49.082 |
2 | 1.123 | 18.712 | 67.794 | 1.123 | 18.712 | 67.794 |
3 | 0.746 | 12.4411 | 80.235 | 0.746 | 12.4411 | 80.235 |
4 | 0.541 | 9.015 | 89.251 | 0.541 | 9.015 | 89.251 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Zhang, F. Analysis of the Hanging Actions and Operating Heights of Storage Furniture Suitable for the Elderly. Sensors 2023, 23, 3850. https://doi.org/10.3390/s23083850
Shi X, Zhang F. Analysis of the Hanging Actions and Operating Heights of Storage Furniture Suitable for the Elderly. Sensors. 2023; 23(8):3850. https://doi.org/10.3390/s23083850
Chicago/Turabian StyleShi, Xinao, and Fan Zhang. 2023. "Analysis of the Hanging Actions and Operating Heights of Storage Furniture Suitable for the Elderly" Sensors 23, no. 8: 3850. https://doi.org/10.3390/s23083850
APA StyleShi, X., & Zhang, F. (2023). Analysis of the Hanging Actions and Operating Heights of Storage Furniture Suitable for the Elderly. Sensors, 23(8), 3850. https://doi.org/10.3390/s23083850