
Citation: Liu, R.; Zhang, Z.; Dai, L.;

Zhang, G.; Sun, B. MFTR-Net:

A Multi-Level Features Network

with Targeted Regularization for

Large-Scale Point Cloud

Classification. Sensors 2023, 23, 3869.

https://doi.org/10.3390/s23083869

Academic Editor: Cosimo Distante

Received: 27 February 2023

Revised: 15 March 2023

Accepted: 29 March 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

MFTR-Net: A Multi-Level Features Network with Targeted
Regularization for Large-Scale Point Cloud Classification
Ruyu Liu 1,2, Zhiyong Zhang 3, Liting Dai 4, Guodao Zhang 4 and Bo Sun 2,*

1 School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
2 Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences,

Quanzhou 362000, China
3 School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
4 Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: sunbo@fjirsm.ac.cn

Abstract: There are some irregular and disordered noise points in large-scale point clouds, and the
accuracy of existing large-scale point cloud classification methods still needs further improvement.
This paper proposes a network named MFTR-Net, which considers the local point cloud’s eigenvalue
calculation. The eigenvalues of 3D point cloud data and the 2D eigenvalues of projected point clouds
on different planes are calculated to express the local feature relationship between adjacent point
clouds. A regular point cloud feature image is constructed and inputs into the designed convolutional
neural network. The network adds TargetDrop to be more robust. The experimental result shows that
our methods can learn more high-dimensional feature information, further improving point cloud
classification, and our approach can achieve 98.0% accuracy with the Oakland 3D dataset.

Keywords: 3D feature; CNN; TargetDrop; point cloud classification

1. Introduction

With the continuous development of intelligent driving and remote sensing infor-
mation technology, it is an important but challenging task to accurately identify objects
in large-scale three-dimensional (3D) data. Laser radar technology is a key method to
perceive a 3D environment through laser scanning [1], which can be divided into airborne
laser radar and vehicle-mounted laser radar. Point cloud data with different structures
obtained through different laser radar scanning reflect the geometric structure and spatial
distribution of objects in 3D space, but an irregular point cloud makes the feature extraction
of the point cloud challenging.

The main goal of a large-scale point cloud classification task is to classify the point
cloud data scanned by the radar sensors, and label different objects in the point cloud,
such as buildings, roads, vehicles, pedestrians, and vegetation [2]. The traditional method
of point cloud classification is mainly based on manual feature extraction, which suffers
from low classification accuracy, such as calculating eigenvalues based on adjacent fields of
the original point cloud and classifying eigenvalues using Random Forest (SVM) [3] and
decision tree (DT) methods [4]. With the development of deep learning (DL), DL can learn
task-related features from a large amount of environmental data. More and more scholars
introduced DL into point cloud classification tasks. Guo et al. [5] reviewed the latest
progress of point-cloud-related tasks based on DL. Sarker et al. [6] used the 3D classifier
PointNet to verify robustness by generating adversarial inputs; however, the verifier cannot
be extended to more complex 3D vision. Venkanna et al. [7] studied weights of the average
of the first two checkpoints of PointNet to improve classification accuracy. Min et al. [8]
proposed a masked autoencoding framework Voxel-MAE for pre-training large-scale point
clouds. Zhu et al. [9] proposed a global relation-aware attention module (GRA) and
spatial relation-aware attention module (SRA) to learn global spatial and channel-wise
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relationships among spatial positions and feature vectors. Wen et al. [10] explored local
graphs in the spectral domain to accelerate point cloud classification tasks. Zhang et al. [11]
proposed an effective convolution operator to keep point cloud convolutions invariant
to vastly improve feature descriptiveness. Zhang et al. [12] presented an effective point
cloud classification method based on the MLP (multilayer perception) network. Feature
extraction of the point cloud in this method lacks the consideration of the combination of
3D point cloud feature values and 2D feature values. A pure MLP structure calculation will
amplify 2D features, resulting in the loss of part of the feature information.

Based on but different from our previous work [12], we design a point cloud clas-
sification framework based on the U-Net network, which can effectively retain feature
information in the propagation of the network layer compared with MLP. Our method uses
a multi-level features network with targeted regularization, named MFTR-Net, which can
effectively accelerate the stability of the results and achieve a better classification effect.
The main contributions of this paper are as follows:

(1) We propose a new feature construction method for large-scale point clouds, which
can effectively calculate the multi-level local feature information of the point cloud
from the irregular point cloud data.

(2) We present the MFTR-Net framework for point cloud classification. The designed
encoder–decoder model can effectively extract the local feature information of the point
cloud from the input feature map, and strengthen the attention to spatial information.

(3) We conduct extensive experiments on the 3D point cloud dataset, Oakland. The
experimental results show that the proposed MFTR-Net has achieved satisfactory
results in large-scale point cloud classification tasks.

2. Related Work

Traditional machine learning methods for large-scale point cloud classification are
carried out by screening appropriate features of a large-scale point cloud, such as com-
putational geometry, spectrum, and texture. Li et al. [13] proposed a dynamic feature
aggregation (DFA) method that can transfer information by constructing local graphs in
the feature domain without spatial constraints. Venkanna et al. [7] extracted point cloud
geometric features, plane features, and intensity features combined with Random Forest
(RF) and Conditional Random Field (CRF) to optimize classification results. With the
explosive growth of 3D data, traditional methods cannot extract more effective information
from a large number of point cloud data.

Deep learning technology relies on convolution neural networks (CNN) to effectively
learn task-related features from a large amount of data and plays an important role in both
2D image and 3D point cloud tasks, so it is also applied to point cloud classification tasks.
Chen et al. [14] proposed an unsupervised deep neural architecture, Flattening Net, which
converts different point clouds into color images, and then classifies different color images
to achieve the classification of variable point clouds. This method can effectively reduce
network parameters and achieve better classification results. Melnyk et al. [15] proposed a
learnable descriptor for rotation and reflection invariant 3D point cloud classification. This
method converts 3D point cloud data into a 4D data representation to perform a dimension
upgrading operation, which effectively overcomes the critical problem of rotation invari-
ance of point cloud classification tasks. The subsequent network then extracts the rotation
invariance feature information of the point cloud to achieve good results. Zhao et al. [16]
designed a highly expressed point converter layer for point cloud classification, which
proves that the converter model can also achieve excellent results in point cloud classifi-
cation tasks. Wang et al. [17] proposed a semi-supervised cross-domain learning method.
By sampling the rotating images of any point cloud from multiple views, these images are
regarded as enhancement modules in point cloud classification, which makes up for the
insufficient extraction of some occlusion feature information in point cloud classification.
Wong et al. [18] presented an end-to-end encoder–decoder network named GACNN to
capture multiscale features of point clouds and therefore realize more accurate point cloud
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classification. Park et al. [19] proposed a fast voxel-based semantic segmentation model
using point convolution and 3D sparse convolution. After feature extraction in a point
cloud classification task, it can accelerate feature propagation. Yang et al. [20] proposed a
supervised contrastive point cloud classification method to implement embedding feature
distribution refinement by improving intra-class compactness and inter-class separabil-
ity, which solves the confusion problem caused by slight inter-class variations and the
confusion problem caused by small inter-class compactness and inter-class separability.
Zhang et al. [12] proposed a method that automatically learns a data augmentation strategy
using bilevel optimization, minimizing a base model’s loss on a validation set when the
augmented input is used for training the model. This can reduce overfitting and improve
learning performance.

The above point cloud classification methods mainly extract features directly from
irregular and disordered point clouds. On the one hand, it is difficult to learn the regular
3D features. On the other hand, it will also ignore local characteristics from the plane view,
resulting in incomplete point cloud feature information. In contrast, the proposed MFTR-
Net extracts point cloud features from both 3D and 2D perspectives and thus effectively
improves the accuracy of large-scale point cloud classification. In addition, the networks
in the above related work treat redundant point cloud data indiscriminately, while our
method introduces an attention mechanism to make the network pay more attention to the
key features in the point cloud information, thus improving the accuracy of the point cloud
classification task.

3. MFTR-Net: A Multi-Level Features Network with Targeted Regularization for
Large-Scale Point Cloud Classification
3.1. Feature Construction for Point Clouds

Large-scale point clouds are generally irregular and disordered, which will seriously
affect the final result of point cloud classification. Therefore, we consider that transforming
irregular point cloud data into regular image data may overcome this problem, so we design
a point cloud feature construction method based on a multi-level feature combination. This
method calculates the eigenvalues of the adjacent points of an unordered 3D point cloud
and then combines the obtained eigenvalues into one ordered 2D point cloud feature image
to represent the point cloud features as richly as possible. Specifically, as shown in Figure 1,
this method calculates the local eigenvalues of 100 adjacent points around each point
through the Kdtree method to obtain 3D eigenvalues in 3D space and 2D eigenvalues on
three different coordinate axes. The 3D eigenvalues vector and the 2D eigenvalues vector
projected in three different coordinate systems are combined to form a point cloud feature
matrix, and the obtained point cloud feature matrix is represented as current point cloud
feature information.

Figure 1. Generation of point cloud feature images.
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The point cloud feature image is visualized by a feature matrix, which is composed
of the obtained 3D and 2D point cloud feature values, as shown in Table 1. We arrange
the obtained 3D and 2D eigenvalues horizontally and vertically into a 32 × 32 size feature
matrix, which is a positive definite matrix. We normalize the values in the feature matrix to
(0, 1), so that we can screen out some outlier data and normalize them to (0–255), and form
white and black point cloud feature images. Subsequently, the obtained point cloud feature
image is input into the designed neural network for classification, and the network finally
outputs the various categories of the point cloud, thus realizing point cloud classification.

Table 1. Point cloud feature values.

Type Components

3D eigenvalues Mx , My , Mz , Nx, Ny, Nz, Cλ, Lλ, Pλ , Sλ

Oλ, Aλ , Eλ , Tλ, D , Q , V
2D eigenvalues rk , D2 , Rλ , 2D , Evratio , S2

We set P as a point (x, y, z) in 3D space, and λ1, λ2, and λ3, which represent the
distribution pattern of the point cloud, namely divergent, areal, and linear distribution, are
calculated as follows.

λ1=


x1 y1 z1
x2 y1 z1
...

xn

...
yn

...
zn

 (1)

λ2=


x′1 y′1 z′1
x′2 y′2 z′2
...

x′n

...
y′n

...
z′n

 (2)

λ3=
1
n
(λ1 − λ2)

T(λ1 − λ2) (3)

Mn
(
dist

(
Pn − P′n

))
, n ∈ x, y, z (4)

Nn
(
dist

(
Pn − P′n

))
, n ∈ x, y, z (5)

Mx , My , Mz represent the adjacent max radius of P on the x, y, and z axes; Nx , Ny , Nz
represent the adjacent min radius of P on the x, y, and z axes; P represents the current point;
and P′ represents the next point.

In order to effectively express the feature information of the current point cloud,
we select some feature information that can effectively represent the differences between
different point cloud objects, such as change of curvature value Cλ, linearity value Lλ,
planarity value Pλ, and scattering value Sλ.

Cλ =
λ3

λ1 + λ2 + λ3
(6)

Lλ =
λ1 − λ2

λ1
(7)

Pλ =
λ2 − λ3

λ1
(8)

Sλ =
λ3

λ1
(9)
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In the 3D coordinate system, the large-scale point cloud will contain some other local
feature information, such as the Omnivariance value of local 3D shape Oλ, Eigenentropy
value Eλ, Anisotropy Aλ, Eigenentropy Eλ, Eigenentropy of eigenvalues Tλ, Verticality
value D, Variance of z V, and EVs_3D value Q.

Oλ = 3
√

e1e2e3 (10)

Aλ =
e1 − e3

e1
(11)

Eλ = −∑3
i=1 eiln(ei) (12)

Tλ =
2
π

arctan(λ1 + λ2 + λ3) (13)

D =
k + 1

π·maxradias2
k

, (14)

V = 1− |nz|, (15)

Q = Eig(P(x, y, z)) (16)

In order to extract more effective eigenvalues, we calculated five eigenvalues for point
clouds projected on three different coordinate axes on the 2D plane. The 2D feature value is
calculated based on the x and y values of the adaptive adjacent point cloud, regardless of
the z value of the point cloud and the eigenvalues in the z direction.

rk =

√
(x− xk)

2 + (y− yk)
2 (17)

D2 =
k + 1
πr2

k
(18)

Rλ,2D =
λ2,2D

λ1,2D
(19)

Evratio = Eλ2D(axisa)/Eλ2D(axisb) (20)

S2 = λ1,1D + λ2,2D (21)

where rk represents 2D circle neighborhood radius, D2 is 2D local point density, and Rλ,2D
represents the ratio of the 2D covariance matrix. The Evratio value represents the eigenvalue
entropy ratio of the coordinate system, and S2 represents the sum of the feature values.

3.2. TargetDrop-Based MFTR-Net

MFTR-Net is based on the U-Net framework with the attention mechanism of Target-
Drop [21]. MFTR-Net is an encoder and decoder structure and consists of a downsampling
network and a corresponding upsampling network, as shown in Figure 2. First, the convo-
lution layer downsamples the input point cloud feature images. Then the downsampling
network is gradually deepened to extract the features layer by layer. The downsampling
network includes 13 convolution layers. Each downsampling network layer has a corre-
sponding upsampling network layer, so the upsampling network also has 13 convolution
layers. Then, the features of each layer are inversely used for upsampling. The upsampled
output is sent to the TargetDrop attention module. TargetDrop mainly processes features
to increase the proportion of high-dimensional features. Reasonable weight distribution
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for some high-dimensional features can improve the extraction ability of the network for
high-dimensional feature information. Finally, the class probability distribution results of
each pixel are independently generated through the entire connection layer.

Figure 2. MFTR-Net framework.

In MFTR-Net, each convolution layer has a filter to extract the feature information of
the image, and combine the obtained features into a group of feature information maps.
These feature maps are further normalized to (0, 1) and propagated in the network. Then,
the Relu function is used to discard part of the information of the feature maps and reduce
over-fitting of the network layer. The window performs maximum pooling, and the output
results are subject to secondary downsampling. Subsampling generates significant input
image context (spatial window) for each pixel in the feature map. Its input feature map uses
the maximum pool index stored from the corresponding encoder feature map. Multiple
Max pooling and downsampling layers can reduce the calculation of parameter amount
and achieve translation invariance; however, they suffer from the loss of feature information
(Figure 3).

Figure 3. The pipeline of TargetDrop.

After inputting the feature images into the TargetDrop module, we obtain a channel
attention map through the attention layer. Then, TopK features in the channel attention map
are used to select the high-dimensional feature information, and give this high-dimensional
feature a higher weight ratio to obtain the mask we need.
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In the final calculation of the network backpropagation loss function (Formula (22)), Z
represents the value of comparison loss in the propagation process of the network layer,
and y represents the value of classification loss. When the point cloud characteristic value is
transferred to the layer, it will be divided into the calculation of the contrast loss value [22].
Each adjacent node around the current node is taken as a positive sample, and the remaining
nodes are taken as negative samples. Through this method, the effective positive sample
can be closer to the target node, thus completing the whole attention mechanism, focusing
on those features that contain important information, in which the adjacent contrast loss
value of the ith node can be expressed as:

li = −log
∑B

j=1 1j 6=iγijexp
(
sim
(
zi, zy

)
/τ
)

∑B
k=1 1k 6=iexp(sim(zi, zk)/τ)

(22)

The loss function of MFTR-Net consists of adjacent contrastive loss (NC) and Cross-
Entropy (CE) loss, and α is the weighting coefficient to balance lossNC and lossCE.

lossNC = α
1
B

B

∑
i=1

li (23)

loss f inal = lossCE + lossNC (24)

3.3. MFTR-Net for Large-Scale Point Cloud Classification

The complete process and overall flow of large-scale point cloud classification using
the proposed MFTR-Net are shown in Figure 4. First, the flow chart is divided into two
branches. One is the 3D features branch, which calculates the corresponding eigenvalues of
the current point cloud in the 3D coordinate system, and the other is the 2D features branch,
which calculates the point cloud eigenvalues projected on the 2D coordinate system on three
different planes. Then the total of 32 eigenvalues are constructed into point cloud feature
images (32 × 32). The obtained point cloud feature images are input into the MFTR-Net
classification network. The network calculates the probability of the classification result of
each category and outputs the final corresponding category with classification accuracy.

Figure 4. Flow chart of point cloud classification using MFTR-Net.
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In the feature construction part, a dimension reduction method is adopted for process-
ing large-scale point clouds. The original 3D point cloud data [batchsize, num points, 3] are
converted into 2D point cloud feature image data [batchsize, height, width, 1]. Then the 2D
point cloud feature image is input into MFTR-Net (Figure 5). During the processing, fea-
tures are extracted through the convolution layer of the encoder module, and the receptive
field is increased through pooling. Then, deconvolution in the decoder module enables the
feature map to be reproduced and restored to the original size of the image. Finally, the
weight of the extracted convolution features is allocated through the TargetDrop method so
that the whole network pays more attention to some high-dimensional feature information,
thus ensuring the point cloud classification’s overall accuracy.

Figure 5. MFTR-Net for large-scale point cloud classification.

4. Analysis of Experimental Results

In this work, we implement a proposed network in the Tensorflow framework. All the
training and testing platforms are Ubuntu 18.04 with Intel i7-4790 and NVIDIA RTX 2070,
under Python 3.7, CUDA 10.0, CUDNN7.6.4, Pytorch 0.6, and 256GB of mainframe running
memory. We train our model for 120 epochs, and the batch size is 100. The learning rate
starts at 0.001 and decays at 0.7 per 50k iterations. A series of comparison experiments
are carried out on the 3D point cloud dataset, Oakland [23], to verify the effectiveness and
robustness of the MFTR-Net network. The Oakland dataset includes five labels: Vegetation,
Pole, Facade, Ground, and Wire. The number of samples on each label is shown in Table 2.

Table 2. Oakland dataset.

Label Training Dataset Test Dataset

Vegetation 14,441 9278
Wire 2571 481
Pole 1086 368

Ground 4713 71,863
Facade 14,121 7821
Total 36,932 89,811
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We compared accuracy indicators with SoTA methods [24–29] on the Oakland dataset.
These methods [24,25] are processed by directly inputting the point cloud into the network
framework. References [25,26] convert the point cloud into binary feature images; however,
the subsequent network framework needs to be further improved. Our method is superior
to other methods in the classification accuracy of building categories and overall datasets,
despite some results not achieving the best in some categories. As shown in Table 3, the
bold numbers indicate the best effect for the current category. Our method achieves 98.0%
accuracy in the Oakland datasets. The visualization results of certain categories are shown
in Figure 6: green represents plants, blue represents wires, white represents poles, purple
represents the ground, and red represents buildings.

Table 3. Comparison accuracy of Oakland dataset (%).

Pole Vegetation Wire Ground Facade OA

Cabo [24] 77.3 80.6 80.4 99.2 92.9 86.1
Chen-Chieh [25] - - - 100.0 94.7 97.0

Wang [26] 68.4 80.6 92.9 98.3 71.1 94.7
Wang [27] 70.1 80.5 93.0 98.2 70.9 94.6

Ekaterina [28] 28.7 97.4 12.5 98.2 90.8 91.6
Kumar [29] 70.9 94.7 - 97.9 94.4 -
Our method 21.5 93.8 20.1 99.5 98.1 98.0

Figure 6. Visualization of the classification result. (a) Test dataset ground truth, (b) Classification
result of our method, (c) Details of our classification result.

From the comparison data in Table 3 and the results shown in Figure 6, the lowest
classification accuracies of the two categories of Pole and Wire in the whole category are
21.5% and 20.1%, respectively, which is lower than other methods and cannot achieve a
good result. The main reason for this phenomenon is that the percentage of these points in
the whole dataset is relatively small. Furthermore, after projection from different views, the
data overlap, which makes it difficult to calculate the eigenvalues of the current category
based on the surrounding point cloud. However, for some cases with a large number
of categories, our method can effectively extract the feature information of the current
category. The classification accuracy of our building and ground categories is relatively
high and can achieve a competitive effect. Moreover, our overall effect is also better than
other methods, and the overall classification accuracy is stable at about 98.0%.
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Figure 7 is the broken-line chart of our network framework on the tensorboard. From
the chart, we can see that the accuracy of our network framework has gradually stabilized
from epoch = 40 and gradually improved with the learning rate.

Figure 7. Classification result of MFTR-Net. (a) Accuracy flow chart of MFTR-Net, (b) Loss flow
chart of MFTR-Net.

5. Ablation Study

In order to evaluate the impact of the current TargetDrop on the result of the overall
point clouds classification network, we design ablation experiments to compare the network
with and without the TargetDrop module (Figure 8). From the accuracy results, we can see
that the effect of the attention mechanism module without TargetDrop fluctuates greatly
and does not form a stable trend in the early stage. From the whole comparison effect,
we can see that TargetDrop is necessary, which can accelerate the stability of the entire
network framework.

Figure 8. Ablation experiment results of TargetDrop.
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The results in Table 4 show that residual learning is more effective than the warm-up
training strategy in our framework, a check mark indicates that the method is currently
used.Therefore, we equip deep learning for point cloud classification, which makes the
proposed method easily optimized without extra training strategies.

Table 4. Warm-up strategy in our framework.

Warm-Up Deep learning Accuracy
√

- 89.5√ √
98.3

- - 88.1
-

√
98.0

In the experiment of feature construction, we design eight different comparative
experiments by calculating the point cloud features in the 3D coordinate system and in
three 2D projection plane coordinate systems: (1) point cloud classification results only
using the 3D point cloud features; (2) point cloud classification results using 2D point
cloud eigenvalues and 3D point cloud eigenvalues projected along the x-axis direction;
(3) point cloud classification using 2D point cloud features and 3D point cloud features
projected along the y-axis direction; (4) point cloud classification using 2D point cloud
features and 3D point cloud features projected along the z-axis direction; (5) point cloud
classification using 3D point cloud features and all 2D point cloud features; (6) point cloud
classification without using 2D point cloud features projected along the x-axis direction and
3D point cloud features; (7) point cloud classification results without using the 2D point
cloud features projected along the y-axis direction and the 3D point cloud features; and
(8) point cloud classification results without using 2D point cloud features projected along
the z-axis direction and 3D point cloud features. Other comparison groups are shown in
Table 5, the bold numbers indicate the best effect for the current category.

Table 5. Multi-level features accuracy of Oakland dataset (%).

Pole Vegetation Wire Ground Facade OA

3D 0.0 84.1 30.3 99.7 92.4 96.7
3D + 2Dx 10.0 97.4 8.2 94.4 82.0 85.6
3D + 2Dy 0.0 87.6 0.0 65.3 0.0 61.3
3D + 2Dz 0.0 99.7 0.0 99.4 0.0 89.8

3D + 2Dx + 2Dz 0.0 99.9 0.0 99.4 0.0 89.8
3D + 2Dx + 2Dy 25.0 99.9 0.0 97.1 38.0 88.5
3D + 2Dy + 2Dz 16.8 99.9 0.0 99.2 0.0 89.7

3D + 2Dx + 2Dy + 2Dz 21.5 93.8 20.1 99.5 98.1 98.0

Figure 9 shows the visualization results of different groups of experiments. We can see
from the results that these groups of experiments mainly produce different visualization
results around three categories: poles, wires, and plants. We can see from the figure that
there is a large degree of classification error between wires and poles. Some of the wires are
surrounded by trees, so there is a partial classification error. This leads to low classification
accuracy of wires and poles.
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Figure 9. Visualization result of the comparison groups.

6. Conclusions

The MFTR-Net network framework model can effectively improve classification accu-
racy for large-scale point clouds. We combine 3D and 2D features to effectively retain point
cloud feature information and introduce the attention mechanism TargetDrop to further
enhance the point cloud feature information so as to realize accurate classification for large-
scale point clouds. However, the proposed method still has some room for improvement.
In the feature construction of the point cloud, it is difficult to ensure that the calculated
point cloud eigenvalues can fully express the point cloud feature information, resulting in
the point cloud feature image being affected by the point cloud’s disorder and rotation in-
variance. In addition, the real-time nature of point cloud classification determines whether
it can be deployed on hardware platforms. In the future, we will improve the speed of
point cloud classification so that our current effects can run in real-time on hardware.
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