How to Build Live-Cell Sensor Microdevices
Abstract
:1. How to Design Living Cell Sensors
- 3D nanofibrous scaffolds based on cellulose acetate to maintain cell viability for at least two weeks at a time;
- cell-scaffold formation by direct cell electrospinning;
- super-water-repellant filtration membranes;
- volatolomics, gaseous biomarkers, and novel sensors.
1.1. Cell Scaffolding
1.2. Processing of the Filtration Membranes
2. Cell Cultures as Living Sensors
2.1. Volatolomics-Headspace and In-Vivo Chemo-Sensing of Nitric Oxide and VOCs Released from Cells
2.1.1. Cell Culture Headspace Sensing
2.1.2. 3D Hybrid Scaffolds and Pathogen Signatures
3. Scalable Manufacturing and Validation of Air-Bio-Detectors
3.1. Ethics/Social Considerations
3.2. Transformative Impact
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raynor, P.C.; Adesina, A.; Aboubakr, H.A.; Yang, M.; Torremorell, M.; Goyal, S.M. Comparison of samplers collecting airborne influenza viruses: 1. Primarily impingers and cyclones. PLoS ONE 2021, 16, e0244977. [Google Scholar] [CrossRef] [PubMed]
- Haick, H. (Ed.) Volatile Biomarkers for Human Health; From Nature to Artificial Senses; Royal Society of Chemistry: London, UK, 2022; ISBN 978-1-83916-430-9. [Google Scholar]
- Narayan, N.J.F. (Ed.) Advances in Technology and Applications. In ASM International ASM Handbook; Additive Manufacturing in Biomedical Applications; ASM International: Almere, The Netherlands, 2022; Volume 23A, ISBN 978-1-62708-390-4. [Google Scholar]
- Balogh, L.P. (Ed.) Nanomedicine in Cancer; Pan Stanford Publishing: Singapore, 2017; pp. 159–169. [Google Scholar]
- Giannoukos, S.; Agapiou, A.; Brkić, B.; Taylor, S. Volatolomics: A broad area of experimentation. J. Chromatogr. B 2018, 1105, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Exline, M.C.; Stanacevic, M.; Bowman, A.S.; Gouma, P.-I. Exhaled nitric oxide detection for diagnosis of COVID-19 in critically ill patients. PLoS ONE 2021, 16, e0257644. [Google Scholar] [CrossRef] [PubMed]
- Annerino, A.; Faltas, M.; Srinivasan, M.; Gouma, P.-I. Towards skin-acetone monitors with selective sensitivity: Dynamics of PANI-CA films. PLoS ONE 2022, 17, e0267311. [Google Scholar] [CrossRef]
- Bittner, S.M.; Guo, J.L.; Melchiorri, A.; Mikos, A.G. Three-dimensional printing of multilayered tissue engineering scaffolds. Mater. Today 2018, 21, 861–874. [Google Scholar] [CrossRef]
- Badylak, S.; Freytes, D.; Gilbert, T. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009, 5, 1–13. [Google Scholar] [CrossRef]
- Hodde, J.P.; Record, R.D.; Tullius, R.S.; Badylak, S.F. Retention of Endothelial Cell Adherence to Porcine-Derived Extracellular Matrix after Disinfection and Sterilization. Tissue Eng. 2002, 8, 225–234. [Google Scholar] [CrossRef]
- Rubenstein, D.; Han, D.; Goldgraben, S.; El-Gendi, H.; Gouma, P.-I.; Frame, M.D. Bioassay Chamber for Angiogenesis with Perfused Explanted Arteries and Electrospun Scaffolding. Microcirculation 2007, 14, 723–737. [Google Scholar] [CrossRef]
- Gouma, P.; Xue, R.; Goldbeck, C.; Perrotta, P.; Balázsi, C. Nanohydroxyapatite—Cellulose acetate composites for growing of bone cells. Mater. Sci. Eng. C 2012, 32, 607–612. [Google Scholar] [CrossRef]
- Townsend-Nicholson, A.; Jayasinghe, S.N. Cell Electrospinning: A Unique Biotechnique for Encapsulating Living Or-ganisms for Generating Active Biological Microthreads/Scaffolds. Biomacromolecules 2006, 7, 3364–3369. [Google Scholar] [CrossRef]
- Hong, J.; Yeo, M.; Yang, G.H.; Kim, G. Cell-Electrospinning and Its Application for Tissue Engineering. Int. J. Mol. Sci. 2019, 20, 6208. [Google Scholar] [CrossRef] [Green Version]
- Mikaeili, F.; Gouma, P.I. Super Water-Repellent Cellulose Acetate Mats. Sci. Rep. 2018, 8, 12472. [Google Scholar] [CrossRef]
- HEPA Filters. Do We Really Know Enough?—Breathing Circuit Filters in the Era of COVID-19. Available online: https://anesthesiaexperts.com/uncategorized/hepa-filters-enough-breathing-circuit-filters-era-COVID-19/ (accessed on 13 March 2023).
- Wilkes, A.R.; Benbough, J.E.; Speight, S.E.; Harmer, M. The bacterial and viral filtration performance of breathing system filters. Anaesthesia 2000, 55, 458–465. [Google Scholar] [CrossRef]
- Youk, J.; Kim, T.; Evans, K.V.; Jeong, Y.-I.; Hur, Y.; Hong, S.P.; Kim, J.H.; Yi, K.; Kim, S.Y.; Na, K.J.; et al. Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2. Cell Stem Cell 2020, 27, 905–919. [Google Scholar] [CrossRef]
- Nestle, F.O.; Nickoloff, B.J. Deepening our understanding of immune sentinels in the skin. J. Clin. Investig. 2007, 117, 2382–2385. [Google Scholar] [CrossRef]
- Ren, F.; Pearton, S.J. (Eds.) Semiconductor-Based Sensors; World Scientific Publishing Co.: Singapore, 2017; pp. 355–392. ISBN 978-981-3146-72-3. [Google Scholar]
- Carpenter, M.A.; Mathur, S.; Kolmakov, A. (Eds.) Metal Oxide Nanomaterials for Chemical Sensors; Springer: New York, NY, USA, 2013. [Google Scholar]
- Nawla, H.S. (Ed.) Encyclopedia on Nanoscience and Nanotechnology; ASP: Appleton, WI, USA, 2011; Volume 14, pp. 301–329. [Google Scholar]
- Annerino, A.; Gouma, P.-I. Future Trends in Semiconducting Gas-Selective Sensing Probes for Skin Diagnostics. Sensors 2021, 21, 7554. [Google Scholar] [CrossRef]
- Klemenz, A.-C.; Meyer, J.; Ekat, K.; Bartels, J.; Traxler, S.; Schubert, J.K.; Kamp, G.; Miekisch, W.; Peters, K. Differences in the Emission of Volatile Organic Compounds (VOCs) between Non-Differentiating and Adipogenically Differentiating Mesenchymal Stromal/Stem Cells from Human Adipose Tissue. Cells 2019, 8, 697. [Google Scholar] [CrossRef] [Green Version]
- Coluccio, M.L.; Perozziello, G.; Malara, N.; Parrotta, E.; Zhang, P.; Gentile, F.; Limongi, T.; Raj, P.M.; Cuda, G.; Candeloro, P.; et al. Microfluidic platforms for cell cultures and investigations. Microelectron. Eng. 2019, 208, 14–28. [Google Scholar] [CrossRef]
- Modena, M.M.; Chawla, K.; Misun, P.; Hierlemann, A. Smart Cell Culture Systems: Integration of Sensors and Actuators into Microphysiological Systems. ACS Chem. Biol. 2018, 13, 1767–1784. [Google Scholar] [CrossRef]
- Low, L.A.; Mummery, C.; Berridge, B.R.; Austin, C.P.; Tagle, D.A. Organs-on-chips: Into the next decade. Nat. Rev. Drug Discov. 2020, 20, 345–361. [Google Scholar] [CrossRef]
- Jodhani, G.; Topcu, S.; Bishop-Haynes, A.; Lee, J.; Gouma, P. Self-supported Nano-WO3 foams formed by self-assembly of non-woven mats. J. Adv. Nanomater. 2016, 2, 57–63. [Google Scholar] [CrossRef]
- Ang, A.X.; Luhung, I.; Ahidjo, B.A.; Drautz-Moses, D.I.; Tambyah, P.A.; Mok, C.K.; Lau, K.J.; Tham, S.M.; Chu, J.J.H.; Allen, D.M.; et al. Airborne SARS-CoV-2 surveillance in hospital environment using high-flowrate air samplers and its comparison to surface sampling. Indoor Air 2021, 32(1), e12930. [Google Scholar] [CrossRef] [PubMed]
- Nanyang Technological University. Using Indoor Air Sampling Surveillance to Sniff Out COVID-19. ScienceDaily. 8 October 2021. Available online: https://www.sciencedaily.com/releases/2021/10/211008105747.htm (accessed on 5 April 2023).
- Kromek Awarded c. $6m Contract by DARPA to Further Develop Its Bio-Threat Detection System. Available online: https://www.kromek.com/wp-content/uploads/2021/06/Kromek-awarded-new-DARPA-bio-threat-contract-14.06.21.pdf (accessed on 5 April 2023).
- Biological Threat Detection Technology. Available online: https://www.kromek.com/bio-detector-information/ (accessed on 5 April 2023).
- Wang, B.; Yang, D.; Chang, Z.; Zhang, R.; Dai, J.; Fang, Y. Wearable bioelectronic masks for wireless detection of respiratory infectious diseases by gaseous media. Matter 2022, 5, 4347–4362. [Google Scholar] [CrossRef] [PubMed]
- BioFlash Biological Identifier. Available online: https://www.smithsdetection.com/products/bioflash-biological-identifier/ (accessed on 5 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouma, P.-I. How to Build Live-Cell Sensor Microdevices. Sensors 2023, 23, 3886. https://doi.org/10.3390/s23083886
Gouma P-I. How to Build Live-Cell Sensor Microdevices. Sensors. 2023; 23(8):3886. https://doi.org/10.3390/s23083886
Chicago/Turabian StyleGouma, Pelagia-Irene. 2023. "How to Build Live-Cell Sensor Microdevices" Sensors 23, no. 8: 3886. https://doi.org/10.3390/s23083886
APA StyleGouma, P. -I. (2023). How to Build Live-Cell Sensor Microdevices. Sensors, 23(8), 3886. https://doi.org/10.3390/s23083886