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Abstract: Tool Condition Monitoring systems are essential to achieve the desired industrial competi-
tive advantage in terms of reducing costs, increasing productivity, improving quality, and preventing
machined part damage. A sudden tool failure is analytically unpredictable due to the high dynamics
of the machining process in the industrial environment. Therefore, a system for detecting and prevent-
ing sudden tool failures was developed for real-time implementation. A discrete wavelet transform
lifting scheme (DWT) was developed to extract a time-frequency representation of the AErms signals.
A long short-term memory (LSTM) autoencoder was developed to compress and reconstruct the
DWT features. The variations between the reconstructed and the original DWT representations due
to the induced acoustic emissions (AE) waves during unstable crack propagation were used as a
prefailure indicator. Based on the statistics of the LSTM autoencoder training process, a threshold
was defined to detect tool prefailure regardless of the cutting conditions. Experimental validation
results demonstrated the ability of the developed approach to accurately predict sudden tool failures
before they occur and allow enough time to take corrective action to protect the machined part. The
developed approach overcomes the limitations of the prefailure detection approach available in
the literature in terms of defining a threshold function and sensitivity to chip adhesion-separation
phenomenon during the machining of hard-to-cut materials.

Keywords: cutting; condition monitoring; prefailure prediction

1. Introduction

In the machining of difficult-to-cut materials, the generated high mechanical and
thermal loads on the cutting edge can lead to different mechanisms of tool failure in terms
of tool wear, chipping, or breakage [1]. Each of these modes of tool failure has different
mechanisms, types, and consequences depending on the tool load and the cutting process.
The development of these failure mechanisms is also affected by the cutting conditions
and the tool-workpiece engagement. Consequently, this leads to different changes in the
tool edge geometry. As a result, different machined part quality attributes are produced,
such as deviations in dimensional accuracy and surface integrity. To protect the machined
part, manufacturers use a conservative tool change policy, where the cutting tool life is not
fully utilized [2]. This increases the process cost and downtime. Therefore, it is essential to
continuously monitor the tool condition in real-time to increase process productivity and
reduce process costs while maintaining the machine part quality. Due to the complexity
of the machining process, empirical models such as Taylor’s tool life equation may not be
accurate enough to predict tool life [3]. Further, due to the complexities involved and the
multiple wear mechanisms seen in machining, there is no unique solution for describing the
complete milling process [4]. An effective real-time sensor-based tool condition monitoring
(TCM) system can put a cutting tool under surveillance to safeguard the workpiece from
damage by dealing with the uncertainty of analytical tool life prediction.
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To detect tool chipping or breakage in milling processes, the extracted features from
sensor feedback signals need to fulfill the following requirements: (a) must represent tool
breakage under variable cutting conditions and different workpiece and tool materials, and
(b) must be uniquely distinguishable to avoid interference with other process irregularities,
e.g., tool-workpiece interactions, material inclusions or complex geometric features. An
abrupt tool geometry change due to brittle fracture or breakage can alter the characteristics
of the acquired signals. The latter includes a sudden burst in the acquired forces, power, or
vibrations due to a sudden change in the cutting edge, and subsequently, the interaction
between the tool and the workpiece. In addition, the generation of new surfaces associated
with the separation of major fragments of the tool material at fracture releases high elastic
waves. These waves can be observed as high energy in the acoustic emission (AE) signal. In
addition to the ability of the AE sensor to capture abnormalities during the cutting process,
it provides the flexibility for being mounted on any of the components of the machining
system without major disturbances to various machining activities [5]. In addition, the
frequency level of the AE signals produced from cutting processes has been found to be
separable from audible noise [6]. In general, for TCM, an AE sensor mounted on a spindle
or cutting tool showed higher reliability than when mounted on the workpiece [7–9]. Most
of the efforts in modeling acoustic emission in manufacturing processes are built on the
same model [10,11]. This model is based on the dependency of AE energy on material
properties, such as flow stress, the volume of material undergoing deformation, and the
strain rate. However, the influence of feed and depth of cut variations are not accurately
understood. Moreover, it was found, in practice, that AE signals were corrupted with white
noise generated from sources such as electron movements during signal transmission [12].
Hence, more attention is required for conditioning AE signals.

In contrast to tool wear, which is a progressive deterioration phenomenon, tool chip-
ping and breakage are sudden tool failures because they are stochastic phenomena that
occur in milliseconds. Unstable crack propagation preceding the separation of fragments
of the cutting tool edge is considered the prefailure phase for sudden tool failure [13]. The
large body of research conducted to develop and automate TCM systems has focused
on detecting the failure event onset or its following effects [2,14,15]. By which time, the
workpiece surface integrity and part quality may be impaired.

The detection of the prefailure phase of sudden tool failures has been investigated in
previous work by the authors. A method was devised to induce cyclic load on the cutting
tool tip to study the effect of unstable crack propagation, which preceded tool chipping,
on indirect sensing methods such as cutting forces, vibrations, power, and AE signals [13].
Forces and vibrations were shown to be sensitive to the onset of tool chipping, whereas
power was shown to be insensitive to the event. The acoustic emission AE signals were
shown to be sensitive to the elastic waves generated in association with the generation of
new surfaces during the unstable crack propagation phase.

In intermittent cutting processes, identifying the elastic waves associated with unstable
crack propagation in raw AE signals is challenging due to the bursts coming from other
process sources, e.g., impacts at inlet and exit, chip formations, rubbing between the tool
and workpiece, and plastic deformation in the primary, secondary, and tertiary shear
zones [16]. The unstable crack propagation effect on the AE signals is characterized by
infinitesimal time spans of high energy/frequency bursts. In addition, the AE signals
generated are nonlinear, non-stationary, and contaminated by bursts coming from the
force variation in the intermittent cutting processes. To emphasize the crack propagation
effect on the AE signals and to depress the steady state cutting effect, a novel approach
based on the Hilbert-Huang Transform (HHT) and the Teager-Kaiser Energy Operator
(TKEO) was developed by the authors to detect the prefailure evolution phase [17]. This
TKEO_HHT approach was integrated with a 2-way communication module to predict tool
failure in real-time and to stop the process before tool chipping and part damage. This
method depends on the relative changes in the instantaneous amplitude and frequency
of two sequential AE segments to detect tool prefailure. The TKEO_HHT was applied
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in real-time monitoring and control of intermittent turning, as well as conventional and
high-speed milling operations [17,18]. The approach showed high prediction accuracy
under a wide range of cutting speeds, feed rates, and axial and radial depths of cut during
the machining of aluminum and steel workpieces. However, a main limitation of this
approach was the experimental learning process needed to define the chipping threshold.
This requires running controlled tests to generate tool chipping and correlate its size to
the processed signals. Such a requirement limits its application in industrial facilities.
Additionally, during the machining of difficult-to-cut materials, such as Ti-alloys, the high
thermal loads lead to chip adhesion on the tool cutting edge. Once this chip is separated,
this releases elastic waves due to the generation of new surfaces. The repetitive adhesion-
separation phenomenon of the machining chips on the cutting edge is similar to the effect
of unstable crack propagation on the AE signals, which causes false alarms and decreases
the TKEO_HHT prediction accuracy.

Transient elastic waves generated from unstable crack propagation cause an instanta-
neous deviation in the acquired AE signals. Such deviation can be detected using anomaly
detection approaches. These approaches identify data patterns that deviate from expected
behavior, leading to the timely identification of underlying problems that can lead to costly
consequences. The development of an anomaly detection approach mainly depends on the
nature of the anomaly and the type of input data. For sensory data, anomalies can be cate-
gorized by faults such as drift, noise, constant, or spike [19]. The latter includes the effect of
the unstable crack propagation on AE signals as shown in Section 2. Typically, an anomaly
detection approach combines feature extraction techniques, such as principal component
analysis and Euclidean distance, with machine learning approaches, such as classification,
clustering, and regression models [20]. Several conventional and deep machine learning
(ML)-based approaches have been developed in the literature to detect spike anomalies
in sensory data. However, deep ML approaches have shown better capability in dealing
with anomaly detection challenges in terms of input data format and noises and anomaly
data scarcity and complexity [21]. Luo et al. utilized autoencoders to develop a distributed
anomaly detection technique for spike detection in 1-D data [22]. Chen et al. proposed
Spectral and Time Autoencoder Learning to detect drift, shift, and spike in time-series
sensory data [23]. For model optimization to enable real-time implementation, Ding et al.
developed a diagnosis network based on weight-sharing multiscale convolutions to extract
multi-time scale features while minimizing the computational time [24]. In this work,
an anomaly detection approach based on deep machine learning and wavelet analysis
algorithms is introduced. The approach masks the effect of the chip adhesion-separation
phenomenon on the AE signals for accurate detection of the prefailure phase during the
machining of difficult-to-cut materials. It also overcomes the learning limitations of the
TKEO_HHT approach, which facilitates the implementation of the prefailure detection
system in an industrial environment.

This article is organized as follows: Section 2 discusses the sources and characteristics
of the AE signals in intermittent cutting operations as well as the relation between the
process parameters and the generated AE signals during sudden tool failure. Section 3
presents the development of the elements of the proposed tool prefailure detection approach.
It describes the contribution of each processing step in accentuating the elastic waves
associated with unstable crack propagation in AE signals and the optimization required
to implement the approach in real-time. Section 4 lists the experimental setup, machine
instrumentation, and test matrix for developing and validating the proposed approach.
Section 5 illustrates and evaluates the results of applying the proposed approach for
prefailure detection. The approach to developing and validating results is examined and
benchmarked in comparison with a state-of-the-art prefailure detection approach available
in literature. The time provided by the approach to take corrective action in order to
safeguard the machined part is also discussed. The significant reduction in the calibration
and training effort is demonstrated. Finally, the development approach methodology,
validating results, and industrial impact are concluded in Section 6.
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2. Acoustic Emissions in Intermittent Cutting Operations

Acoustic emissions derived from material deflection, chip breakdown, and pulse
shock loading are produced during cutting operations. The cutting state is revealed by
both the continuous and transient AE signals [12]. Continuous AE signals are made up
of overlapping transient signals. These are associated with shearing in the primary zone,
formation, and collisions of chips, and rubbing between cutting tools, workpieces, and
formed chips. Transient AE signals are generated when a pulse shock loading occurs,
such as chip breakage, entry/exit of each individual tooth to the workpiece, and tool
vibrations and damage. During intermittent complex cutting processes, identifying the
prefailure phase is challenging due to the bursts coming from other process sources [16].
The indeterminateness of some of these events in addition to the stochastic nature of the
unstable crack propagation and the generated AE waves cause the non-stationary and
non-linear nature of the AE signals.

The root mean square values of the acoustic emission signals (AErms) have the same
time-domain sensitivity to the tool prefailure phase as the raw AE signals [17,18]. However,
the AErms signals have the advantage of reducing the required sampling rate, which
minimizes data storage. Therefore, the AErms signals were utilized for tool prefailure
detection. To describe the generated AErms signals during cutting, a quantitative model of
the AErms peak voltage in machining using carbide inserts was successfully developed [25].
This model was developed in order to understand the AE signal response to the fracture
of carbide inserts during intermittent cutting. The model describes the AErms voltage
as a function of the cutting tool material properties, wave propagation properties, crack
propagation, and cutting forces as follows:

AErms = K1

√
E

(1 + v)2·(1 − v2)

√
ω2·δ2

(k2 + ω2)
Fr

√
αaβ·∆a·∆Ac

2 (1)

where K1 is a constant, E and v are the modulus of elasticity and Poisson ratio of the tool
material, respectively; k, ω, and δ are the crack AE wave decay constant, the frequency
of decaying and the stress propagation factor, respectively. The symbol Fr stands for the
resultant cutting force at tool fracture, α and β are constants related to tool geometry, and a
and Ac are the crack length and area, respectively. This equation can be simplified, for the
same tool material, after assuming that ∆Ac is a linear function of ∆a, as follows:

AErms ≈ CFr(∆Ac)
1.5 (2)

where C is a material and geometry-dependent constant. Equations (1) and (2) show
the nonlinear relationship between the AErms signal and cutting forces. The AErms signal
variation through the course of the intermittent cutting operation, for the same insert,
depends mainly on the resultant force variation and the area of the newly generated
crack surfaces.

3. Anomaly Detection Approach for Sudden Tool Failure Prediction

This work proposes an anomaly detection approach that integrates time-frequency
signal analysis with deep machine learning approaches to define unstable crack propagation
in cutting tools. It employs a discrete wavelet transform algorithm (DWT) to extract
representative features of the AE waves generated during normal operating conditions.
Sequentially, these features are fed to a long short-term memory artificial neural network
autoencoder (LSTM) to predict tool prefailure. This DWT-LSTM autoencoder allows
accurate detection of the prefailure stage and overcomes the limitations of the available
TKEO-HHT approach in terms of learning effort and false alarms in hard-to-cut materials.
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3.1. Discrete Wavelet Transform

A transient AErms wave is typically a nonlinear signal that exhibits a shape that reflects
impacting and exponential decay properties [2]. A wavelet transform decomposes this
signal into a family of wavelets by creating a set of functions. Each wavelet represents
a specific frequency band and creates time-localized frequency components. Therefore,
transient AE signals with discontinuous and sharp changes, which are temporally localized,
can be captured. This facilitates extracting representative features.

In this work, a Daubechies orthogonal wavelet lifting scheme (DWT) was adopted [26].
This DWT signal processing approach provides multi-resolution signal details. In the first
level of this analysis, acquired AErms signals are divided into two components based on
the signal frequency using a scaling function, a wavelet function, and filter banks. The
scaling function provides a coarse representation of the signal, while the output of the
wavelet function defines the signal details. A hierarchical representation of the AErms
signal is developed by recursively processing the low pass output of the filter bank as an
input signal. The cascading process over this hierarchical representation leads to a sum of
coefficients at different signal resolutions and a residue. These coefficients can be used to
reconstruct the signals. The scaling function decreases the signal size at each step, which
reduces the computational time. Daubechies’ DWT was selected due to its capability to
capture sharp and irregular changes in the signals [27]. To emphasize transient events in
AE signals, a Daubechies wavelet db2 was selected, which offers relatively smaller support
to separate the features of interest.

3.2. LSTM Autoencoder Neural Network

An autoencoder is a machine-learning approach that leverages neural networks for
efficient data representation. It consists of an encoder and a decoder. The encoder decom-
poses the input data into a compressed representation of itself by extracting features with
low dimensionality. The decoder then uses this representation to reconstruct the input data
with its original dimension. Through the training stage, the autoencoder learns to regener-
ate the input signals with high accuracy. This accuracy decreases when the autoencoder
tries to regenerate an input signal that contains outliers. The decrease in accuracy is used
as an indicator of abnormality.

Different architectures have been implemented in developing autoencoders, including
Conventional, feedforward, and long short-term memory (LSTM) networks [28–32]. In
this work, the latter was adopted due to its high flexibility and adaptability [33]. LSTM
networks define the compressed signal features by storing representations of the input
signal pattern over time steps [34]. This enhances the LSTM performance to capture the
non-linear dynamics in the input signals (i.e., DWT outputs). The LSTM structure consists
of a cell state and an output state that are updated during the learning process. The
prediction from earlier time steps is kept in the cell state, whereas the layer output for a
particular time step is kept in the output state. By examining the input signal in advance,
the unidirectional LSTM (ULSTM) learns the state of each of its cells. In order to update
the cell state of the input signal based on the past and future output states simultaneously,
bidirectional LSTM (BiLSTM) adds another backward scanning to the input signal [35].
Despite the fact that such an activity might over-restrain the generated model, BiLSTM was
selected to increase the model sensitivity to the training data, and hence, accentuate the
abnormal events’ effect on the prediction accuracy.

A deep recurrent neural network consisting of five BiLSTM layers was developed. The
input data was compressed using a falling number of hidden units as it was encoded from
layer one to layer three. Then, a mirrored order of the hidden unit numbers used in layers
one to three is employed to build the reconstructed version of the input data from layers
three to five. An adaptive moment estimation (Adam) optimizer alongside with mini-batch
size and a maximum number of epochs of 32 and 40, respectively, were implemented in
this study to train the LSTM autoencoder.
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3.3. DWT-LSTM Implementation

Figure 1 shows the flowchart of the proposed DWT-LSTM autoencoder approach. The
machining AE-generated signals typically fall into the range of 100–600 kHz, whereas the
tool chipping or fracture causes high-powered oscillations in the frequency range from
300 kHz to 1.0 MHz [6]. Hence, acoustic emission signals were amplified and filtered using
a bandpass filter of a 100 to 1000 kHz bandwidth. This filtering range selection represents
the typical range of AE signals generated from tool chipping and fracture while eliminating
those coming from mechanical vibrations and audible noise, which are below 20 kHz. The
signal root mean square AErms is then calculated and segmented per workpiece revolution.
The developed DWT lifting scheme is applied to extract the time-frequency information of
the AErms signals and feeds it to the LSTM autoencoder. The statistics of the training signals
reconstruction error were used to define a prefailure threshold for real-time implementation.
The mean square error (MSE) between the LSTM-autoencoder training data and predictions
was calculated for each training segment. Following a Gaussian distribution, a prefailure
detection threshold was selected to be three times the MSE standard deviation.
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4. Experimental Setup and Test Matrix

This research mainly focused on cracks due to mechanical loads only while avoiding
the occurrence of tool wear and heat build-up. Therefore, a method was devised to induce
a cyclic impact load on the cutting tool tip in an intermittent turning operation, as shown in
Figure 2. This represented the loading conditions in milling as well. This type of test allowed
testing the developed approach capability to capture the unstable crack propagation and
tool edge chipping while ensuring minimal tool wear. To induce a cyclic impact load on
the tooltip, a Ti-6Al-4V workpiece was used in the shape of a plate. The plate thickness to
width ratio was selected to allow air cooling during 85% of the cutting revolution. The plate-
holding seats were designed to guarantee workpiece balance during the cutting operations.
Dry turning operations were carried out using a SECO DCLNR2525X12JETI tool holder
and SECO CNMG120408-MF4 TS2000 carbide inserts. Tests were conducted on a 6-axis
Boehringer-NG200 CNC turning center. This machine tool has a maximum spindle power
and rotational speed of 36 kW and 4000 rpm, respectively. Workpieces were pre-shaped
as seen in this figure to minimize the transient stage of tool entry. FASTCAM high-speed
camera (HSC) type UX100-800K-M was used to record the chipping events in real-time
during cutting. This HSC provides 1280 × 1024 pixels resolution with a selectable region
of interest. It has a maximum frame sampling rate of 800 kfps and can be triggered to start
recording using selectable +/− TTL 5 V and switch closure with a response time of 0.1 µs.
These characteristics provided the ability to evaluate the tool condition in synchronization
with the acquired signals for analysis purposes. The synchronized imaging of this HSC
was used to detect the chipping events during the cutting processes and to relate them
to the acquired signals. The tool holder was mounted on a three-component KISTLER
dynamometer type 9121 to measure the cutting forces with a measurement error of ±3%.
The force signals were amplified using a KISTLER 5010 amplifier. A miniature triaxial PCB
accelerometer type 356A71 was used to acquire vibrations during the cutting processes.
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It has a sensitivity and a measuring range of 1.02 pC/(m/s2) and 500 gpk, respectively.
Acquired signals were conditioned and amplified using a PCB signal conditioner model
480C64. AE-generated signals were captured using a KISTLER Piezotron AE sensor type
8152B and conditioned using a KISTLER AE coupler model 5125C1. The sensor was
mounted on the back of the cutting tool to be as close as possible to the cutting zone. The
cutting force and vibration signals, as well as the timing of chipping initiation as recorded
by the HSC imaging, were employed to define the onset of fracture, and compare it to the
AE-based prefailure indicator.
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In this work, four experiments were conducted with various speeds, feed rates, and
cut depths. The cutting conditions and role of each test are shown in Table 1. Test 1
cutting passes were performed for the DWT-LSTM autoencoder training, utilizing a fixed
depth of cut of 1 mm, a range of speeds between 35 and 75 m/min, and a range of feed
rates between 50 and 100 mm/min. Three experiments were carried out to validate the
developed approach. The cutting conditions of test 2 were selected within the training
range. Tests 3 and 4 were carried out under unlearned cutting conditions in order to
demonstrate the approach’s generalization capability. Both tests had a higher depth of cut
and feed rate.

Table 1. Test matrix.

Role Test Number Speed (m/min) Feed (mm/min) Depth of Cut (mm)

Training 1 35–45 50–90 1
Validation 2 45 80 1
Validation 3 35 100 1.25
Validation 4 75 95 1.5

5. Results and Discussion
5.1. DWT-LSTM Processing Approach Capabilities

AErms signals acquired during Test 1 were segmented per revolution and used for
training the developed DWT-LSTM autoencoder. In total, 10 cutting passes were con-
ducted using different combinations of the range of the cutting conditions of Test 1
shown in Table 1. To demonstrate the LSTM autoencoder accuracy in reconstructing
the DWT features, Figure 3a,b shows a normalized training segment sample of the training
AErms and the outputs of the DWT and the LSTM autoencoder. The MSE for the illus-
trated segment was 1.3 × 10−6, whilst the average MSE of all training segments was
1.8 × 10−6. Similar reconstruction MSE was observed for AE signals acquired from
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Tests 2, 3, and 4, which were conducted using different cutting conditions. For example,
Figure 3c,d illustrates the AErms and the corresponding DWT and LSTM outputs for a nor-
malized segment of Test 3 during normal cutting conditions, where a reconstruction MSE of
1.7 × 10−6 was achieved. This demonstrates the LSTM autoencoder’s capability to accu-
rately reconstruct the DWT features regardless of the cutting conditions.
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Figure 3. (a,c) Normalized AErms signals and (b,d) the DWT output and its reconstructed representa-
tion from the LSTM Autoencoder of Tests number 1 and 3, respectively.

In Figure 4, Test 3 is illustrated as an example to demonstrate the capability of the
DWT-LSTM approach to accurately detect the prefailure phase in the nonlinear AErms
signals. Figure 4a,d shows the raw force and AErms signals, respectively, for 2.5 s. These
signals were acquired during the prefailure phase and the chipping of the cutting tool.
In this test, a chipping of 8.16 mm2, measured following the procedure described in [17],
was observed on the cutting insert tip after 31.7 s of cutting, as shown in Figure 4c. The
chipping event captured by the high-speed camera was confirmed by both the force and
AErms signals, represented by the high amplitude at fracture followed by a low amplitude in
the sequential peak due to the reduced contact between the chipped tool tip and workpiece,
as shown in Figure 4a,d. The vibration signals have shown similar responses during
chipping as well. However, there was no sign of the prefailure phase in these signals.
Starting at time t = 30.8 s, the DWT-LSTM approach has discriminated the effect of the
unstable crack propagation during the prefailure phase using the error between the DWT
features and their reconstruction by the LSTM autoencoder. This can be easily visualized
by comparing the variation between the DWT and LSTM outputs in Figure 4e to Figure 3d.
This reconstruction error is due to the high energy components induced by the new AE
waves associated with the generation of new surfaces in the unstable crack propagation,
which was not included in the DWT-LSTM autoencoder learning process. During this
phase, the LSTM autoencoder MSE has increased by approximately 19 folds, compared to
the MSE during machining using a sound tool before t = 30.8 s. The proposed approach
is thus able to distinguish between the signals inherent in the cutting process, even in
the presence of impact load conditions, and the non-stationary and non-linear signals
of the prefailure phase, which is associated with the stress waves released by the new
surfaces’ formation.
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5.2. Online Implementation and Benchmarking of the DWT-LSTM Autoencoder

In this section, the DWT-LSTM autoencoder capability to detect tool prefailure phase
in real-time is demonstrated and benchmarked with respect to the TKEO-HHT approach
defined in [17]. The statistics of the MSE of the DWT-LSTM autoencoder were employed to
define a threshold for prefailure detection as explained in Section 3. The MSE was calculated
using the training data of Test 1 only, where no chipping event took place. This overcomes
the limitation of the TKEO-HHT approach for defining a threshold value, where a chipping
event needs to be captured during controlled cutting tests and correlated to the approach
output. Additionally, the TKEO-HHT threshold is sensitive to the cutting conditions, as
shown in Equation (2). Table 2 demonstrates processing time and the prefailure detection
window available from the first prefailure indicator to the onset of chipping for cutting tests
2, 3, and 4 using DWT-LSTM and TKEO-HHT approaches. The DWT-LSTM technique has
successfully forecasted the chipping events within a range from 540 to 830 ms before the
chipping onset. The prefailure detection window for the TKEO-HHT method ranged from
600 to 970 ms. The two approaches showed a comparable prefailure detection window,
with variations in window size between the two approaches and between different tests for
the same approach. The variations in the time window sizes between the two approaches
are related to their different prefailure detection concepts. The DWT-LSTM depends on
the variation in the AErms caused by the prefailure phase in comparison to signals acquired
during normal cutting conditions, while the TKEO-HHT depends on the relative changes
in the instantaneous amplitude and frequency between two sequential AErms segments.
The variations in the time window sizes within the same approach, however, are related to
the crack size and propagation rate, which affects the strength of the produced AE signals
during prefailure.
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Table 2. Prefailure detection window and processing time of the DWT-LSTM and TKEO-
HHT approaches.

Prefailure Detection Window (ms) Processing Time (ms)

Test Number DWT-LSTM TKEO-HHT DWT-LSTM TKEO-HHT

2 830 600 1.3 1–3.8
3 660 970 1.1 1.3–4
4 540 850 1.4 1.4–3.4

At a maximum processing time of 1.4 ms, the DWT-LSTM approach provided a
shorter processing time compared to the TKEO-HHT approach. This is due to the HHT’s
signal-sifting method, which necessitated a longer processing time of up to 3.8 ms [17].
However, both approaches provided enough time for real-time correction actions to protect
the machined part in terms of feed hold command. This can be achieved through a 2-way
communication controller with the CNC machine control to overwrite machine cutting
parameters in real-time [18].

During Test 1 passes, the chip adhesion-separation phenomenon took place on several
occasions. The effect of this phenomenon on the AErms signals was included in the DWT-
LSTM training as it is a data-driven process. This facilitates overcoming the false alarms
caused by this phenomenon when the TKEO-HHT approach is applied. Figure 5 shows the
AErms signals of Test 4 and the corresponding DWT-LSTM and the TKEO-HHT prefailure
detection indicators. In this test, tool chipping occurred after 15.8 s of cutting, as shown
in Figure 5a. The DWT-LSTM and the TKEO-HHT approaches have successfully detected
the prefailure phase 540 ms and 850 ms before fracture, respectively. However, the TKEO-
HHT approach has shown a false alarm in terms of high prefailure indicator amplitude at
t = 13.3 s, shown in Figure 5c. The imaging of this cutting process using the high-speed
camera has shown that the chip adhesion-separation phenomenon took place during this
period. Such misclassification is caused by the induced AE waves associated with the new
surface generated during the chip separation. The DWT-LSTM approach has overcome
this drawback, owing to the proposed learning approach, as shown in Figure 5b. This
demonstrates the developed approach’s capability to accurately detect the prefailure phase
in difficult-to-cut materials. Hence, the proposed approach responds to industrial needs
in a real working environment. It facilitates full tool life utilization, while safeguarding
the machined part and can be retrofitted to existing machine tools. This eliminates the
costs accompanied by sudden cutting tool failure in terms of machine downtime and
re-machining of defective parts or part scrap.
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6. Conclusions

A sudden tool prefailure detection and prevention approach has been developed in
this work. A discrete wavelet transform lifting scheme DWT was developed to extract
a time-frequency representation of the AErms signals. A Long short-term memory LSTM
autoencoder was developed to compress and reconstruct the DWT features. The variation
between the reconstructed and original DWT representation due to the induced AE waves
during the unstable crack propagation was used as a prefailure indicator. A threshold to
detect prefailure was defined based on the statistics of the LSTM autoencoder training
process. The data-driven training of the DWT-LSTM approach has accounted for the AE
variation due to the chip adhesion-separation phenomenon during the machining of hard-
to-cut materials. The LSTM autoencoder has shown an average MSE of 1.8 × 10−6 for
both learned and unlearned data, which proves the developed approach’s robustness in
reconstructing the DWT of the AE signals regardless of the cutting conditions. Experimental
validation tests have shown the DWT-LSTM approach’s capability to accurately predict
the tool failure by up to 830 ms before it happens. This was achieved using only 1.4 ms
of processing time, which provides enough time to take corrective actions by stopping
the feed drive of the machine tool to safeguard the machined part. The approach was
benchmarked to the available prefailure detection approach presented by the authors earlier
in the literature and showed comparable prefailure detection time windows. However, at
low computational and training costs, the DWT-LSTM approach overcomes the literature
approach limitations in terms of defining the thresholding function and the sensitivity to
the chip adhesion-separations phenomenon. This facilitates the implementation of the
new proposed approach in industrial facilities. The proposed approach offers full tool life
utilization while protecting machined parts and decreasing machining downtime and costs.
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