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Abstract: Advances in technology have facilitated the development of lightning research and data
processing. The electromagnetic pulse signals emitted by lightning (LEMP) can be collected by very
low frequency (VLF)/low frequency (LF) instruments in real time. The storage and transmission of
the obtained data is a crucial link, and a good compression method can improve the efficiency of this
process. In this paper, a lightning convolutional stack autoencoder (LCSAE) model for compressing
LEMP data was designed, which converts the data into low-dimensional feature vectors through the
encoder part and reconstructs the waveform through the decoder part. Finally, we investigated the
compression performance of the LCSAE model for LEMP waveform data under different compression
ratios. The results show that the compression performance is positively correlated with the minimum
feature of the neural network extraction model. When the compressed minimum feature is 64, the
average coefficient of determination R2 of the reconstructed waveform and the original waveform
can reach 96.7%. It can effectively solve the problem regarding the compression of LEMP signals
collected by the lightning sensor and improve the efficiency of remote data transmission.

Keywords: lightning; deep learning; feature compression; autoencoder; convolutional neural network

1. Introduction

Existing real-time VLF/LF lightning signal acquisition equipment needs to acquire a
large number of lightning signals, especially in the event of thunderstorms. The compressed
transmission of the lightning signal is a critical part of the process. A good compressed
transmission method not only reduces time costs, but also facilitates faster identification
and localization of lightning events [1].

With the development of machine learning, more and more fields have begun to
seek research methods combined with it. In the direction of deep learning [2], thanks to
the powerful data representation ability of its model method, it has been widely used
in biomedicine, image recognition, face detection and emotion classification fields [3–6]
in recent years. Simultaneously, machine learning has also made some progress in the
study of lightning. In the prediction study of lightning occurrence, Mostajabi et al. [7]
used the Automated Machine Learning (AutoML) method to select XGBoost, a machine
learning algorithm, to predict the occurrence of imminent lightning. Kamangir et al. [8]
developed a neural network; this model has predicted the occurrence of thunderstorms
in a 400 km2 area in southern Texas. In the recognition and classification task of lightning
data, Morales et al. [9] compared Multi-resolution analysis (MRA) with Artificial Neural
Network (ANN), K-Nearest Neighbors (KNN) and Support Vector Machine (SVM)—which
are machine learning methods—to analyze transmission line lightning events and achieve
good classification results. Zhu et al. [10] used the SVM algorithm to classify representative
cloud-to-ground and intracloud lightning, and its accuracy could reach 97%. In locating
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lightning events, Karami et al. [11] proposed using a machine learning method to locate
the lightning strike point based on the lightning-induced voltage value measured by
sensors on the transmission line. Recently, Wang et al. [12] also combined the lightning
positioning method with artificial intelligence, and used the deep-learning encoding feature
matching method to improve the speed, accuracy and anti-interference ability of the original
positioning algorithm.

In addition, the method of machine learning is also applied to the estimation of light-
ning strike probability [13], the prediction of natural disasters caused by lightning [14],
and the detection of lightning patterns [15]. In the past few years, the addition of artificial
intelligence techniques has facilitated the study of lightning events, and as scientific and
technological advances have led to more accurate collection of lightning data by lightning
sensor networks, the amount of data has increased, and a new method for the extraction
and compression of lightning electromagnetic pulse features has become a major issue.
This is similar to artificial-intelligence-based methods for the compressed sensing of ECG
signals [16,17], and feature the extraction of hyperspectral signals [18]. For example, com-
pression and reconstruction of ECG signals using compressed sensing methods can achieve
noise reduction processing of ECG signals while taking into account signal integrity [19].

This study establishes a new artificial intelligence model called LCSAE, which uses a
stacked autoencoder (SAE) and a convolutional neural network to compress the features of
LEMP waveform data. The original LEMP dataset consists of 1000 features, and the LCSAE
model can compress these features by adjusting the compression ratio. Experimental results
demonstrate a positive correlation between the LEMP waveform compression performance
and the minimum compression features used in LCSAE. When the minimum compression
feature is set to 64, the R2 between the reconstructed and original waveforms reaches 96.7%.
These results indicate that the model effectively achieves the target of compressing the
LEMP signal.

The specific structure of the article is as follows: Section 2 presents the LEMP dataset
and lightning sensor devices used in our experiments, along with the details and specific
structure of our novel LCSAE neural network model designed for dimensionality reduction
and compression. Section 3 gives the experimental results and evaluates the feature com-
pression effect of the proposed neural network model. Section 4 concludes and discusses
the whole paper.

2. Model and Methods

Based on the deep learning stacked autoencoder model and the collected LEMP
waveform data of the real-time three-dimensional (3D) lightning detection network, we
proposed an LCSAE waveform compression and reconstruction method. This method can
compress the collected lightning data with a length of 1000 features according to a fixed
ratio, while the original waveform can be reconstructed using the compressed feature code.

Figure 1 is a schematic diagram of the overall process of the proposed waveform
compression method. The sensor on the left side of the figure acquires LEMP waveform
data, and the acquired waveform data set is transmitted to the LCSAE input layer on the
right side. The waveform data is compressed by the encoder to obtain a low-dimensional
feature code, and this code can be decoded by a decoder structure to obtain a reconstructed
waveform. Ideally, the reconstructed waveform output by the output layer should be
consistent with the original waveform.

The above LCSAE method is an unsupervised deep learning model based on an
autoencoder. The following will start from the model method and the debugging selection
of the main structure in the model building process.
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Figure 1. Schematic diagram of LCSAE waveform compression method.

2.1. Data Sets Collected by Sensor Networks

The LEMP waveform data used in this study were collected by the 3D Lightning
Detection Network of the Institute of Electrical Engineering of the Chinese Academy of
Sciences [20], which covers the Asia-Pacific region and has more than 400 sensor detection
sites so far. The sampling rate of each site is 1 MSPS, the length of a single sampling time
is 1 ms, and the characteristic length of each collected lightning electromagnetic pulse
waveform data is 1 ms. Figure 2 shows LEMP waveform data collected from a sensor
device, which consists of 1000 feature points. Figure 3 depicts a block diagram of the
lightning sensor device, comprising of antennas, a field-programmable gate array (FPGA),
an advanced RISC machine (ARM), and an internet and storage module. The magnetic
antenna detects and outputs the magnetic field signal, while the FPGA and ARM process
the digital signal. The collected lightning signals can be stored and transmitted through
the internet.
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The experiment used 30,000 LEMP data in the database, which cover six types of
important LEMP waveform data, each with 5000 signal samples, namely negative cloud-
to-ground flash (−CG), positive cloud-to-ground flash (+CG), negative narrow bipolar
event (−NBE), positive narrow bipolar event (+NBE), cloud ground flash with ionosphere-
reflected signals (CG-IR) and far-field skywave (SW), where −NBE, +NBE and CG-IR are
cloud flashes. Figure 4 is an example of one of the six types of data waveforms. Before
using the deep learning model for training, the data set used is shuffled, 10% of the sample
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data is taken as the test set, 10% of the remaining data is taken as the validation set, and
90% is used as the training set.
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Figure 4. Examples of various lightning electromagnetic pulse waveforms. (a) negative cloud-to-
ground flash (−CG); (b) positive cloud-to-ground flash (+CG); (c) negative narrow bipolar event
(−NBE); (d) positive narrow bipolar event (+NBE); (e) cloud ground flash with ionosphere reflected
signals (CG-IR); (f) far-field skywave (SW).

2.2. Autoencoder

The autoencoder was first developed in the 1980s, and this method can convert high-
dimensional data into low-dimensional codes [21]. As early as 1986, Rumelhart et al. [22]
proposed the concept of an autoencoder, and then in 1988, Bourlard et al. [23] gave a
detailed explanation of the autoencoder. In the following years, the sparse autoencoder,
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denoising autoencoder, puncture autoencoder and variational autoencoder [24–27] have
been successively proposed. With the advantages of simple training processes, easy multi-
layer stacking, and a good generalization performance, autoencoders and their improved
algorithms have been successfully applied in research work such as anomaly detection, ma-
chine translation, and scene segmentation [28–30]. The widely used transformer model [31]
is based on the autoencoder. This paper draws inspiration from this and builds a new deep
learning model: Lightning-Stacked Autoencoder (LCSAE), which is used for LEMP data
compression work.

A simple autoencoder model consists of only an input layer, an output layer, and a
hidden layer, as illustrated in Figure 5. The principle is to minimize the error between the
input x and the output x̂ by learning an effective encoding of the intermediate hidden layer
h [21], which can be achieved through dimensionality reduction if we set a smaller feature
value for h.
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The autoencoder is divided into two parts: the encoder and the decoder. The main
task of the encoder is to perform feature compression on the input data and learn low-
dimensional representations of high-dimensional data. The decoder reconstructs the signal
data according to the features compressed by the encoder. This process can be further
illustrated by Equation (1):

x̂ = g(y) = g( f (x)) (1)

where x represents the input signal, f (·) refers to the encoding process of the encoder,
which is the encoded signal after the encoder, g(·) represents the decoding process of the
decoder, and x̂ is the output signal. The learning objective of the autoencoder is to minimize
the reconstruction error, ideally x̂ = x.

2.3. Structure of Compression and Reconstruction Model LCSAE

SAE is obtained by adding multiple hidden layers on the basis of the autoencoder.
Compared to traditional autoencoders, SAE has a stronger data representation ability. The
LCSAE model is based on an SAE in which a convolutional neural network approach is
added to enhance the representation and extraction of lightning occurrence signals. The
convolutional neural network is a popular network structure in deep learning. This kind
of network contains structures such as convolutional layers, pooling layers, and fully con-
nected layers [32]. The convolutional layer can process data of different dimensions, such
as waveform signals and image data, of which 1D-Convolutional (one-dimensional convo-
lutional) is often used in signal processing, such as in the processing of ECG signals [33,34].
Both the ECG signal and the LEMP signal have similar waveform structure characteristics.
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The LCSAE model we built uses 1D-Convolutional to extract features from LEMP data.
The transfer between convolutional layers is as follows (2):

xl+1 = f (w ∗ xl + b) (2)

where xl and xl+1 are the feature vectors of the input signal and output signal, respectively.
The symbol ‘∗’ is the convolution operator, w is the weight matrix between layers, b is the
bias, and f (·) is the activation function between the transfer layers.

The pooling layer is a dimensionality reduction method in neural networks. Common
ones include max pooling and average pooling. We use max pooling (MaxPooling) to
reduce the dimensionality of the input features of the previous layer. The calculation is
published as follows (3)

Nl+1 = MAX
(

Nl − p + 1
r

)
(3)

where Nl and Nl+1 represent the number of neurons at layer l and layer l + 1, respectively,
p is the pooling size, and r is the step size.

The LCSAE model designed in the experiment consists of three parts: Encoder, com-
pression ratio adjustment module, and decoder. The encoder includes an input layer, five
one-dimensional convolutional (Conv1D) layers, and a MaxPooling layer. The compression
ratio adjustment module includes a flattened layer, two fully connected layers (one of
which adjusts the compression ratio), and a reshaped layer. The decoder includes an output
layer, five one-dimensional convolutional layers, and an upsampling layer. The specific
structure of the LCSAE model is shown in Figure 6.
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The specific parameters of the model are shown in Table 1. After inputting 1000 × 1 LEMP
waveform data through the input layer, the encoder part outputs feature data with a size
of 469 × 8 after being processed by the first Conv1D layer (with 8 filters, and the size of
each filter is 64), other layers, and so on. In the compression ratio adjustment module, the
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data of the previous layer is first flattened, and then the waveform features are subjected
to variable compression mapping through the dense connected layer (The x in the output
shape of the ninth layer in the table represents an adjustable variable, and the minimum
compression feature can be set according to actual needs). Finally, the Reshape layer is
used to transform the feature output shape into 8 × 16.

Table 1. Detailed parameters of LCSAE model structure.

Module No. Layer Filter Kernel Size Stride Activation
Function Output Shape

Encoder

1 Input - - - - 1000 × 1
2 Conv1D 8 64 2 Tanh 469 × 8
3 Conv1D 16 64 1 Tanh 406 × 16
4 MaxPooling1D - - - - 203 × 16
5 Conv1D 32 64 1 Tanh 140 × 32
6 Conv1D 64 64 2 Tanh 39 × 64
7 Conv1D 16 32 1 Tanh 8 × 16

Compression
ratio

adjustment
module

8 Flatten - - - - 128 × 1
9 Dense - - - Tanh x × 1

10 Dense - - - Tanh 128 × 1
11 Reshape - - - - 8 × 16

Decoder

12 Conv1D 16 32 1 Tanh 39 × 16
13 Conv1D 64 64 2 Tanh 140 × 64
14 Conv1D 32 64 1 Tanh 203 × 32
15 UpSampling1D - - - - 406 × 32
16 Conv1D 16 64 1 Tanh 469 × 16
17 Conv1D 8 64 2 Tanh 1000 × 8
18 Output 1 1 - Linear 1000 × 1

The 12th layer then begins to enter the decoder part, which uses one-dimensional con-
volutional and the upsampling layer to decode the compressed data. The structure of each
layer corresponds to the encoder one by one, and finally reconstructs the LEMP waveform.

2.4. Model Hyperparameter
2.4.1. Activation Function

The activation function is indispensable in the use of a neural network. A good
activation function can greatly improve the learning ability and representation ability of
neural network models. The commonly used activation functions are the Sigmoid, the
hyperbolic tangent (Tanh), and the rectified linear activation unit (ReLU) [35]. Among them,
the ReLU activation function has been widely used in deep neural networks due to its high
computational efficiency, but when the input is negative, ReLU will face the problem of
neuron death, resulting in the loss of some useful information, while Tanh can effectively
avoid this issue. Consequently, we use the Tanh activation function in the convolutional
layer of the LCSAE model, as shown in Formula (4):

Tanh(x) =
ex − e−x

ex + e−x (4)

The output of the Tanh activation function is zero-centered, which avoids the problem
of bias offset. For the LCSAE adopted in this study, good results can be achieved with this
activation function.

2.4.2. Training Loss Function and Optimizer

In the training of the neural network model, the loss function is used to measure the
quality of the model training results. By comparing the difference between the network
output after model training and the actual value, the training process of the model is
guided, so that the network parameters are changed in the direction of lower loss values.
The greater the gap between the predicted value of the network and the real value, the
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greater the loss value, and the loss value is zero when the two are completely consistent.
This experiment is a regression task and we use mean squared error (MSE) as the loss
function. Its calculation formula is as follows (5):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

At the same time, the update of network parameters is very important. The com-
monly used optimizers in deep learning are stochastic gradient descent SGD, momentum
(Momentum), Nesterov accelerated gradient (NAG), RMSprop, adaptive moment estima-
tion (Adam), and so on. Among them, Adam is equivalent to an optimization algorithm
combining RMSprop and Momentum. It not only has a higher computing efficiency; but
also has a small memory requirement. When faced with a problem with a larger amount of
data, Adam has more advantages than other optimizers. Therefore, we use Adam to update
the network parameters that affect the model training process and results, and the Adam
learning rate is set to 0.001. Furthermore, for other parameters during network training,
we set the batch size to 128 and the epochs to 100.

3. Results and Evaluation

This experiment uses the Keras deep learning tool to build the LCSAE model based
on the Python3 language platform. A NVIDIA Quadro RTX 4000 GPU is used to increase
the speed of the model to process data.

3.1. Evaluation Index

To conveniently demonstrate the compression effect of the model, we evaluated the
experimental results using several evaluation metrics, including the compression ratio (CR),
mean square error (MSE) (as defined by Equation (5)), coefficient of determination (R2),
and signal-to-noise ratio (SNR). Among them, CR represents the compression degree of the
signal, as shown in Formula (6):

CR =
l1 − l2

l1
× 100% (6)

where l1 represents the original waveform length, and l2 represents the compressed wave-
form length. The higher the CR value, the better the compression effect.

R2 evaluates the fitting degree of the original waveform and the reconstructed wave-
form, as shown in Formula (7):

R2 = 1 − ∑
i

(yi − ŷi)
2

(yi − yi)
2 (7)

where yi is the actual value, yi is the average value of the actual value, and ŷi is the
predicted value.

The value range of R2 is between 0 and 1. When R is closer to 1, it means that the
fitting effect is better between the reconstructed waveform and the original waveform.
Simultaneously, the model prediction effect is better. A waveform reconstructed by a good
model method should be able to have a high R2 at a high CR.

SNR evaluates the signal strength and the i-th signal is calculated by Formula (8):

SNR =
∑20

j=0

∣∣∣xi(N−10+j)

∣∣∣
∑1000

j=1
∣∣xij

∣∣ (8)

where N is the index value corresponding to the peak of the waveform and xij is the j-th
eigenvalue in the i-th waveform signal.
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3.2. Experimental Results

The training set of LEMP waveform data is input into the LCSAE model for training,
and the validation set is used to test the reconstruction results after each round of training.
Then, the model parameters are updated according to the verification results to prepare
for the next round of training, and ends after 100 rounds of training. The original length
of the LEMP waveform is 1000, the compression range is between 1 and 128, and the
corresponding CR is 99.9% to 87.2%. In the experiment, the LCSAE model is first used to
compress and reconstruct the −CG. During the process of the experiment, the loss value
MSE for training and validation are shown in Figures 7 and 8. It can be seen that with the
increase of epoch, the MSE generally shows a downward trend. At the same time, with
the increase of CR, the corresponding MSE of each group also showed an increasing trend.
This is because a larger CR corresponds to a smaller feature encoding of the model, and the
corresponding compression difficulty will also increase.
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After training, the effects of compression reconstruction of the model are tested using
test set data. Figure 9 shows the comparison between the original waveform and the
reconstructed waveform of the LEMP waveform data (the example in the figure is −CG)
when the CR value is between 87.2% and 99.9%. It can be seen that the fit of the recon-
structed waveform to the original waveform increases as the minimum compression feature
increases. When the minimum compression feature is 1 (Figure 9a), the reconstructed wave-
form can express the main shape of the original waveform, and there are some differences
in waveform peak location and amplitude. Compared with (a), the reconstructed wave-
form feature information of (b)~(e) shows a trend of increasing gradually; in particular,
the reconstruction quality at the trough increases significantly. In Figure 9f–h, it can be
seen that the fitting quality of the reconstructed waveform and the original waveform has
reached a good level. Except for some environmental noise information, other features
have no large deviation in timing and amplitude.
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When the minimum feature is 64 (Figure 9g, CR = 93.6%), the average R2 of −CG is
96.7%. In this case, the decoder part of LCSAE can reconstruct the waveform shape with
very little difference from the original waveform through 64 minimum feature codes, and
the MSE is 0.0317. In addition, when the minimum characteristic of LEMP signals is 64,
the comparison between the original waveform and the reconstructed waveform is shown
in Figure 10. It can be seen from the figure that the waveforms reconstructed using the
compressed features have clear peaks, steep rising and falling edges, complete waveforms
without missing segments, and can show different features of different types of waveforms.
The ability of the LCSAE method to reconstruct different LEMP waveforms under such
compression conditions can achieve good results.
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Figure 10. Comparison of original and reconstructed waveforms of LEMP at CR = 93.6%.

The model was trained separately using the training sets of the six types of waveform
data: −CG, CG-IR, +CG, −NBE, +NBE and SW, and the resulting MSE obtained in different
experiments was between 0.0176 and 0.3210. As shown in Figure 11, it can be seen that the
MSE shows an upward trend with the increase of CR. Meanwhile, it can be seen that the
MSE rises slowly before CR = 93.6% (the corresponding compression feature is 64), but the
rise of MSE increases significantly after CR = 93.6%. This is because fewer feature codes can
express less information. With the reduction of the features extracted by the model, the key
information of the LEMP waveform expressed by the minimum compression layer will also
decrease, and the difficulty of waveform reconstruction will also increase. Furthermore,
Figure 12 compares the experimentally obtained MSE and SNR results at CR = 93.6%. In the
figure, SNR_O and SNR_R represent the average SNR of the original and reconstructed data,
respectively. This shows that SNR_R is higher than SNR_O, with the smallest difference in
SW and the largest difference in −NBE. The CG-IR category has both the smallest overall
SNR and the largest MSE among the categories tested. Furthermore, the reconstruction
quality of CG-IR signals is poorer than that of the other categories. This can be attributed
to the higher complexity of CG-IR signals, which results in a lower SNR and makes feature
compression more difficult.
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Figure 12. Comparison of the results of MSE and SNR obtained from the experiment at CR = 93.6%.

Figure 13 is a comparison chart of the R2 values of the six types of LEMP signals under
different CRs. The R2 of LEMP shown in Figure 13 can all reach more than 90% when
CR = 93.6% (minimum feature = 64). At this time, the R2 of the −CG signal is the largest at
97.78%, and the R2 of CG-IR is the smallest at 94.25%. The average R2 at this point reaches
96.7%. This indicates that when the minimum compression setting of the LCSAE model is
set to 64, signals such as CG-IR experience more information loss during the encoding and
compression process compared to other signals, resulting in a decrease in reconstruction
accuracy. This is mostly caused by the CG-IR waveform, which has more pulses per event
than other waveform types and is more complicated.
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Summarizing the above discussions, comparing Figures 11 and 13, it can be seen
that the growth trend of R2 and MSE is opposite, so the waveform fit decreases as the
reconstruction error increases. When the compressed minimum feature is 64, the average
coefficient of determination R2 of the reconstructed waveform and the original waveform
can reach 96.7%.

3.3. Test and Analysis

A good model should have the advantages of both experimental results and experi-
mental time. Finally, the training process of the built LCSAE model is tested to analyze its
performance for LEMP waveform data compression. The compression of the entire LEMP
waveform data set was tested on a PC with a 64-bit operating system, Intel(R) Core (TM)
i5-9400F CPU @ 2.90 GHz, and an NVIDIA Quadro RTX 4000 GPU. The single training
time of each piece of data obtained from the test is about 37 µs. Meanwhile, we do a test on
the real-time operation speed of the LCSAE model in the embedded platform. This device
has mainly a Cortex-A53 processor and a memory connected to the processor. The memory
stores the instructions to be executed, which are executed by the processor to implement
the compression and reconstruction process of the LEMP waveform by using the new deep
learning model in the paper. The LCSAE model that was trained on the PC was added to
the processor of the embedded platform (In the ARM of Figure 3), and the average time to
process the waveform was measured to be 198 ms.

Eventually, we conducted work to compare the peak locations of the original waveform
with those of the reconstructed waveform for six types of LEMP data. As a result, Figure 14
illustrates the count of offsets for LEMP signals in the test set. As illustrated in Figure 14,
65.6% of the data had no offset, while 14.7% and 12.8% of the data had offsets with values
of −1 and 1, respectively. The number of samples with offset values of −2 and 2 accounted
for 1.8% each, and the remaining 3.3% had other offset values. Overall, 93.1% of the peak
offsets were less than or equal to one point, indicating that the reconstructed data using
LCSAE compression is suitable for subsequent lightning event analysis such as localization
and classification.
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4. Discussion and Conclusions

In order to solve the problem of compression and reconstruction of LEMP waveforms
collected by lightning detection sensor network, this paper applies the deep learning
method to LEMP data processing, and proposes an LEMP waveform compression and
reconstruction model based on stacked autoencoders: LCSAE, which can compress the
features of LEMP waveform data from the initial 1000 to 1~128, and the LEMP waveform
can subsequently be reconstructed using the compressed feature code. The model uses the
encoder module to remove redundant features and compress the waveform layer-by-layer;
the decoder module decodes and reconstructs the LEMP waveform data from the least
compressed features.

After testing the compression performance of the LCSAE model on LEMP waveforms
with different compression ratios of CR between 87.2% and 99.9%, it is concluded that
the training loss function MSE is between 0.0176 and 0.3210 on the +CG and −CG types
of cloud-to-ground flashes, and the fitting degree R2 of the original waveform and the
reconstructed waveform is between 0.6969~0.9856. Regarding the two types of cloud
flashes, −NBE and +NBE, the training loss function MSE is between 0.0166 and 0.2809,
and the corresponding R2 is between 0.7096 and 0.9843. At the same time, CR is negatively
correlated with R2, and the compression performance decreases with the increase of CR,
which can also be seen in Figures 11 and 13. Finally, when the minimum compression
feature value is set to 64, the reconstructed waveform’s R2 value reaches 96.7% compared
to the original waveform. Furthermore, after testing with the validation set, we found that
93.1% of the results had a peak offset between the reconstructed waveform and the original
waveform that was less than or equal to one point. This finding is promising for future
research on the localization and analysis of lightning events using this technique.

In conclusion, the proposed deep learning model LCSAE has beneficial effects on
the compression and reconstruction of the LEMP signal. Moving forward, we aim to
incorporate additional data types and techniques into our research to further enhance the
performance of the LCSAE model.
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