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Abstract: Water is a vital source for life and natural environments. This is the reason why water
sources should be constantly monitored in order to detect any pollutants that might jeopardize the
quality of water. This paper presents a low-cost internet-of-things system that is capable of measuring
and reporting the quality of different water sources. It comprises the following components: Arduino
UNO board, Bluetooth module BT04, temperature sensor DS18B20, pH sensor—SEN0161, TDS
sensor—SEN0244, turbidity sensor—SKU SEN0189. The system will be controlled and managed
from a mobile application, which will monitor the actual status of water sources. We propose to
monitor and evaluate the quality of water from five different water sources in a rural settlement. The
results show that most of the water sources we have monitored are proper for consumption, with a
single exception where the TDS values are not within proper limits, as they outperform the maximum
accepted value of 500 ppm.

Keywords: water pollution; water management; low-cost prototype solution; rural area;
internet-of-things; sensors

1. Introduction

Water is an indispensable source for life, economic development, and balance in the
natural environment. These are some reasons why the preservation of its quality is of utmost
importance for humankind. There are two main challenges in the quality of water that we
are dealing with worldwide: the lack of water sources in certain regions of the world and the
consumption of contaminated water by at least two billion people, according to the World
Health Organization (WHO) [1]. This means that these lives are endangered, contaminated
water being tightly connected with the transmission of diseases such as cholera, diarrhea,
type-A hepatitis, typhoid fever, dysentery, and polio. Diarrhea causes approximately
500,000 deaths each year [2,3]. In addition to this, contaminated water or water which
has inadequate characteristics represents a main factor for the triggering or worsening
of kidney diseases. Each year, kidney diseases cause as many deaths as those caused by
cancer [3]. An important part of the population doesn’t consume bottled water, choosing
public fountains, water pumps, or natural water sources in mountain areas. Alternative
sources could be unsafe, because they are tested occasionally or never. Water quality and
purity is a problem in different parts of the world, and different countermeasures and
sustainable scenarios are being developed [4,5]. Different pollutants being present in water
may also present a threat to the integrity of ecosystems. These affect plants and animals
by compromising them, as well as by facilitating the development of viruses and bacteria.
These in turn end up reaching human beings and are the causes of various diseases [6].

From another perspective, by 2050, over 85% of freshwater sources will be needed for
agricultural purposes [7]; therefore, the quality of water should be monitored and assured
to be proper for this purpose [8]. In the past, the overutilization of natural resources,
pollutants, and the lack of legal framework implementation have led to water pollution
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in different areas of the world. One such region where different improvements have been
implemented and different projects are running is that of Timis County, in Romania [9,10].
Here, specific European Union laws are being implemented, which is why water pollution
has begun to be addressed by several approaches.

As the importance of monitoring and preserving the water quality in a large spectrum
of sources has been largely highlighted, advanced but also low-cost technologies are used
in the process. Inspired by these worldwide problems and statistics, as well as the support
that retaining water quality receives from the European Union and local administrations,
we have developed the idea of implementing a simple low-cost solution for water testing
which will also keep people informed about the quality of water they are drinking. Correct
information can prevent diseases, save lives, and improve quality of life. Our aim is to
focus on rural areas in Romania, which is why our experiments have been conducted in
the Gataia locality in Timis County. As the integration of water monitoring solutions has
offered different architectural and technical solutions over the past several years, our aim
is to validate existing knowledge from different scientific literature in terms of technical
approaches, communication technologies, test conditions, lessons learned, and limitations
in order to produce a low-cost approach that could be used in different rural areas which
are currently on the verge of an increased developing slope. The obtained results offer a
new perspective on the subject of water pollutant measurements, with respect to technical
implementations, methodologies, and limitations, as well as highlighting the importance of
such systems being developed in certain regions such as the one under study.

Our research aims to achieve several goals, highlighted here as the research questions
of the paper: (RQ1) implement a water prototype internet-of-things system based on
a low-cost board and different sensors; (RQ2) design the system to be controlled and
managed from a mobile application, which will monitor the actual status of water sources,
also offering the possibility of retesting them and offering updates, information, and
recommendations to users in a real-time manner; (RQ3) monitor and evaluate the quality
of water from different water sources, in a rural settlement, by taking into consideration
specific measurement metrics. Our personal motivation for writing this present paper is to
offer to the research public our experience of developing this system in a rural area that
might benefit.

The rest of the paper continues: Section 1.1 presents basic concepts on the measured
parameters used in this project; Section 2 presents state-of-the-art literature on water
monitoring and specific techniques and systems developed for this goal, followed by
Section 3 detailing the methodology used for our approach, as well as the proposed solution;
Section 4 presents the experiments conducted to determine the quality of water sources in
a certain locality, while Section 5 is reserved for the conclusions of our present research.

1.1. Measured Parameters

The pH of a solution is the negative of the logarithm of the hydrogen ion activity:

pH = −log(H+) (1)

Measuring the pH of water provides a reflection of the acid–base balance, which is
usually determined by the balance between carbon dioxide and bicarbonate carbonate [11].
The pH value increases if the concentration of carbon dioxide decreases and will decrease
otherwise. Another factor that affects the pH balance is temperature; this must be taken
into account when we take measurements. The pH of drinking water must have a value
between 6.5 and 8.5.

A low pH of water causes the potential level of corrosion to increase; thus, the health
effects are indirect through an increased ingestion of metals from plumbing or pipes and
inadequate disinfection due to the lower pH. For water to be effectively disinfected with
chlorine, the pH must be less than 8.

Water turbidity is a measure of the amount of light spread by the matter in a liquid
when a light shines, making it an optical characteristic. The turbidity increases with the
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intensity of the light. Turbidity is caused by organic matter with very small dimensions,
various colored organic compounds as solutes, plankton, and microscopic organisms.

The unit of measurement for turbidity is the nephelometric turbidity unit (NTU) and
the optimal value for drinkable water is below 1 NTU, according to the WHO. However, if
decontamination is proven, a turbidity with values less than 5 NTU is permitted. Water
turbidity offers a favorable medium for the development of germs. This can lead to the
occurrence of pest holes for illnesses that primarily affect the intestines. Research shows
that there is a strong connection between removing the turbidity of the water and removing
the protozoans.

Total dissolved solids (TDS) is the term used to describe the inorganic salts and small
amounts of organic matter present in solution in water. The principal constituents are
usually calcium, magnesium, sodium, and potassium cations and carbonate, hydrogen
carbonate, chloride, sulfate, and nitrate anions [12]. Total dissolved solids are measured as
water volume using the unit mg/l, also known as parts per million (ppm).

The TDS level has been classified according to the taste of drinkable water, as follows:

• Excellent: <300 ppm;
• Satisfactory: 300–600 ppm;
• Suitable/appropriate: 600–900 ppm;
• Scarce: 900–1200 ppm;
• Inadmissible: >1200 ppm.

According to the health recommendations for people, the classification is as follows:

• Between 50 and 150 ppm—excellent for consumption;
• 150–250 ppm—good;
• 250–300 ppm—equitable;
• 300–500 ppm—scarce;
• >1200 ppm—inadmissible.

The maximum level accepted for drinkable water is regulated by the EPA—Environ-
mental Protection Agency—at a maximum of 500 ppm.

2. Previous Work

With both ground and surface water representing a vital resource for humans and
other living species, a constant focus is kept on measuring the pollutants that might affect
such a resource. The continuous development of IoT solutions during the last decade allows
a real-time measurement of the water-quality levels for a large spectrum of applications.
The following literature review was conducted based on research papers published after
2017, addressing the importance of water-quality measurement and providing various
solutions. The succeeding paragraphs present the identified articles, grouped based on the
described water-quality monitoring applications and solutions.

2.1. Specific Water-Quality Monitoring Applications

While assiduously analyzing the selected research papers, specific water-quality moni-
toring applications were identified which are reviewed below. In their work, Hafeez et al. [13]
address the importance of monitoring case-II classified coastal waters. The authors focus
on Hong Kong coastal waters and propose a solution for improving water-quality estimates
by using machine learning. It has been concluded that the most accurate quality indicators
were provided by the artificial neural network machine-learning model and satellite data.
Similarly, Zompanti et al. [14] concentrated on monitoring the sea water iodide for assuring
the quality of seafood. A multi-sensor approach was proposed to evaluate the seawater
iodate level and thus to assess the quality of seafood. Their study proved the feasibility
of the proposed proof-of-concept. Lu et al. [15] compared nine different machine-learning
algorithms and using an unmanned aerial vehicle (UAV) borne for data collection. Con-
cluding that the Catboost regression model offers the best prediction, a map was generated
in order to identify polluted water areas. Likewise, Liu et al. [16] designed a UAV for
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air–water-quality monitoring activities of the Yangtze River. With a Chl-a distribution and
a monitoring method based on acousto-optic tunable (AOTF) technology, the UAV-borne
has been proven to be a reliable tool for water-quality spectral analysis. A multi-function
unmanned surface vehicle (MF-USV) was designed and presented by Chang et al. [17] for
water-quality analysis and water surface cleaning. Several other functions such as obstacle
detection and avoidance were implemented and presented in the paper with experimental
results verifying their effectiveness. In their paper, Tang et al. [18] presented a water intake
monitoring system for livestock based on Arduino development boards. The proposed
system can monitor the water quality but also track and identify each animal in order
to conduct further animal water consumption studies. Another solution based on UAC
and IoT for monitoring livestock was presented by Behjati et al. [19]. Microwave sensors
were used by Frau et al. [20] to detect trace metals in polluted mining area waters. The
authors described a novel technique making use of both microwave spectroscopy and
planar sensors to monitor the water quality in real time. A similar approach was followed
by Russul et al. [21] who used microwave sensors, similar to a microwave resonator, to
detect the water content in crude oil. The obtained results of the experiments were found to
be in line with the associated simulated results. An interesting approach was followed by
Zeng et al. [22], who proposed a digital camera colorimetry setup that is able to examine
the relationship between water color and its chemical composition.

2.2. Groundwater-Quality Monitoring

The following research papers propose various solutions for monitoring groundwater-
quality levels. Shadrin et al. [23] present in their work a technique for computing the
weighted water-quality index and to further provide a map containing area predictions of
the water-quality index. Their proposed technique was validated in New Moscow where
drinking water is provided mainly from the available groundwater. Another groundwater-
quality mapping approach was described by Lawrence et al. [24] for a small island area
of the Philippines, using a neural network with the particle-swarm optimization method.
A machine-learning approach was used by Eslam A. et al. [25] in order to predict the
availability of groundwater. The proposed solution including a global feature resulted from
a Gaussian mixture model has proven to provide lower errors in groundwater-availability
prediction. Focusing again on groundwater-quality assessment, Paepae et al. [26] reviewed
the feasibility of using data-derived virtual sensors as an alternative to real-time sensor
technologies. A review of the state-of-the-art literature was conducted underlining the
necessity of developing a comprehensive virtual sensing system for IoT environments.
Machine-learning methods were used for the first time by Mosavi et al. [27] to predict the
hardness of groundwater. In their work, a comparative study was conducted between
boosted regression tree and random forest machine-learning models.

2.3. Surface Water-Quality Monitoring

A case study conducted by Ferencz and Dawidek [28] focuses on the water quality of a
Polish polymictic lake. Described as a critical lake management activity, monitoring vertical
and horizontal variability values of the water must be conducted for assuring aquatic life.
The water-monitoring method used—based on a nearest neighbor—proved to be more
accurate in highlighting the fluctuation of the physical and chemical lake water parameters.
Similarly, a case study was conducted by Ouali et al. [29] focusing on the Hassan Addakhil
dam in Morocco. Using a modeling approach and remote sensors, the authors propose a
spatiotemporal water-quality measuring technique. The selected and presented approach
has provided results validating the methodology for mapping the quality of the water
reservoir. By using a Raspberry Pi, Budiarti et al. [30] proposed an intelligent and automated
surface monitoring system that is capable of transmitting real-time information. In their
published work, Zhao et al. [31] aimed to understand whether third-party water-quality
monitoring activities have improved China’s environmental data. Even with a certain
amount of discontinued data monitoring, the research proved that third-party organizations
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have helped in the reduction in data manipulation of local governances and ensured more
accurate and consistent water-quality environment data. Zhu et al. [32] proposed a solution
for monitoring the dynamic water changes in Poyang Lake. The authors developed an
algorithm based on texture feature, feature fusion, and target segmentation for a synthetic
aperture radar system that was used for water-quality monitoring. The results were proven
to be accurate as they were compared to actual hydrological data. Naloufi et al. [33]
evaluated the various models that have been developed to predict the microbial quality
of surface waters and provide a guideline for choosing the appropriate machine-learning
model and sampling. Rodriguez et al. [34] assessed several machine-learning models for
water-quality detection at Santa Lucia Chico river stations. The proposed approach of
their research paper is now expected to help in improving water-quality datasets and
therefore overcome missing important datasets. The importance of bettering the image
special resolution and mitigating the interference of mixed pixels in cases of monitoring the
water quality of small rivers are highlighted by Huangfu et al. [35]. The processed Setinel-2
images using the super-resolution algorithm have proven the potential of the algorithm in
improving the retrieval accuracy of several water-quality parameters.

2.4. Potable Water-Quality Monitoring

Many resource papers provide different solutions for monitoring potable water, as it
is a vital source of life. Contaminated water leads to millions of deaths each year and it is
the cause for many diseases, so the following solutions are life-saving.

Wong Jun Hong et al. [36] published a simple Arduino-based solution with multi-
ple attached sensors that has some inaccuracies and needs human assistance, but it is a
foundation for future works. Sami O. Osman et al. [37] also used Arduino and sensors for
designing an in situ real-time measurement system for water-quality parameters, which
is a low-cost and accurate solution. Going further, a similar system that uses Bluetooth to
send the values of water parameters on a smartphone was built by Chenwei Feng et al. [38].

Likewise, Yogesh K. Taru and Anil Karwankar [39] implemented a solution for water-
parameter monitoring interfacing Arduino with LabVIEW. As a more advanced techno-
logical approach, Ms. Ch. Sowmya et al. [40] described in their paper a solution with
wireless sensor network technology for online and real-time water-quality monitoring,
where each sensor node has an Arduino microcontroller and attached sensors that continu-
ously measure the most important water parameters—pH, temperature, and conductivity.
Irish Franz Almojela et al. [41] also used WSN in their published work, using two nodes
and displaying the data on an LCD and ThingSpeak channel. The water parameters and
alarm are sent as an SMS notification and, for an alarm, the system also integrated a buzzer.
Another real-time system was proposed by Budiarti et al. [30] using a Raspberry Pi, as
mentioned earlier.

Various real-time systems are implemented using the concept of IoT, such as the
one proposed by Sabari et al. [42] that used an Arduino as a microcontroller and a Wi-fi
module for viewing the water-parameter values on the cloud. In addition, Ali Hadi Abdul-
wahid [43] proposed a similar solution, using the same IoT concept and accomplishing the
visualization of data on the cloud. Dr. Nageswara Rao Moparthi et al. [44] have published
a solution for notifying the corresponding authorities about water contamination using
Arduino. For the message technique, they used a GSM module and extended the work by
sending the sensor data via the cloud. L. Lakshmananet al. [45] also used a GSM module
connected to Arduino for measuring water-quality parameters with sensors and displaying
the results on a webpage. Data were also stored on the cloud so others could access it.

Rajesh Singh et al. [8] went to the next level, using an industrial IoT with hardware
architecture designed for water-level measuring and quality that uses radiofrequency
communication and a cloud-enabled app for visualizing the data. Another approach for
monitoring potable water was described in Arif Ul Alam, Dennis Clyne, and M. Jamal
Deen’s resource paper [46]. They developed a low-cost multi-parameter water-quality mon-
itoring system, which uses high-sensitivity electrochemical sensors and custom-designed
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circuitry that communicates with an Android app. This is a much more affordable testing
system than testing the water in dedicated laboratories and can be easily programmed
and adapted.

2.5. Machine Learning for Water-Quality Monitoring

Machine learning has been a huge step in technology, as it provides futuristic and
efficient ways in detecting, monitoring, and improving water-quality systems. In our
research, we have found various solutions and important work that has been published in
that direction.

An interesting solution for calculating a water index based on inputs such as tempera-
ture, pH, total dissolved solids, and turbidity using different machine-learning algorithms
was published by Ahmed Umair et al. [47]. Their conclusion shows that the best precision
for the water index is achieved using these two algorithms: gradient boosting, with a
learning rate of 0.1; and polynomial regression, with a degree of 2. Likewise, we have
mentioned in a previous section the study by Lu et al. [15] that also tested machine-learning
algorithms for water testing.

Machine-learning techniques were also used by Hussein Eslam et al. [25] and Huangfu
Kuan [35] in their studies on groundwater, as previously mentioned. For predicting
handover events based on historically collected handover events, Esraa Eldesouky et al. [48]
used machine-learning algorithms in an underwater wireless sensor network.

Another very interesting study can be found in the work of Arias-Rodriguez et al. [49],
who conducted a case study in Mexico that uses remote-sensing-based machine-learning
approaches for estimating the water-quality parameters. They used in situ collected mea-
surements and remote-sensing reflectance data gathered from MERIS—the medium resolu-
tion imaging spectrometer, demonstrating the utility of satellite observations in monitoring
inland water. Similarly, also in Mexico, Leonardo F. Arias-Rodriguez et al. [50] in their paper
conclude that remote sensing is very useful for monitoring and can bring improvements in
water-quality monitoring programs due to its progressive integration. Remote-sensing us-
ing machine-learning techniques was also used in the case study of Hafeez Sidrah et al. [13]
in Hong Kong for estimating coastal water quality. A higher accuracy was achieved by an
artificial neural network.

On the other hand, Pu Fangling et al. [51] proposed an alternative for solving the
issues that remote sensing may have, using a convolutional neural network (CNN) with
a hierarchical structure that represents the relationship between Landsat8 images and
in situ measurements. They successfully demonstrated that CNN widely outperforms
the machine-learning methods. Other machine-learning models have been evaluated by
Naloufi et al. [33] for microbial water quality and by Rodriguez et al. [34] for water-quality
detection: we have previously described their approaches.

Stajkowski Stephen et al. [52] suggested a premier approach in this domain, as they
sustain in their paper, that uses a genetic-algorithm-optimized long short-term memory
(LSTM) technique to predict river water temperature. Their goal was to use advanced
machine-learning methods in order to create a tool that is compatible with a real-time
network of water-quality monitoring stations for proactive water-quality management.

Lastly, a very interesting resource paper was published by Post Claudia et al. [53] which
can be used in order to detect chemical pollutants, such as nitrates, pharmaceuticals, or
microplastics. The study uses a UV Raman spectrometer for the detection of nitrate/nitrite,
selected pharmaceuticals, and the most widespread microplastic polymers. The results
show that nitrates and nitrites can be detected and quantified but the microplastic particles
measurements suffer due to their heterogeneous distribution.

A detailed comparison of different studies from all the references we have studied
is presented in Table 1. This summary is also offering insights into comparing previous
studies with the current approach.
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Table 1. Findings of previous studies compared to the current approach.

Reference Description Addressed Points Current Approach

[24]

The implementation of various spatial
interpolation methods results in significant

variations from the true spatial distribution of
water quality in a specific location. This research
improves the mapping prediction capabilities of

spatial interpolation algorithms

Groundwater-quality mapping
using a neural

network approach

Water-quality monitoring
system based on specific

measured parameters

[26]

The feasibility of virtual sensing for water-quality
assessment is reviewed. The review focuses on the

overview of key water-quality parameters for a
particular use case and the development of the

corresponding cost estimates for their monitoring

Multiple solutions are analyzed
in terms of modeling

approaches and
various parameters

The water-quality
monitoring system is based

on low-cost components

[30]
Web scrapping and Python scripts are used for
analysis, aggregation, and filtering of data from

the sensors

An integrated system based on
internet-of-things for measuring

the water quality; MQTT
protocol communication;

MariaDB databases; sensors’
data graph plotting

Firebase databases used for
the development of the

water status app

[34]
Several statistical and machine-learning models
are used for imputing water-quality data at six

monitoring stations

Water-quality data analysis
using a machine

learning approach

Water-quality monitoring
system based on specific

measured parameters. The
machine learning approach

is part of future work

[35]

This study tries to improve the image spatial
resolution and to weaken the interference of mixed

pixels in the image. The study is focused on the
water-quality monitoring of medium- and

small-sized inland rivers

Remote estimation of
water-quality parameters using

Sentinel-2 imagery

The measured parameters:
pH, turbidity, TDS

[41]

Arduino-based monitoring system that measures
four physicochemical parameters of water: pH,

temperature, turbidity, and electrical conductivity
in order to identify possible water contamination

WatAr: an Arduino-based
drinking water-quality

monitoring system using a
wireless sensor network and

GSM module

The communication used
in our approach is based on

Bluetooth module BT04

[43]

Affordable system to control water quality in real
time, based on several sensors, which measure

various chemical and physical water properties,
such as conductivity, pH, turbidity,

and temperature.

Real-time water-quality
monitoring using
various sensors

The measured parameters:
pH, turbidity, TDS

[8]

An IoT-based architecture is proposed and
implemented for monitoring the level and quality
of water in a domestic water tank with customized

hardware based on 2.4 GHz radiofrequency
(RF) communication

Real-time experimental setup
for water-quality monitoring

The communication used
in our approach is based on

Bluetooth module BT04
and a Firebase database

[46]

A multi-parameter water-quality monitoring
system (MWQMS) is proposed that includes an
array of low-cost, easy-to-use, high-sensitivity

electrochemical sensors, as well as
custom-designed sensor readout circuitry and a

smartphone application with wireless connectivity

Simultaneous monitoring of pH,
free chlorine, and temperature
with high levels of sensitivity

The measured parameters:
pH, turbidity, TDS

3. Materials and Components

The system presented in this paper offers a prototype implementation of an internet-
of-things water-testing solution based on an Arduino UNO board and different sensors.
The research methodology (Figure 1) that our project implemented comprises the follow-
ing steps:
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1. Discuss the measured parameters that the project is aiming at (Section 1);
2. Build a low-cost prototype capable of measuring different water parameters from

different water sources (Sections 3 and 3.1);
3. Implement a mobile application to receive data from the sensors, such as the DS18B20

temperature sensor, SEN0161 pH sensor, TDS SEN0244 sensor, and turbidity sensor
SKU SEN0189 (Section 4);

4. Calibrate the sensors in order to obtain accurate values from different measure-
ments (Section 5);

5. Perform the measurement of different water parameters from several water sources
in a rural setting (Section 6);

6. Analyze and discuss the obtained results, as well as make the results available to the
public through their apps (Section 6).
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The system will be controlled and managed from a mobile application, which will
monitor the actual status of water sources, also offering the possibility of retesting them
and offering updates, information, and recommendations to users in a real-time manner.
We have performed a case study for the Gataia locality, in the western part of Romania,
by testing five water sources, which represent the main drinking and cooking sources for
locals. The water status system and application have the purpose of informing people and
protecting people through information, prevention messages, recommendations, and alerts
regarding water consumption from drinkable water sources. The retesting of water sources
at short periods of time is also facilitated through the application’s interface. The system
only requires the power-up of the Arduino board and the submergence of the sensors into
the water. The application is responsible for the other tasks such as receiving the values via
Bluetooth, database updates, and users’ notification.

3.1. Setup and Connections

In order to understand the functioning of the entire system, including the mobile
application, we present the general architecture of the system below (Figure 2). The water
status application communicates with the system composed of an Arduino board, sensors,
and a Bluetooth module. The Bluetooth module ensures communication between the
hardware system and the Android mobile application.
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The hardware architecture (Figure 3) is composed of several peripherals. These can be
noted in Figure 4, which presents the physical connections of the hardware components.
Our approach is orientated towards a low-cost system architecture which could be afforded
by anyone who would like to perform measurements. The prices for the components are
presented in Table 2 and the list of peripherals is:

1. Arduino microcontroller (label 1, in Figure 4);
2. Power source (label 2);
3. BT04-A Bluetooth module (label 3) for data transmission to the dedicated mobile app;
4. Sensors—DS18B20 temperature sensor (label A), SEN0161 pH sensor (label B), SEN0244

TDS sensor (label C), and turbidity sensor SKU SEN0189 (label D).
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Table 2. Components prices for a low-cost system approach.

Components Price (in Euro)

Arduino UNO r3 39
Bluetooth module BT04 1.4

Temperature sensor DS18B20 2.4
pH Sensor—SEN0161 44.4
TDS Sensor—SEN0244 17

Turbidity Sensor—SKU SEN0189 16
Total 120.2
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The connections of the system are as follows:

• Arduino board: connected through a USB cable to a power source (or laptop/PC);
• Bluetooth BT04-A module: GND to Arduino GND (black wire), VCC to 5 V (red wire),

Tx to Arduino Rx—pin 0 (blue wire), Rx to Arduino Tx—pin 1 (yellow wire);
• DS18B20 temperature sensor: connected to GND (black wire), to 5 V (red wire), and to

pin 13 of the Arduino board (yellow wire), by using a 1.2 KΩ resistor;
• SEN0161 pH sensor: connected to GND (black wire), to 5 V (orange wire), and to pin

A2 of the Arduino board (blue wire);
• TDS SEN0244 sensor: connected to GND (black wire), to 5 V (red wire), and to pin A1

of the Arduino board (green wire);
• SKU SEN0189 turbidity sensor: connected to GND (black wire), to 5 V (orange wire),

and to pin A0 of the Arduino board (blue wire).

As can be noted in Figures 3 and 4, we have used four sensors in order to collect
relevant data about water quality:

• The DS18B20 temperature sensor is a programmable sensor with a single wire and it is
used for measuring the temperature in different environments; due to its waterproof
case, it is used for measuring the water temperature. This sensor is easy to use
and its connection to the Arduino board requires only one data pin, along with a
pull-up resistor.

• The SEN0161 pH sensor is an analog sensor for pH measurement, which is particu-
larly designed for Arduino development boards, featuring simple characteristics and
connections. It contains an LED for supply voltage indication, a BNC connector, and a
PH0.2 interface.

• The TDS SEN0244 sensor (for total dissolved solids) is also an analog sensor, easy to
use, and Arduino-compatible, which measures the TDS value of water and it transmits
it to the system.
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• The turbidity sensor SKU SEN0189 is also an analog sensor, easy to use, and Arduino-
compatible. This offers a response depending on the light amount that passes through
a liquid, thereby being able to detect the number of total suspended solids—TSS.

4. Software Architecture

In order to describe the software architecture of the application, we will define each
module separately. An overall schematic of the architecture is presented in Figure 5, which
contains the use cases of the application, as well as the role of the integrated technologies
and the role of the hardware system.
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4.1. Water Status Mobile Application

By using the water status application, the users can check the status of all potable
water sources from the city. The parameters that the application will provide will be the
pH level, the total dissolved solids, and the water turbidity. In addition, recommendations
or alerts will be issued according to these metrics. In the case of extreme measured values,
a warning message will be displayed, in order to prevent the consumption of water from
that source. The users will be provided with a map where the drinkable water sources are
displayed. When the water source is being retested, the user will be notified of this in real
time. The notification becomes very useful when a water source becomes contaminated due
to acid elements from the rain or ecological accidents that affect the underground water.

The administrator of the application has a key role because they should periodically
retest the water sources, in order to provide relevant and up-to-date data. The administrator
will have an account in order to log in. This secure access will prevent unauthorized access.
For the locality of Gataia, this role could be fulfilled by the hydrotechnical engineer, who is
responsible for the region’s rivers and the drinkable water sources.
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Through Bluetooth communication, when pressing a button in the application, the
Arduino-based system reads the values from the sensors about the tested water metrics
and displays them for the administrator. The administrator can also restart the sensors’
readings in order to ensure that the values are real and error-free. The application also
offers the feature of updating the database. All users will be notified about the retesting of
the water source.

The main activity of the application (Figure 6a) allows the user to reach the secondary
activity, which will offer the possibility to choose between the drinkable water sources of
interest. A common user doesn’t need an account to log in in order to access the application
because this application should be used by people belonging to all age categories. Similarly,
starting from the main activity, the admin will touch the text element of the TextView
type, called textAdmin, which will redirect them to another authentication activity. For
the administrator, this security feature is required through authentication because they are
responsible for the retesting of the water sources and updating the database, where the
access of other users is not permitted.
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The second activity (Figure 6b) which can be viewed by the user contains CardView-
type elements associated with each drinkable water source from Gataia town. The user
can select whichever card among the five, in order to view detailed information about
that water source (Figure 7). When selecting one of the cards, a new activity is initiated
associated with that water source. For each of the five drinkable water sources of Gataia
town, an individual activity was created, with associated classes: source one, source two,
source three, source four, and source five. For example, the source one activity offers the
user information about water source one, which is the water pump situated in front of the
town’s school (101 Republicii street, Gataia, Timis county). The user can view the values for
pH, TDS, and water turbidity. In addition, the status and consumption recommendations
will be shown: the appurtenance to optimal standards values, the recommendations related
to some illnesses, or general consumption recommendations.

Starting from the previously presented activity, by clicking the map icon, the user
will be redirected to the present activity, where the water sources of Gataia locality will
be marked on a map portion from Google Maps. A pin is added onto the map for each
water source. When touching the marker, the number and name of the water source will be
displayed and, by using Google Maps services, the user will be able to obtain navigation
guidelines to one of the five sources.

Another functionality dedicated to the user is that for reporting an issue. Using an
email service installed on a smartphone (Gmail, Yahoo), a template will be available in
order to describe the issue, for example: the water from a certain source has a strange taste,
an unusual color, or if some action that could contaminate the water has been observed.

For the administrator role, the authentication activity validates the username and the
password. The credentials are unique and are integrated in the application (we assume
that they are familiar to the hydrotechnical engineer responsible for the locality). After the
authentication process takes place, the administrator will be redirected to the water source
retesting activity.
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The retesting activity is conducted by reading the values from the sensors and updating
the database in a real-time approach. Therefore, this activity performs two different
functionalities which also depend on each other. These are implemented in two different
functions, readData() and updateData() (Figure 8a,b).

In the readData() function, the connection to Bluetooth is established. In order to
achieve this, an object of the type BluetoothAdapter is used. The process of managing the
connectivity is implemented by using a BluetoothSocket object, using the most common
RFCOMM (radio frequency communication) socket, which is a type supported by the
Android APIs.

The values for updateData() will not be undertaken unless the text field—which
suggests the entry of the number of the tested water source—is previously filled in. This
is necessary in order to update the data of the correct reference in the real-time database
(which is Firebase for the water status project). Upon obtaining the correct reference to
indicate the water source, we will update the values using the function setValue (newvalue)
for each parameter which is a child of the water source in the JSON tree structure of
the database.
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4.2. Software for the Arduino Board

The Arduino board collects the data from the sensors submerged in the water and
transmits the data using the Bluetooth module towards the mobile application, when this
is requested. The values from the sensors will be read only when this is requested by the
administrator from the mobile app. The program will wait until it receives the value “1”
via Bluetooth from the mobile app. This is transmitted from the mobile app to the system
when the administrator presses the read data button, as can be noted in Figure 9.
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After the request to transmit data from the sensors, the values from each sensor are
read and transmitted: temperature sensors, pH, TDS, and turbidity. The temperature sensor
is not relevant for the quality of the water but its value is required in the computation of
the total dissolved solids.

5. Calibration of Sensors

In this subsection of the paper, we present the calibration process applied to our
system. This is necessary in order to obtain error-free data from the physical measurements,
which will be sent towards the Firebase database for visualization in the mobile application.

Calibration of the pH sensor implies two processes: first of all, the process of calibrating
the sensor takes place, and secondly, the accuracy of the pH sensor is compared with a
digital pH meter.

The steps to calibrate the pH sensor are as follows:

1. Prepare two buffer solutions with different pH. In the scientific literature [8], the mini-
mum of this pH is 4.00, while the maximum we found to be either pH 7.00 or pH 9.20;

2. Dip the SEN0161 pH sensor in the pH 4.00 buffer solution;
3. Set the sensor to read the pH as having a value of 4.00;
4. Clear the probe with distilled water;
5. Dip the SEN0161 pH sensor in the pH 9.20 buffer solution;
6. Check the sensor reading;
7. Record the difference in the sensor reading, this is the error;
8. Clear the probe with distilled water;
9. Dip the SEN0161 pH sensor in the solution for which the pH should be obtained;
10. Calculate the actual pH with the following equation:

Actual pH = pH reading + Error (2)

11. For the pH sensor value to be relevant and in accordance to reality, we have collected
10 successive values, we have sorted the vector, and we have used the average value.
Hereafter, we have transformed this value in millivolts by using Equation (3).

Value =
average value ∗ 5

1024
10

(3)

12. We have multiplied by 3.5 the value from step 11, in order to obtain the pH value.

By applying the previous steps to our setup, the resulting error was 0.30 for pH 4.00
and 0.60 for pH 9.20. We present the obtained data only for 0.30, and the final values will
be highlighted in Tables 3–5 in Section 5.

The calibration of the TDS sensor follows a process similar to the one described for the
pH sensor. In order to increase the accuracy in measuring the TDS values, a temperature
sensor such as the DS18B20 could be used for temperature compensation in order to
improve accuracy [54]. A liquid solution with a known electrical conductivity or a known
TDS value is required. A standard buffer solution for this purpose will have about 707 ppm.
Otherwise, the reference value could be measured by means of a TDS pen.

The steps to calibrate the TDS sensor are as follows:

1. Prepare a standard buffer solution as previously described or a TDS pen;
2. Dip the TDS SEN0244 sensor in the buffer solution;
3. Clear the probe with distilled water;
4. Dip the TDS SEN0244 sensor in the solution to be measured;
5. Check the sensor reading;
6. Record the difference in the sensor reading, this is the error;
7. Clear the probe with distilled water;
8. Calculate the actual TDS value with the following equation:
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Actual TDS = TDS reading + Error (4)

We have applied the described steps to our setup and the resulting error was 13. The
final value are presented in Tables 3–5 in Section 5.

Table 3. Water source one and two results.

Date Source 1—School Source 2—Center

Temperature
(Grade) pH Turbidity

(V)
TDS

(PPM)
Temperature

(Grade) pH Turbidity
(V)

TDS
(PPM)

27 October 2022 21.37 7.55 4.51 300 20.87 7.54 4.50 261
29 October 2022 22.00 7.42 4.01 338 22.06 7.43 3.24 309

1 November 2022 22.94 7.27 3.89 305 23.00 7.43 3.56 335
12 November 2022 28.00 7.17 3.53 291 27.37 7.16 3.53 271
13 November 2022 22.69 7.33 3.58 313 22.50 7.26 3.59 285
14 November 2022 21.19 7.28 3.57 308 21.31 7.27 3.61 282
26 November 2022 23.56 7.47 3.48 315 23.87 7.41 3.54 301
27 November 2022 22.94 7.40 3.59 308 22.81 7.40 3.62 284
28 November 2022 24.56 7.41 3.60 293 24.81 7.29 3.56 274
4 December 2022 23.37 7.53 3.63 295 23.37 7.51 3.58 281
5 December 2022 23.12 7.54 3.59 325 23.19 7.50 3.51 316
6 December 2022 23.00 7.72 3.54 312 22.94 7.57 3.49 310

Average: 23.22 7.42 3.72 305.5 23.17 7.39 3.61 292.4
Minim: 21.19 7.17 3.48 291 20.87 7.16 3.24 261
Maxim: 28.00 7.72 4.51 338 27.37 7.57 4.50 335

Table 4. Water sources three and four results.

Date Source 3—Gataia Street Source 4—Colonie Neighborhood

Temperature
(Grade) pH Turbidity

(V)
TDS

(PPM)
Temperature

(Grade) pH Turbidity
(V)

TDS
(PPM)

27 October 2022 20.75 7.55 2.41 300 20.87 7.54 4.50 260
29 October 2022 21.94 7.41 3.43 338 22.06 7.43 3.24 294

1 November 2022 23.00 7.37 3.83 305 23.00 7.43 3.56 296
12 November 2022 27.97 7.03 3.40 291 27.37 7.16 3.53 258
13 November 2022 22.62 7.31 3.58 313 22.50 7.26 3.59 294
14 November 2022 21.19 7.26 3.59 308 21.31 7.27 3.61 266
26 November 2022 23.81 7.37 3.52 315 23.87 7.41 3.54 301
27 November 2022 22.87 7.40 3.60 308 22.81 7.40 3.62 270
28 November 2022 24.94 7.30 3.48 293 24.81 7.29 3.56 273
4 December 2022 23.00 7.42 3.51 295 23.37 7.51 3.58 275
5 December 2022 23.12 7.48 3.54 325 23.19 7.50 3.51 296
6 December 2022 22.94 7.58 3.57 312 22.94 7.57 3.49 290

Average: 23.17 7.37 3.45 308.5 23.17 7.39 3.61 281
Minim: 20.75 7.03 2.41 291 20.87 7.16 3.24 258
Maxim: 27.97 7.58 3.83 338 27.37 7.57 4.50 301

Table 5. Water source five results.

Date Source 5—Tabor

Temperature
(Grade) pH Turbidity

(V)
TDS

(PPM)

27 October 2022 21.87 7.51 4.66 753
29 October 2022 22.19 7.44 4.01 645

1 November 2022 23.31 7.43 3.86 570
12 November 2022 27.87 7.03 3.46 461
13 November 2022 22.56 7.38 3.59 539
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Table 5. Cont.

Date Source 5—Tabor

Temperature
(Grade) pH Turbidity

(V)
TDS

(PPM)
14 November 2022 21.31 7.26 3.59 460
26 November 2022 23.94 7.30 3.66 526
27 November 2022 23.12 7.41 3.66 492
28 November 2022 24.81 7.34 3.52 476
4 December 2022 23.25 7.30 3.63 490
5 December 2022 23.44 7.48 3.54 530
6 December 2022 23.06 7.57 3.50 537

Average: 23.39 7.37 3.72 539.9
Minim: 21.31 7.03 3.46 460
Maxim: 27.87 7.57 4.66 753

6. Testing of the Setup

The water status system concentrates on testing the three parameters previously
described. The tests were performed as a basis for developing the app on the five drinkable
water sources of Gataia locality, Timis County in Romania, from which the majority of the
population consumes drinkable water. The testing of these water sources was performed
during multiple months, testing the same quantity of water from each source. Each water
sample from the five sources was tested for 3 days in a row, because people replenish
their water stocks every 3 days on average. Therefore, we wanted to observe whether the
drinkable water from these sources changes its characteristics when stored. The collected
data from the five sources are presented in Tables 2–4.

The pH variations from Figure 10 demonstrate that each of the five sources have pH
values situated between 6.5 and 8.5, considered to be the optimal interval. Therefore, the
water from all sources is appropriate for consumption; we did not distinguish an acidic
tendency of the water sample, nor an alkaline tendency.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 23 
 

 

water stocks every 3 days on average. Therefore, we wanted to observe whether the drink-
able water from these sources changes its characteristics when stored. The collected data 
from the five sources are presented in Tables 2–4. 

The pH variations from Figure 10 demonstrate that each of the five sources have pH 
values situated between 6.5 and 8.5, considered to be the optimal interval. Therefore, the 
water from all sources is appropriate for consumption; we did not distinguish an acidic 
tendency of the water sample, nor an alkaline tendency. 

 
Figure 10. pH variation for the tested water sources. 

For the total dissolved solids, the tests’ results demonstrate that one of the water 
sources outperforms not only the ideal values but also the maximum accepted value of 
500 ppm, and this water source is source five—the Tabor water pump. Therefore, this 
water is not recommended for consumption because it can lead to intestine illnesses. 

Regarding TDS (Figure 11), the best drinkable water is the one marked in purple, 
source four—the Colonie neighborhood, which has the lowest values—between 258 and 
301. 

 
Figure 11. TDS variation for the tested water sources. 

Figure 10. pH variation for the tested water sources.

For the total dissolved solids, the tests’ results demonstrate that one of the water
sources outperforms not only the ideal values but also the maximum accepted value of
500 ppm, and this water source is source five—the Tabor water pump. Therefore, this water
is not recommended for consumption because it can lead to intestine illnesses.
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Regarding TDS (Figure 11), the best drinkable water is the one marked in purple, source
four—the Colonie neighborhood, which has the lowest values—between 258 and 301.
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Another conclusion that can be drawn is that none of the water sources belong to the
category of excellent drinkable water, with a TDS value between 50 and 150 ppm. However,
four of the five water sources have acceptable values, situated between 258 and 335 ppm.

From the collected data, it can be observed (Figure 12) that the turbidity of all sources
is quite linear with values close to each other.
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The application and the measurement results have been publicized to the population
of the rural settlement by means of direct discussions and leaflets. Specifically, the results
from source five (Tabor) had the most important impact, as the TDS concentration proves
that the water from this source is not recommended for consumption. A further campaign is
planned to take place by contacting the local administration and presenting the application.
Our approach is that the application will be advertised by the local administration in the
local newspaper which is read by all the people from this rural area.

7. Conclusions

Water quality has been proven as a key factor for maintaining the populace’s health;
therefore, different systems have been proposed in order to monitor and assure the quality
of water. This paper addresses the necessity of monitoring water in the rural areas of
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Romania. Therefore, we propose a low-cost internet-of-things proto-type which can be
used to detect different parameters from drinkable water. Our results demonstrate that
our system can be expanded to other rural areas that might need water monitoring. It also
shows which of the water sources from our experiments can be used for public consumption
and which should be avoided. In our experiments, all the water sources are drinkable, with
a single exception where the TDS values are not within proper limits, as they outperform
the maximum accepted value of 500 ppm.

In future work, we plan to involve the local council of the rural area in promoting
the benefits of the system, as well as the results. In the case of the water sources which
are not drinkable, this should be announced to the population as fast as possible via
different channels.

From the technical point of view, we plan to extend the number of sensors with another
spectrum—specifically one which can measure different chemical compounds—as well as
a method of data analysis based on several machine-learning approaches.
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