Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
Abstract
:1. Introduction
- (1)
- We propose a lightweight image SR network, named RMBN, which uses the residual learning of image dimension and feature dimension to make the network focus on recovery of high-frequency information. Additionally, by adding constrained activation, the performance degradation of the uint8 model is decreased. The deployment SR network can run efficiently and stably on the edge device equipped with the rockchip neural processor unit (RKNPU).
- (2)
- We propose RMBM to improve the expressiveness of the model by increasing the width and depth of the network during the training phase. In the deployment phase, RMBM is equivalently transformed into a simple convolutional layer using reparameterization to reduce the number of parameters.
- (3)
- We propose a novel PSE loss that takes into account the recovery of both global and edge information and achieves better balance between perception quality and objective evaluation metrics.
2. Related Work
2.1. Single Image Super-Resolution
2.2. Structure Reparameterization
2.3. Model Optimization
3. Method
3.1. Network Structure
3.2. Reparameterizable Multibranch Bottleneck Module
3.3. Reparameterization
3.4. Loss Function
4. Experiments
4.1. Datasets and Metrics
4.2. Implementation Details
4.3. Ablation Studies
4.4. Comparison with State-of-the-Art Methods
4.4.1. Quantitative Results
4.4.2. Qualitative Results
4.5. Edge Device Performance
4.6. Remote Sensing Image Super-Resolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. Memnet: A persistent memory network for image restoration. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4539–4547. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
- Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3862–3871. [Google Scholar]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight Image Super-Resolution with Information Multi-distillation Network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2024–2032. [Google Scholar]
- Liu, J.; Tang, J.; Wu, G. Residual Feature Distillation Network for Lightweight Image Super-Resolution. In Proceedings of the European Conference on Computer Vision AIM Workshops, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Vasu PK, A.; Gabriel, J.; Zhu, J.; Tuzel, O.; Ranjan, A. An improved one millisecond mobile backbone. arXiv 2022, arXiv:2206.04040. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Multi-stage progressive image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 14821–14831. [Google Scholar]
- Ding, X.; Guo, Y.; Ding, G.; Han, J. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 1911–1920. [Google Scholar]
- Zhang, X.; Zeng, H.; Zhang, L. Edge-oriented convolution block for real-time super resolution on mobile devices. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; pp. 4034–4043. [Google Scholar]
- Bhardwaj, K.; Milosavljevic, M.; O’Neil, L.; Gope, D.; Matas, R.; Chalfin, A.; Suda, N.; Meng, L.; Loh, D. Collapsible linear blocks for super-efficient super resolution. Proc. Mach. Learn. Syst. 2022, 4, 529–547. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 624–632. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5892–5900. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 2, 2672–2680. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; Volume 60, pp. 1646–1654. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super resolution using an efficient subpixel convolutional neural network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1874–1883. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2480–2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, Z.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 723–731. [Google Scholar]
- Li, W.; Zhou, K.; Qi, L.; Jiang, N.; Lu, J.; Jia, J. Lapar: Linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond. Adv. Neural Inf. Process. Syst. 2020, 33, 20343–20355. [Google Scholar]
- Luo, X.; Xie, Y.; Zhang, Y.; Qu, Y.; Li, C.; Fu, Y. LatticeNet: Towards Lightweight Image Super-resolution with Lattice Block. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 13733–13742. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Diverse branch block: Building a convolution as an inception-like unit. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 10886–10895. [Google Scholar]
- Justin, J.; Alexandre, A.; Li, F.-F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 694–711. [Google Scholar]
- Wang, Y.; Zhao, L.; Liu, L.; Hu, H.; Tao, W. URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution. Remote Sens. 2021, 13, 3848. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human level performance on ImageNet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1026–1034. [Google Scholar]
- Cai, Y.; Gao, G.; Jia, Z.; Lai, H. Image Reconstruction of Multibranch Feature Multiplexing Fusion Network with Mixed Multilayer Attention. Remote Sens. 2022, 14, 2029. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Chen, L.; Lu, X.; Zhang, J.; Chu, X.; Chen, C. Hinet: Half instance normalization network for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 182–192. [Google Scholar]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2366–2369. [Google Scholar]
- Jiang, K.; Wang, Z.; Yi, P.; Chen, C.; Huang, B.; Luo, Y.; Jiang, J. Multi-scale progressive fusion network for single image deraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 8346–8355. [Google Scholar]
- Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.H.; Zhang, L. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 114–125. [Google Scholar]
- Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Tan, M. Closed-loop matters: Dual regression networks for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 5407–5416. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the 2012 British Machine Vision Conference, Surrey, UK, 3–7 September 2012. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the International Conference on Curves and Surfaces, Avignon, France, 23–24 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 711–730. [Google Scholar]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Lu, W.; Tao, D.; Li, X. Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Process. 2009, 18, 1409–1423. [Google Scholar] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 391–407. [Google Scholar]
- Chu, X.; Zhang, B.; Ma, H.; Xu, R.; Li, Q. Fast, accurate and lightweight super-resolution with neural architecture search. In Proceedings of the 2020 25th International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2021; pp. 59–64. [Google Scholar]
- Liu, B.; Zhao, L.; Li, J.; Zhao, H.; Liu, W.; Li, Y.; Wang, Y.; Chen, H.; Cao, W. Saliency-Guided Remote Sensing Image Super-Resolution. Remote Sens. 2021, 13, 5144. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
Module | Set5 PSNR/SSIM | Set14 PSNR/SSIM | BSD100 PSNR/SSIM | Urban100 PSNR/SSIM | DIV2K PSNR/SSIM | ||
---|---|---|---|---|---|---|---|
BRB | IBRB | ESB | |||||
× | × | × | 30.82/0.8769 | 27.58/0.7680 | 27.00/0.7272 | 24.42/0.7435 | 29.38/0.8188 |
√ | × | × | 30.89/0.8781 | 27.62/0.7683 | 27.04/0.7279 | 24.47/0.7440 | 29.41/0.8195 |
× | √ | × | 31.08/0.8795 | 27.71/0.7690 | 27.09/0.7286 | 24.62/0.7451 | 29.55/0.8212 |
× | × | √ | 31.01/0.8790 | 27.66/0.7687 | 27.08/0.7282 | 24.53/0.7443 | 29.48/0.8201 |
√ | × | √ | 31.10/0.8799 | 27.74/0.7694 | 27.10/0.7289 | 24.66/0.7458 | 29.60/0.8214 |
√ | √ | × | 31.12/0.8804 | 27.77/0.7708 | 27.11/0.7291 | 24.72/0.7462 | 29.63/0.8218 |
× | √ | √ | 31.13/0.8806 | 27.80/0.7714 | 27.12/0.7292 | 24.77/0.7464 | 29.65/0.8220 |
√ | √ | √ | 31.14/0.8810 | 27.82/0.7721 | 27.14/0.7295 | 24.83/0.7469 | 29.69/0.8222 |
Clipped ReLU | Model-Type | Set5 PSNR/SSIM | Set14 PSNR/SSIM | Running Time (s) |
---|---|---|---|---|
× | fp32 | 31.14/0.8810 | 27.82/0.7721 | 0.018 |
uint8 | 29.96/0.8801 | 26.23/0.7710 | ||
√ | fp32 | 31.14/0.8810 | 27.82/0.7721 | 0.020 |
uint8 | 30.87/0.8808 | 27.55/0.7717 |
FDRL | Model-Type | Set5 PSNR/SSIM | Set14 PSNR/SSIM | Running Time (s) |
---|---|---|---|---|
× | fp32 | 31.06/0.8808 | 27.80/0.7716 | 0.019 |
uint8 | 30.22/0.8802 | 26.98/0.7709 | ||
√ | fp32 | 31.14/0.8810 | 27.82/0.7721 | 0.020 |
uint8 | 30.87/0.8808 | 27.55/0.7717 |
Loss | Set5 PSNR/SSIM | Set14 PSNR/SSIM | BSD100 PSNR/SSIM | Urban100 PSNR/SSIM | DIV2K PSNR/SSIM |
---|---|---|---|---|---|
L1 | 31.08/0.8807 | 27.80/0.7704 | 27.10/0.7286 | 24.82/0.7431 | 29.66/0.8200 |
L2 | 31.02/0.8801 | 27.74/0.7698 | 27.03/0.7277 | 24.71/0.7428 | 29.60/0.8196 |
L1 + LPSE | 31.14/0.8810 | 27.82/0.7721 | 27.14/0.7295 | 24.83/0.7469 | 29.69/0.8222 |
Method | Scale | Params (K) | FLOPs (G) | Set5 PSNR/SSIM | Set14 PSNR/SSIM | BSD100 PSNR/SSIM | Urban100 PSNR/SSIM | DIV2K PSNR/SSIM |
---|---|---|---|---|---|---|---|---|
bicubic | ×2 | - | - | 33.68/0.9307 | 30.24/0.8693 | 29.56/0.8439 | 26.88/0.8408 | 32.45/0.9043 |
SRCNN [17] | 24.00 | 52.70 | 36.66/0.9542 | 32.42/0.9063 | 31.36/0.8879 | 29.50/0.8946 | 34.61/0.9334 | |
ESPCN [19] | 21.18 | 4.55 | 36.83/0.9564 | 32.40/0.9096 | 31.29/0.8917 | 29.48/0.8975 | 34.63/0.9342 | |
ECBSR-M4C8 [12] | 2.80 | 0.64 | 36.93/0.9577 | 32.51/0.9107 | 31.44/0.8932 | 29.68/0.9014 | 34.80/0.9356 | |
RMBN-M4C8 (Ours) | 2.80 | 0.64 | 37.01/0.9580 | 32.62/0.9114 | 31.48/0.8936 | 29.72/0.9022 | 34.88/0.9366 | |
FSRCNN [46] | ×2 | 12.46 | 6.00 | 36.98/0.9556 | 32.62/0.9087 | 31.50/0.8904 | 29.85/0.9009 | 34.74/0.9340 |
SESR-M5 [13] | 13.52 | 3.11 | 37.39/0.9585 | 32.84/0.9115 | 31.70/0.8938 | 30.33/0.9087 | 35.24/0.9389 | |
ECBSR-M4C16 [12] | 10.20 | 2.34 | 37.33/0.9593 | 32.81/0.9129 | 31.66/0.8961 | 30.31/0.9091 | 35.15/0.9382 | |
RMBN-M4C16 (Ours) | 10.20 | 2.34 | 37.40/0.9588 | 32.88/0.9136 | 31.77/0.8969 | 30.44/0.9106 | 35.26/0.9391 | |
IMDN-RTC [7] | ×2 | 19.70 | 4.57 | 37.51/0.9600 | 32.93/0.9144 | 31.79/0.8980 | 30.67/0.9140 | 35.34/0.9398 |
SESR-M11 [13] | 27.34 | 6.30 | 37.58/0.9593 | 33.03/0.9128 | 31.85/0.8956 | 30.72/0.9136 | 35.45/0.9404 | |
ECBSR-M10C16 [12] | 24.30 | 5.60 | 37.55/0.9602 | 32.98/0.9144 | 31.85/0.8985 | 30.78/0.9149 | 35.38/0.9402 | |
RMBN-M10C16 (Ours) | 24.30 | 5.60 | 37.61/0.9609 | 33.03/0.9146 | 31.88/0.8989 | 31.02/0.9156 | 35.51/0.9406 | |
LapSRN [14] | ×2 | 813.00 | 29.90 | 37.52/0.9590 | 33.08/0.9130 | 31.80/0.8950 | 30.41/0.9100 | 35.31/0.9400 |
FLASR-C [47] | 408.00 | 93.70 | 37.66/0.9586 | 33.26/0.9140 | 31.96/0.8965 | 31.24/0.9187 | 35.57/0.9407 | |
SESR-XL [13] | 105.37 | 24.27 | 37.77/0.9601 | 33.24/0.9145 | 31.99/0.8976 | 31.16/0.9184 | 35.67/0.9420 | |
ECBSR-M10C32 [12] | 94.70 | 21.81 | 37.76/0.9609 | 33.26/0.9146 | 32.04/0.8986 | 31.25/0.9190 | 35.68/0.9421 | |
LAPAR-C [24] | 87.00 | 35.00 | 37.65/0.9593 | 33.20/0.9141 | 31.95/0.8969 | 31.10/0.9178 | 35.54/0.9411 | |
RMBN-M10C32 (Ours) | 94.70 | 21.81 | 37.80/0.9611 | 33.31/0.9152 | 32.10/0.9006 | 31.34/0.9201 | 35.73/0.9427 | |
VDSR [18] | ×2 | 665.00 | 612.60 | 37.53/0.9587 | 33.05/0.9127 | 31.90/0.8960 | 30.77/0.9141 | 35.43/0.9410 |
CARN-M [5] | 412.00 | 91.20 | 37.53/0.9583 | 33.26/0.9141 | 31.92/0.8960 | 31.23/0.9193 | 35.62/0.9420 | |
ECBSR-M16C64 [12] | 596.00 | 137.31 | 37.90/0.9615 | 33.34/0.9178 | 32.10/0.9018 | 31.71/0.9250 | 35.79/0.9430 | |
IMDN [7] | 694.00 | 158.80 | 38.00/0.9605 | 33.63/0.9177 | 32.19/0.8996 | 32.17/0.9283 | 35.87/0.9436 | |
LAPAR-A [24] | 548.00 | 171.00 | 38.01/0.9605 | 33.62/0.9183 | 32.19/0.8999 | 32.10/0.9283 | 35.89/0.9438 | |
RFDN [8] | 534.00 | 95.00 | 38.05/0.9606 | 33.68/0.9184 | 32.16/0.8994 | 32.12/0.9278 | 35.80/0.9433 | |
LatticeNet [25] | 756.00 | 169.50 | 38.06/0.9607 | 33.70/0.9187 | 32.20/0.8999 | 32.25/0.9288 | 35.88/0.9436 | |
RMBN-M16C64 (Ours) | 596.00 | 137.31 | 38.16/0.9621 | 33.74/0.9192 | 32.27/0.9034 | 32.29/0.9296 | 35.94/0.9444 |
Method | Scale | Params (K) | FLOPs (G) | Set5 PSNR/SSIM | Set14 PSNR/SSIM | BSD100 PSNR/SSIM | Urban100 PSNR/SSIM | DIV2K PSNR/SSIM |
---|---|---|---|---|---|---|---|---|
bicubic | ×4 | - | - | 28.43/0.8113 | 26.00/0.7025 | 25.96/0.6682 | 23.14/0.6577 | 28.10/0.7745 |
SRCNN [17] | 57.00 | 52.70 | 30.48/0.8628 | 27.49/0.7503 | 26.90/0.7101 | 24.52/0.7221 | 29.25/0.8090 | |
ESPCN [19] | 24.90 | 1.44 | 30.52/0.8697 | 27.42/0.7606 | 26.87/0.7216 | 24.39/0.7241 | 29.32/0.8120 | |
ECBSR-M4C8 [12] | 3.70 | 0.21 | 30.52/0.8698 | 27.43/0.7608 | 26.89/0.7220 | 24.41/0.7263 | 29.35/0.8133 | |
RMBN-M4C8 (Ours) | 3.70 | 0.21 | 30.61/0.8706 | 27.50/0.7614 | 27.02/0.7223 | 24.55/0.7289 | 29.40/0.8141 | |
FSRCNN [46] | ×4 | 12.00 | 5.00 | 30.70/0.8657 | 27.59/0.7535 | 26.96/0.7128 | 24.60/0.7258 | 29.36/0.8110 |
SESR-M5 [13] | 18.32 | 1.05 | 30.99/0.8764 | 27.81/0.7624 | 27.11/0.7199 | 24.80/0.7389 | 29.65/0.8189 | |
ECBSR-M4C16 [12] | 11.90 | 0.69 | 31.04/0.8805 | 27.78/0.7693 | 27.09/0.7283 | 24.79/0.7422 | 29.62/0.8197 | |
RMBN-M4C16 (Ours) | 11.90 | 0.69 | 31.14/0.8810 | 27.82/0.7721 | 27.14/0.7295 | 24.83/0.7469 | 29.69/0.8222 | |
IMDN-RTC [7] | ×4 | 21.00 | 1.22 | 31.22/0.8844 | 27.92/0.7730 | 27.18/0.7314 | 24.98/0.7504 | 29.76/0.8230 |
SESR-M11 [13] | 32.14 | 1.85 | 31.27/0.8810 | 27.94/0.7660 | 27.20/0.7225 | 25.00/0.7466 | 29.81/0.8221 | |
ECBSR-M10C16 [12] | 26.00 | 1.50 | 31.37/0.8866 | 27.99/0.7740 | 27.22/0.7329 | 25.08/0.7540 | 29.80/0.8241 | |
RMBN-M10C16 (Ours) | 26.00 | 1.50 | 31.41/0.8876 | 28.10/0.7753 | 27.29/0.7338 | 25.09/0.7549 | 29.92/0.8252 | |
LapSRN [14] | ×4 | 813.00 | 149.40 | 31.54/0.8850 | 28.19/0.7720 | 27.32/0.7280 | 25.21/0.7560 | 29.88/0.8250 |
SESR-XL [13] | 114.97 | 6.62 | 31.54/0.8866 | 28.12/0.7712 | 27.31/0.7277 | 25.31/0.7604 | 29.94/0.8266 | |
ECBSR-M10C32 [12] | 98.10 | 5.65 | 31.66/0.8911 | 28.15/0.7776 | 27.34/0.7363 | 25.41/0.7653 | 29.98/0.8281 | |
LAPAR-C [24] | 115.00 | 25.00 | 31.72/0.8884 | 28.31/0.7718 | 27.40/0.7292 | 25.49/0.7651 | 30.01/0.8284 | |
RMBN-M10C32 (Ours) | 98.10 | 5.65 | 31.79/0.8912 | 28.37/0.7780 | 27.48/0.7372 | 25.54/0.7665 | 30.04/0.8289 | |
VDSR [18] | ×4 | 665.00 | 612.60 | 31.35/0.8838 | 28.02/0.7678 | 27.29/0.7252 | 25.18/0.7525 | 29.82/0.8240 |
CARN-M [5] | 412.00 | 46.10 | 31.92/0.8903 | 28.42/0.7762 | 27.44/0.7304 | 25.62/0.7694 | 30.10/0.8311 | |
ECBSR-M16C64 [12] | 602.90 | 34.73 | 31.92/0.8946 | 28.34/0.7817 | 27.48/0.7393 | 25.81/0.7773 | 30.15/0.8315 | |
IMDN [7] | 715.00 | 40.90 | 32.21/0.8948 | 28.58/0.7811 | 27.56/0.7353 | 26.04/0.7838 | 30.22/0.8336 | |
LAPAR-A [24] | 659.00 | 94.00 | 32.15/0.8944 | 28.61/0.7818 | 27.61/0.7366 | 26.14/0.7871 | 30.24/0.8346 | |
RFDN [8] | 550.00 | 23.90 | 32.24/0.8952 | 28.61/0.7819 | 27.57/0.7360 | 26.11/0.7858 | 30.26/0.8344 | |
LatticeNet [25] | 777.00 | 43.60 | 32.21/0.8943 | 28.61/0.7812 | 27.57/0.7355 | 26.14/0.7844 | 30.26/0.8348 | |
RMBN-M16C64 (Ours) | 602.90 | 34.73 | 32.28/0.8957 | 28.66/0.7829 | 27.75/0.7408 | 26.24/0.7886 | 30.28/0.8350 |
Scale | Method | Set5 PSNR-uint8 | Set14 PSNR-uint8 | Running Time (s) |
---|---|---|---|---|
×2 | bicubic | 33.68 | 30.24 | 0.025 |
FSRCNN [46] | 34.66 | 30.17 | 0.074 | |
IMDN-RTC [7] | 36.03 | 30.89 | 0.172 | |
SESR-XL [13] | 36.14 | 31.45 | 0.057 | |
ECBSR-M10C32 [12] | 36.22 | 31.91 | 0.045 | |
RFDN [8] | 37.48 | 32.56 | 0.211 | |
RMBN-M10C32 (Ours) | 37.56 | 33.17 | 0.049 | |
×4 | bicubic | 28.43 | 26.00 | 0.020 |
FSRCNN [46] | 29.01 | 26.47 | 0.042 | |
IMDN-RTC [7] | 30.04 | 26.88 | 0.120 | |
SESR-XL [13] | 30.66 | 27.01 | 0.038 | |
ECBSR-M10C32 [12] | 30.98 | 27.04 | 0.027 | |
RFDN [8] | 31.12 | 27.49 | 0.178 | |
RMBN-M10C32 (Ours) | 31.42 | 28.01 | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Zheng, W.; Huang, F.; Wu, J.; Chen, L. Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution. Sensors 2023, 23, 3963. https://doi.org/10.3390/s23083963
Shen Y, Zheng W, Huang F, Wu J, Chen L. Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution. Sensors. 2023; 23(8):3963. https://doi.org/10.3390/s23083963
Chicago/Turabian StyleShen, Ying, Weihuang Zheng, Feng Huang, Jing Wu, and Liqiong Chen. 2023. "Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution" Sensors 23, no. 8: 3963. https://doi.org/10.3390/s23083963
APA StyleShen, Y., Zheng, W., Huang, F., Wu, J., & Chen, L. (2023). Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution. Sensors, 23(8), 3963. https://doi.org/10.3390/s23083963