
Citation: Li, B.; Ye, H.; Fu, S.; Gong,

X.; Xiang, Z. UnVELO: Unsupervised

Vision-Enhanced LiDAR Odometry

with Online Correction. Sensors 2023,

23, 3967. https://doi.org/10.3390/

s23083967

Academic Editor: Sameh Nassar

Received: 26 March 2023

Revised: 10 April 2023

Accepted: 11 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

UnVELO: Unsupervised Vision-Enhanced LiDAR Odometry
with Online Correction
Bin Li , Haifeng Ye , Sihan Fu , Xiaojin Gong * and Zhiyu Xiang

Faculty of the College of Information Science and Electronic Engineering, Zhejiang University,
Hangzhou 310027, China; 3130102392@zju.edu.cn (B.L.); 22031107@zju.edu.cn (H.Y.); sihan_fu@zju.edu.cn (S.F.);
xiangzy@zju.edu.cn (Z.X.)
* Correspondence: gongxj@zju.edu.cn

Abstract: Due to the complementary characteristics of visual and LiDAR information, these two
modalities have been fused to facilitate many vision tasks. However, current studies of learning-based
odometries mainly focus on either the visual or LiDAR modality, leaving visual–LiDAR odometries
(VLOs) under-explored. This work proposes a new method to implement an unsupervised VLO,
which adopts a LiDAR-dominant scheme to fuse the two modalities. We, therefore, refer to it as
unsupervised vision-enhanced LiDAR odometry (UnVELO). It converts 3D LiDAR points into a
dense vertex map via spherical projection and generates a vertex color map by colorizing each vertex
with visual information. Further, a point-to-plane distance-based geometric loss and a photometric-
error-based visual loss are, respectively, placed on locally planar regions and cluttered regions. Last,
but not least, we designed an online pose-correction module to refine the pose predicted by the trained
UnVELO during test time. In contrast to the vision-dominant fusion scheme adopted in most previous
VLOs, our LiDAR-dominant method adopts the dense representations for both modalities, which
facilitates the visual–LiDAR fusion. Besides, our method uses the accurate LiDAR measurements
instead of the predicted noisy dense depth maps, which significantly improves the robustness to
illumination variations, as well as the efficiency of the online pose correction. The experiments on
the KITTI and DSEC datasets showed that our method outperformed previous two-frame-based
learning methods. It was also competitive with hybrid methods that integrate a global optimization
on multiple or all frames.

Keywords: visual–LiDAR odometry; deep learning; multi-sensor fusion; test time optimization

1. Introduction

Due to the natural complementary characteristics of visual and LiDAR information,
these two modalities have been fused to facilitate many computer vision tasks such as 3D
object detection [1–3], depth completion [4–6], and scene flow estimation [7,8]. Especially
in the deep learning era, various fusion techniques including early-, late-, or multi-stage-
fusion [6] and vision- or LiDAR-dominant fusion [8] have been developed towards each
specific vision task. Contrastively, in learning-based odometries, the majority of researches
still focus on either visual odometry (VO) [9–16] or LiDAR odometry (LO) [17–26], leaving
visual–LiDAR-fusion-based odometry under-explored.

Most previous learning-based visual–LiDAR odometries (VLOs) [27–30] commonly
adopt a vision-dominant fusion scheme, which projects a LiDAR frame into a camera
frame and leads to a sparse depth map. Therefore, how to deal with sparse depth maps
or generate dense depth maps becomes a challenge to achieve an accurate VLO. Besides,
self-supervised VLOs often employ a view synthesis loss [27–29] or an additional point-to-
point distance loss [28,29], for learning. The former loss depends on the predicted dense
depth maps, which are inevitably noisy, while the latter is sensitive to the sparsity of points.

In this work, we adopted a LiDAR-dominant fusion scheme to implement our un-
supervised VLO. Specifically, the 3D point clouds of a LiDAR frame are converted into a

Sensors 2023, 23, 3967. https://doi.org/10.3390/s23083967 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23083967
https://doi.org/10.3390/s23083967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3253-378X
https://orcid.org/0009-0006-0969-7248
https://orcid.org/0000-0001-9176-5962
https://orcid.org/0000-0001-9955-3569
https://doi.org/10.3390/s23083967
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23083967?type=check_update&version=1

Sensors 2023, 23, 3967 2 of 17

dense vertex map via spherical projection as in LOs [17–21]. A vertex color map is then
generated, which assigns each vertex a color retrieved from the aligned visual image. We
further performed LiDAR-based point-to-plane matching within locally planar regions,
while establishing pixel correspondences based on visual images for cluttered regions.
A geometric consistency loss and a visual consistency loss are, respectively, defined for
these two different types of regions. By this means, the complementary characteristics
of the visual and LiDAR modalities are well exploited. Moreover, our LiDAR-dominant
scheme does not need to predict dense depth maps, avoiding the construction of a complex
depth-prediction network and preventing the noise introduced by the predicted depth.
Considering that LiDAR plays the dominant role in the visual–LiDAR fusion, we named
our method unsupervised vision-enhanced LiDAR odometry (UnVELO).

The losses used for UnVELO are unsupervised, requiring no ground truth labels
for training. This implies that the losses can also be applied for optimization during
test time. Recently, test time optimization has been explored in several unsupervised
VOs [14–16] to either refine the weights of their networks or refine the predicted outputs
further, referred to as online learning and online correction, respectively. Compared with
online learning [14,16], the online correction scheme [15] significantly reduces the number of
parameters to be optimized, leading to a higher computational efficiency. Thus, in this work,
we adopted online correction to refine the pose predicted by the trained UnVELO network.
In contrast to the optimization loss in VOs that tightly couples depth and pose prediction,
our UnVELO predicts the pose only, making test time optimization more effective.

In summary, the proposed method distinguishes itself from previous self-supervised
VLOs in the following aspects:

• We adopted a LiDAR-dominant fusion scheme to implement an unsupervised visual–
LiDAR odometry. In contrast to previous vision-dominant VLOs [27–29], which
predict both the pose and dense depth maps, our method only needs to predict the
pose, avoiding the inclusion of the noise generated from the depth prediction.

• We placed a geometric consistency loss and a visual consistency loss, respectively, on
locally planar regions and cluttered regions, by which the complementary characteris-
tics of the visual and LiDAR modalities can be exploited well.

• We designed an online pose-correction module to refine the predicted pose during
test time. Benefiting from the LiDAR-dominant scheme, our online pose correction is
more effective than its vision-dominant counterparts.

• The proposed method outperformed previous two-frame-based learning methods.
Besides, while introducing two-frame constraints only, our method achieved a per-
formance comparable to the hybrid methods, which include a global optimization on
multiple or all frames.

2. Related Work

Pose estimation is a key problem in simultaneous localization and mapping (SLAM),
which plays an important role in various applications such as autonomous driving [31],
3D reconstruction [32], and augmented reality [33]. To date, most odometry methods use a
visual camera or LiDAR for pose estimation. The visual camera can provide dense color
information of the scene, but is sensitive to the lighting conditions, while the latter can
obtain accurate, but sparse distance measurements; thus, they are complementary.

There are also some works that have attempted to exploit other on-board sensors for
pose estimation. For example, radar odometry [34] adopts an extended Kalman filter to
propagate the motion state from the IMU and corrects the drift by the measurements from
radar and GPS. DeepLIO [19] uses two different networks to extract motion features from
LiDAR and IMU data, respectively, and fuses the features by an attention-based soft fusion
module for pose estimation. A discussion of the full literature of these methods is beyond
the scope of this paper. In this section, we mainly focus on the methods using a visual
camera and LiDAR.

Sensors 2023, 23, 3967 3 of 17

2.1. Visual and LiDAR Odometry

Although state-of-the-art performance is maintained by conventional methods such
as LOAM [32], V-LOAM [35], and SOFT2 [36], learning-based visual or LiDAR odometries
have been attracting great research interest. In this work, we briefly review the learning-
based methods.

2.1.1. Visual Odometry

A majority of end-to-end visual odometry works focus on self- or unsupervised
monocular VOs [9–11,37–40]. They take a monocular image sequence as the input to jointly
train the pose- and depth-prediction networks by minimizing a view synthesis loss. To
overcome the scale ambiguity problem in monocular VOs, SC-SfMLearner [10] and Xiong
et al. [11] proposed geometric consistency constraints to achieve globally scale-consistent
predictions, while UnDeepVO [41] opts to learn from stereo sequences. Besides, additional
predictions such as the motion mask [41] and optical flow [42] are also integrated to address
motion or occlusion problems. Recently, hybrid methods such as DVSO [43] and D3VO [44]
have integrated end-to-end networks with traditional global optimization modules to boost
the performance.

2.1.2. LiDAR Odometry

In order to deal with sparse and irregular 3D point clouds, different representations
have been used to implement learning-based LiDAR odometries. For instance, DeepLO [18],
LO-Net [17], and DMLO [45] project 3D point clouds of each LiDAR frame into a 2D map
via spherical or cylindrical projection, by which the well-developed 2D CNNs can be used
for learning. SelfVoxeLO [24] and RLO [26] voxelize 3D point clouds and use 3D CNNs
to retain the 3D topology relations. PWCLO-Net [25] and SVDLO [46] attempt to process
the raw 3D point clouds by PointNet-based models [47]. For the training loss under self-
supervision, ICP-like [48–50], point-to-point matching loss [51], point-to-plane matching
loss [18,20], and plane-to-plane matching loss [20] are extensively used.

2.1.3. Visual–LiDAR Odometry

In contrast to the extensive studies on VOs and LOs, the works on visual–LiDAR
odometries are relatively scarce. Existing learning-based VLOs include Self-VLO [27],
RGBD-VO [28], MVL-SLAM [29], and Tibebu et al. [52]. Most of them [27–29] project 3D
points into a camera frame for depth representation. Then, visual and depth images are
either concatenated or separate to feed into 2D CNNs for feature extraction and fusion.
However, the feature fusion of sparse depth maps and dense visual images can be chal-
lenging. It is difficult to extract reliable multi-modal features for the areas that are not
covered by the depth. Besides, their main supervision signals come from the view synthesis
loss [37], which is still sensitive to lighting condition changes. Differently, Tibebu et al. [52]
projected LiDAR data into a 1D vector or 2D range map within the LiDAR frame. They
feed visual images and LiDAR data into two streams for feature extraction and constructed
a fusion layer and an LSTM module for feature fusion. Due to the different resolution of
visual and LiDAR data, they adopt two independent modules to extract visual and LiDAR
features respectively, and perform the feature fusion at the last layer only. In contrast to
the mentioned VLOs, our LiDAR-dominant method projects the visual and LiDAR data
into two dense images with the same size and obtains multi-modal features by a single
feature extractor. Moreover, our method predicts relative poses only for training; thus, the
optimization is also more efficient compared to the vision-dominant methods, which need
to predict both the depth and pose.

2.2. Visual–LiDAR Fusion

Visual–LiDAR fusion has been widely investigated in various tasks including depth
completion [5,6], scene flow estimation [7,8], and visual–LiDAR odometry [27–29]. Ac-
cording to which view plays the dominant role, we classify existing fusion strategies into

Sensors 2023, 23, 3967 4 of 17

vision-dominant, LiDAR-dominant, or vision–LiDAR-balanced ones. Most depth comple-
tion [5,6], scene flow estimation [7], and VLOs [27–29] adopt the vision-dominant strategy,
which projects LiDAR frames into camera frames, leading to sparse depth maps, which
are hard to deal with. Some scene flow estimation [8] and VLO [52] methods adopt the
vision–LiDAR-balanced fusion strategy, which constructs two streams to extract features,
respectively, from the LiDAR and camera views, often along with a complex module to
fuse the features of the two modalities.

In order to avoid dealing with sparse depth maps or designing complex fusion mod-
ules, we adopted the LiDAR-dominant fusion scheme. It first projects 3D LiDAR points
into a dense vertex map and then colorizes each vertex with the visual information. The
LiDAR-dominant fusion scheme is also adopted by several 3D object detection methods
such as PointAugmenting [53]. In contrast to these works that paint 3D points [53], we
encode LiDAR data as 2D vertex maps for more efficient computation.

2.3. Test Time Optimization

Test time optimization is a strategy to refine the weights or outputs of a trained
network during test time. Recently, this strategy has been applied to various unsupervised
learning tasks [16,54–58] since their losses require no ground truth, making test time
optimization possible. In self-supervised VOs, Li et al. [14] proposed online meta-learning
to continuously adapt their VO networks to new environments. Li et al. [58] optimized
the predicted depth and flow via a Gauss–Newton layer and took the optimized results
as pseudo labels to supervise the online learning of the depth and flow models. DOC [15]
designs a deep online correction framework to efficiently optimize the pose predicted by
a trained VO. GLNet [16] adopts both weight and output fine-tuning modules to boost
its performance.

All the above-mentioned self-supervised VOs [14–16] use the view synthesis loss for
learning and test time optimization. This loss involves the depth and pose, both of which
are predicted by the trained networks. Therefore, the quality of their pose refinement is
affected by the predicted depth maps, which are noisy. In this work, we applied online
correction to refine the pose predicted by our UnVELO network during test time. In
contrast to VOs [14–16], our losses only involve the predicted pose while using depth
information directly converted from accurate LiDAR measurements. It therefore facilitates
the pose refinement.

3. Materials and Methods

As shown in Figure 1, the proposed method consists of the data pre-processing, pose
estimation, and online correction modules. Given two consecutive LiDAR scans 〈St, St+1〉
and synchronized visual images 〈It, It+1〉, our method first generates the corresponding
vertex maps, normal maps, and vertex color maps in the data pre-processing step. Then,
the vertex maps and vertex color maps are concatenated and input into a network for pose
estimation. During test time, the pose predicted from the network is further optimized via
the online pose-correction module (OPC).

3.1. Data Pre-Processing
3.1.1. Vertex Map

As is common practice [18], we adopted a spherical projection π(·) : R3 7→ R2 to
convert each 3D point in a LiDAR frame into a pixel on a vertex map. Specifically, a 3D
point p = [px, py, pz]T within a field of view (FOV) is projected into a 2D pixel u via

u =

[
round

(
(fh/2− arctan(py, px))/δh

)
round

(
(fvu − arctan(pz,

√
p2

x + p2
y))/δv

)], (1)

in which fh is the horizontal FOV and fvu is the upper part of the vertical FOV fv. Moreover,
δh and δv denote the horizontal and vertical angular resolutions, respectively. We then
define a vertex map V ∈ RH×W×3 with H = b fv/δvc and W = b fh/δhc. If there is a 3D

Sensors 2023, 23, 3967 5 of 17

point p projected to the pixel u, we define V(u) = p; otherwise, V(u) = 0. Thus, along with
the vertex map, we also obtain a binary mask Mv to indicate the black pixels as follows:

Mv(u) = 1(||V(u)|| > 0), (2)

where 1(·) is an indicator and || · || denotes the L2 norm.

Spherical
Projection

PoseNet

Color
Mapping

Normal
Estimation

Camera
Projection

Photometric
Error

Point-to-plane
Error

POC

Visual Images

LiDAR Scans

Normal Maps

Vertex Color Maps

C

N iterations

Vertex Maps
LiDAR Modality Flow

Visual Modality Flow

Optimization Feedback

ConcatC

Data Pre-processing Pose Estimation Pose Online Correction

Figure 1. An overview of the proposed method. It consists of the data pre-processing, pose estimation,
and online pose-correction modules. Given two consecutive LiDAR scans 〈St, St+1〉 and visual images
〈It, It+1〉, the data pre-processing step produces vertex maps 〈Vt, Vt+1〉, normal maps 〈Nt, Nt+1〉, as
well as vertex color maps 〈Vct, Vct+1〉. The vertex maps and vertex color maps are concatenated and
fed into a pose-estimation network to predict the pose Pt←t+1 from frame t + 1 to frame t. During
test time, the predicted pose is further optimized via the online pose-correction module.

3.1.2. Normal Map

Normal vectors are important for point cloud registration as they can characterize
the local geometry around points [49,50]. In this work, we adopted singular-value de-
composition (SVD) [50,59] to estimate the normals. For each pixel u and its associated
point p = V(u), we compute the mean µ and covariance Σ within a neighboring set Np
as follows:

µ =
1
|Np| ∑

pi∈Np

pi, (3)

Σ =
1
|Np| ∑

pi∈Np

(pi − µ)T(pi − µ), (4)

where | · | denotes the cardinality of a set. Empirically, we set Np = {pi
∣∣ ||pi − p|| <

0.15||p|| ∧ pi ∈ W} as the set of neighboring points near p, andW is a local window of
size 5× 7 centered at u on the vertex map.

Then, we obtain the singular vector n corresponding to the minimum singular value of
Σ by SVD and take it as the normal vector. The normal map N ∈ RH×W×3 is then defined
by N(u) = n for valid pixels and N(u) = 0 otherwise. We generate a confidence map C by
computing the similarity of the normals with four neighbors [18]. That is,

C(u) = ∑
ui∈Nu

1 + N(ui) ·N(u)/||N(ui)||||N(u)||
8

, (5)

where · is the inner product andNu denotes the four connected neighboring pixels of u. The
confidence is in [0, 1]. A high confidence indicates a planar surface, and a low confidence
often corresponds to a cluttered region. Figure 2 shows that the regions on the ground

Sensors 2023, 23, 3967 6 of 17

and walls have high confidence and those on the object boundaries or plants have low
confidence. We therefore generate a binary mask Mn to indicate locally planar regions by

Mn(u) = 1(|N(u)| > 0∧C(u) > δc), (6)

where δc is the threshold of the confidence.

𝐈

𝐕

𝐍

𝐂

𝐕𝐜

𝐌𝐧

Figure 2. Typical examples in sequence 00 of KITTI. The visual image I, vertex map V, normal map
N, normal confidence map C, normal binary mask Mn, and vertex color map Vc are presented from
top to bottom.

3.1.3. Vertex Color Map

In order to fuse visual information, we generate a vertex color map Vc ∈ RH×W×3

based on the vertex map V and a synchronized visual image I. Specifically, for each vertex
p = V(u) on the vertex map, we retrieve the color of its corresponding pixel u′ at the visual
image through the following camera projection:[

u′

1

]
= [K|0]3×4TC←L

[
p
1

]
, (7)

where K ∈ R3×3 denotes a camera intrinsic matrix and TC←L ∈ R4×4 is the transformation
matrix from the LiDAR to the camera coordinates. Since the values of the projected u′ are
continuous, we obtain its color via the bilinear sampling scheme as in VOs [37]. That is
to say, Ĩ(u′) = ∑u′i∈Nu′

ωiI(u′i), in which Nu′ contains the four closest pixels of u′, ωi is
linearly proportional to the spatial proximity between u′ and u′i, and ∑ ωi = 1. Then, we
obtain a vertex color map Vc(u) = Ĩ(u′), along with a binary mask Mc:

Mc(u) = 1(|Vc(u)| > 0). (8)

3.2. Pose Estimation
3.2.1. Network Architecture

As shown in Figure 3, we constructed a fully convolutional neural network composed
of a feature encoder and a pose estimator to infer the relative pose between two consecutive
frames. Two consecutive vertex maps 〈Vt, Vt+1〉 and their corresponding vertex color maps
〈Vct, Vct+1〉 are concatenated as the input, which has a size of H ×W × 12. The feature
encoder contains 13 convolutional layers, where the kernel size of the first layer is 5× 5
and the rest are 3× 3. The vertical and horizontal strides of Layers 2, 6, 10 were set to (1, 2),
the strides of Layer 4, 8 to (2, 2), and the remaining with a stride of (1, 1). This implies

Sensors 2023, 23, 3967 7 of 17

that only 2 down-sampling operations are performed in the vertical direction, but 5 down-
sampling operations are performed in the horizontal direction, since the input’s width
is greater than its height. The pose estimator predicts a 3D translation vector [tx, ty, tz]T

and a 3D Euler vector [rx, ry, rz]T through two separate branches. Finally, we obtain a 6D
vector Pt←t+1 = [tx, ty, tz, rx, ry, rz]T , from which a 4× 4 transformation matrix Tt←t+1 is
constructed.

64

32

128

256

512

512 512 3

512 512 3

512

1024

C

Conv - Stride 1 Conv - Stride (1, 2)

Conv - Stride (2, 2)Global Avg Pooling

Figure 3. The architecture of our pose-estimation network.

3.2.2. Training Loss

We designed a loss L composed of a geometric loss Lgeo and a visual loss Lvis to train
the pose-estimation network. That is,

L = Lgeo + λLvis, (9)

where λ is a scaling factor to balance two terms. The details are introduced in the following.
The geometric loss Lgeo places geometric constraints on locally planar regions where

the normals have high confidence. We adopted the point-to-plane distance [18] to measure
the registration error of points in two LiDAR frames. Formally, given an estimated pose
Pt←t+1 and the corresponding transformation matrix Tt←t+1 from frame t+ 1 to frame t, for
each pixel ut+1 in frame t + 1, we transform the corresponding 3D point pt+1 = Vt+1(ut+1)
into frame t by [

p′t
1

]
= Tt←t+1

[
pt+1

1

]
, (10)

and obtain its registered correspondence p̂t in frame t by using a line-of-sight criterion [50].
That is,

p̂t = Vt(π(p′t)). (11)

Then, the confidence-weighted point-to-plane distance at pixel ut+1 is defined as follows:

dgeo(ut+1) = Ct(π(p′t))
∣∣Nt(π(p′t)) · (p′t − p̂t)

∣∣. (12)

The geometric loss is further defined by

Lgeo =
1

|Mgeo| ∑
ut+1

dgeo(ut+1)Mgeo(ut+1), (13)

Mgeo = Mvt+1 �Mnt+1. (14)

Sensors 2023, 23, 3967 8 of 17

Here, � denotes the elementwise multiplication. Mgeo is a binary mask to select valid and
highly confident pixels on locally planar regions.

The visual loss Lvis enforces visual consistency for pixels on object boundaries and
cluttered regions. This loss is complementary to the geometric loss. In contrast to the
geometric loss focusing on planar regions that have reliable normals, but often lack texture,
the visual loss pays attention to the regions with less confident for the normals, but textured.
Specifically, we transform Vt+1 into frame t via Equation (10) and generate a new vertex
color map Ṽct together with its mask M̃ct from the transformed v. We then adopted the
photometric error to measure the difference of the corresponding pixels in two vertex color
maps, that is

dvis(ut+1) = |Vct+1(ut+1)− Ṽct(ut+1)|, (15)

and the visual loss is defined as follows:

Lvis =
1

|Mvis| ∑
ut+1

dvis(ut+1)Mvis(ut+1), (16)

Mvis = M̃ct�Mct+1 � (1−Mnt+1). (17)

Here, Mvis marks the valid pixels with low confidences of the normals, which are often
lying on object boundaries and cluttered regions.

3.3. Online Pose Correction
3.3.1. Formulation

In the training of the pose-estimation network that is parameterized by Θ, the model
in essence performs the following optimization:

Θ∗ = argmin
Θ

∑
i∈TS
L(Vi

t, Vi
t+1, Vci

t, Vci
t+1, Pi

t←t+1(Θ)). (18)

Here, L is the loss defined in Equation (9) and TS denotes the training set. Note that all
parameters of the loss are ignored in Equation (9) for the sake of brevity.

Once the network is trained, the network’s parameters Θ∗ are fixed for inference. Dur-
ing test time, when two consecutive frames are given, we further optimized the predicted
pose Pt←t+1 while keeping Θ∗ fixed. This online correction benefits from the unsupervised
loss, which requires no ground truth labels. The optimization is conducted by

P∗t←t+1 = argmin
Pt←t+1

L(Vt, Vt+1, Vct, Vct+1, Pt←t+1(Θ∗)), (19)

which can be solved by the gradient descent method while taking the pose predicted by
the network as the initial value. We adopted Adam [60] to minimize it for N iterations.

3.3.2. Hard Sample Mining

Hard sample mining (HSM) is widely used in deep metric learning [61] and person
re-identification [62] to speed up convergence and improve the learned embeddings. In this
paper, we took HSM as a plug-and-play component in the OPC to filter the easy samples
and outliers for optimization, and thus, we can focus on the challenging correspondences
to facilitate the convergence. The sampling metric is defined within a neighborhood of each
sample. More specifically, given a point pt+1 = Vt+1(ut+1), we take all neighboring points
of its correspondence p̂t obtained by Equation (11) as matching candidates and calculate
their matching errors. Then, the relative standard deviation (RSD) of these matching errors
is calculated. A point having a large RSD implies that either the mean of the matching
errors within the neighborhood is small (i.e., easy point samples) or the standard deviation

Sensors 2023, 23, 3967 9 of 17

of the errors is large (i.e., outlier points). Therefore, we leave out both easy samples and
outliers, while selecting the remaining as hard samples. That is,

Mhard
geo = 1(RSD(ut+1) < mean(RSD(ut+1))). (20)

Then, we update the binary mask Mgeo by

Mgeo = Mgeo �Mhard
geo , (21)

and all the others in the optimization loss are kept unchanged.
Figure 4 presents two examples of our hard sample mining results. It shows that a

portion of points on locally planar regions and most points on trees are selected. When
only taking the selected points into consideration for the geometric loss, the online pose
correction procedure can be facilitated.

𝐕

𝐑𝐒𝐃

𝐌

𝐌
ௗ

𝐈

Figure 4. Typical examples in sequence 00 of KITTI. The visual image I, vertex map V, relative
standard deviation (RSD), hard sample mining result Mhard

geo , and the updated Mgeo are presented.

4. Results
4.1. Experimental Settings
4.1.1. Dataset and Evaluation Metrics

We evaluated the proposed method on the KITTI odometry benchmark [63] and the
DSEC dataset [64]. KITTI [63] contains 22 sequences of LiDAR scans captured by a Velodyne
HDL-64E, together with synchronized visual images. The ground truth pose of sequence
00-10 is provided for training or evaluation. DSEC [64] contains images captured by a stereo
RGB camera and LiDAR scans collected by a Velodyne VLP-16 LiDAR. However, since the
LiDAR and camera were not synchronized, we took the provided ground truth disparity
maps to obtain the 3D point clouds. Moreover, as no ground truth pose was available, we
took the pose estimated by LOAM [32] as the pseudo ground truth for the evaluation. For
the performance evaluation, following the official criteria provided in the KITTI benchmark,
we adopted the average translational error (%) and rotational error (deg/100 m) on all
possible sub-sequences of length (100, 200, · · · , 800) meters as the evaluation metrics.

4.1.2. Implementation Details

The propose method was implemented in PyTorch [65]. For the data pre-processing
on KITTI, we set fh = 80◦ considering the camera’s horizontal FOV, fv = 24◦, and fvu = 3◦.
In addition, we set δh = 0.375 and δv = 0.1786 in order to generate vertex maps with a size
of 64× 448. Note that only 3D points within the camera’s FOV were projected to ensure
most vertexes can be associated with visual information. Besides, each visual image was
resized into 192× 624 for computational efficiency. For data pre-processing on DSEC, we
set fh = 52◦, fv = 28◦, and fvu = 10◦. δh and δv were set according to the generated vertex

Sensors 2023, 23, 3967 10 of 17

maps with a size of 64× 320. We used images captured by the left RGB camera and cropped
the images to 840× 1320 from the top-right corner to ensure that they were covered by
the ground truth disparities. The cropped images were further resized to 384× 608 for
computational efficiency.

In the training stage, we used the Adam optimizer [60] with β1 = 0.9, β2 = 0.999 and
a mini-batch size of four to train the model for 300 K iterations. In KITTI, the initial learning
rate starts from 0.0001 and decreases by 0.8 every 30 K iterations. The scalar λ in the
training loss was set to 1.0 empirically, and the confidence threshold δc = 0.9. For the online
pose correction, we also adopted Adam with β1 = 0.9 and β2 = 0.999. Considering the
difference of the translation and rotation values, we set the learning rate of the translation
parameters as 0.025, while the learning rate of the rotation as 0.0025. In DSEC, the initial
learning rate was set to 0.0002. The learning rate of the translation and rotation parameters
in the online pose correction were set to 0.02 and 0.001. All other parameters were kept the
same as those in KITTI.

4.2. Ablation Studies

We first conducted a series of experiments on KITTI to investigate the effectiveness of
each component proposed in our pose-estimation network. To this end, we checked the
following model variants: (1) UnVELO1: only vertex maps were input to the pose network,
and only the geometric loss was used for training; (2) UnVELO2: both vertex maps and
vertex color maps were input, but only the geometric loss was used; (3) UnVELO3: both
vertex maps and vertex color maps were input, while both the geometric and visual loss
were used for training. All these model variants were tested without the online pose-
correction module. In order to illustrate the advantage of the LiDAR-dominant fusion
(LDF) scheme, a vision-dominant-fusion (VDF)-based model VLO [27] was also included
for comparison. (Note that this VLO model corresponds to the basic model “VLO1” in [27].
The full model “VLO4” in [27] was not taken since it adopts additional data augmentation
and flip consistency constraints, while we wanted to keep the setting the same as our
UnVELO models.) Besides, as is common practice [15,18,24,37,66], we took sequence 00-08
for training and sequence 09-10 for testing. The results are presented in Table 1. We
observed that the input of both vertex maps and vertex color maps can slightly improve the
performance, and the use of both the geometric and visual loss boosted the performance
further. Moreover, UnVELO3 outperformed the VLO model by a considerable margin,
indicating the advantage of the LiDAR-dominant scheme.

Table 1. The performance of our pose-estimation network and its variants. The Modal column
denotes the modalities of the network inputs, where “L” stands for LiDAR and “V” stands for visual.
The best results are bold.

Models Modal Fusion Scheme Loss Seq.09 Seq.10
trel rrel trel rrel

VLO [27] L-Dep+V VDF - 4.33 1.72 3.30 1.40

UnVELO1 L-2D - Lgeo 4.36 1.49 4.10 2.07
UnVELO2 L-2D+V LDF Lgeo 3.83 1.29 4.10 1.86
UnVELO3 L-2D+V LDF Lgeo + Lvis 3.52 1.12 2.66 1.71

“L-2D” and “L-Dep” denote the input LiDAR data are a 2D range map and sparse depth map, respectively.

We further investigated the effectiveness of the online correction (OC) module. In this
experiment, different numbers of iterations and the model without hard sample mining
(w/o HSM) were tested, and their results are reported in Table 2. In addition, we applied the
online pose-correction scheme to the vision-dominant model VLO and report their results
for comparison. Since VLO predicts both the depth and pose, we also tested the model
that refines both the pose and depth in the online correction, denoted as “VLO+OC-40
Opt-Dep”. The experiments showed that the online correction improved the performance
for both VLO and UnVELO. In VLO, the results of “VLO+OC-40 Opt-Dep” indicated that

Sensors 2023, 23, 3967 11 of 17

the additional depth refinement made the online correction harder, and the performance
may degenerate. When comparing UnVELO with VLO, we saw that the online correction
was much more effective for our UnVELO model and the performance was consistently
improved with the increase of the iteration number.

Table 2. The performance and runtime of our UnVELO model with different numbers of iterations
and the hard sample mining (HSM) scheme in online correction (OC). The best results are bold.

Models Iter Seq.09 Seq.10 Runtime (ms)trel rrel trel rrel

VLO 0 4.33 1.72 3.30 1.40 25.1
VLO+OC-10 10 3.69 1.91 5.51 2.41 219.6
VLO+OC-20 20 2.57 1.14 2.25 0.61 411.2
VLO+OC-40 40 2.58 1.02 1.40 0.66 705.3
VLO+OC-40 Opt-Dep 40 2.92 1.12 1.72 0.76 742.2
VLO+OC-40 w/o HSM 40 2.58 1.02 1.41 0.66 646.8

UnVELO3 0 3.52 1.12 2.66 1.71 20.1
UnVELO3+OC-10 10 2.10 0.94 3.26 1.18 142.1
UnVELO3+OC-20 20 1.53 0.53 1.42 0.77 245.4
UnVELO3+OC-40 40 0.99 0.26 0.71 0.31 458.6
UnVELO3+OC-40 w/o HSM 40 0.96 0.32 0.88 0.30 412.7

UnVELO3+OC-40-Inter2 40 1.04 0.27 0.69 0.24 -

Figure 5 plots the performance when varying with the iteration number of the online
correction. It shows that both translation and rotation errors converged around 40 iter-
ations and the hard sample mining scheme led to a more stable convergence and better
performance with a minor increase in the runtime (about 1 ms per iteration).

Figure 5. The performance of different model variants varied with respect to different iteration
numbers. The translation and rotation errors are the mean errors of sequences 09 and 10.

4.3. Runtime Analysis

We conducted all experiments on a single NVIDIA RTX 2080Ti GPU and provide
the runtime of each model variant in Table 2. When comparing the UnVELO and VLO
model variants with the same number of online correction iterations, we observed that the
LiDAR-dominant UnVELO models performed more efficiently than the visual-dominant
counterparts. Moreover, the UnVELO model was very efficient when online correction
was not applied. However, as expected, the runtime of our model went up along with
the increase of the iteration number. For compensation, we additionally conducted an
experiment that performed the online correction on frame t and frame t + 2, which is
denoted as the “UnVELO3+OC-40-Inter2” model. It achieved comparable results to the
one conducting the online correction on two consecutive frames while taking half the time.

Sensors 2023, 23, 3967 12 of 17

4.4. Comparison to State-of-the-Art
4.4.1. Comparison on KITTI

Finally, we compared our full model, which is “UnVELO3+OC-40” in Table 2, but is
referred to as UnVELO here, with state-of-the-art learning-based methods on the KITTI
odometry benchmark. Since some methods [15,18,20,27,66,67] are trained on sequence
00-08 and tested on sequence 09-10, while the others [17,21,24–26,45,46,68] are trained on
sequence 00-06 and evaluated on sequence 07-10, we conducted two experiments following
these two different splittings. The results are respectively presented in Tables 3 and 4. The
results showed that our method outperformed most end-to-end unsupervised odometry
methods in both experimental settings. It was also comparable to hybrid methods, which
integrate global optimization modules.

Table 3. Comparison of the proposed method with the SoTA trained on Seq.00-08 and tested on
Seq.09-10 of KITTI. The Modal column denotes the modalities of network inputs, where “L” stands
for LiDAR and “V” stands for visual. The best results are bold.

Method Modal Seq.09 Seq.10
trel rrel trel rrel

Unsup.
DeepLO [18] L-2D 4.87 1.95 5.02 1.83
DeLORA [20] L-2D 6.05 2.15 6.44 3.00
SeVLO [27] L-Dep+V 2.58 1.13 2.67 1.28

Hybrid SS-DPC-Net [67] V 2.13 0.80 3.48 1.38
DeLORA w/ mapping [20] L-2D 1.54 0.68 1.78 0.69

T-Opt.

DOC [15] V 2.26 0.87 2.61 1.59
DOC+ [15] V 2.02 0.61 2.29 1.10
Li et al. [58] V 1.87 0.46 1.93 0.30
Wagstaff et al. [66] V 1.19 0.30 1.34 0.37
UnVELO (Ours) L-2D+V 0.99 0.26 0.71 0.31

“L-2D” and “L-Dep” denote the input LiDAR data are a 2D range map and sparse depth map, respectively.

Table 4. Comparison of the proposed method with the SoTA trained on Seq.00-06 and tested on
Seq.07-10 of KITTI. The Modal column denotes the modalities of network inputs, where “L” stands
for LiDAR and “V” stands for visual.

Method Modal Seq.07 Seq.08 Seq.09 Seq.10
trel rrel trel rrel trel rrel trel rrel

Sup.
PWCLO-Net [25] L-P 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62
LO-Net [17] L-2D 1.70 0.89 2.12 0.77 1.37 0.58 1.80 0.93
E3DLO [21] L-2D 0.46 0.38 1.14 0.41 0.78 0.33 0.80 0.46

Unsup.
UnPWC-SVDLO [46] L-P 0.71 0.79 1.51 0.75 1.27 0.67 2.05 0.89
SelfVoxeLO [24] L-vox 3.09 1.81 3.16 1.14 3.01 1.14 3.48 1.11
RLO [26] L-vox 3.24 1.72 2.48 1.10 2.75 1.01 3.08 1.23

Hybrid

DMLO [45] L-2D 0.73 0.48 1.08 0.42 1.10 0.61 1.12 0.64
DMLO w/mapping [45] L-2D 0.53 0.51 0.93 0.48 0.58 0.30 0.75 0.52
LO-Net w/mapping [17] L-2D 0.56 0.45 1.08 0.43 0.77 0.38 0.92 0.41
SelfVoxeLO w/mapping [24] L-vox 0.31 0.21 1.18 0.35 0.83 0.34 1.22 0.40
RLO w/mapping [26] L-vox 0.56 0.26 1.17 0.38 0.65 0.25 0.72 0.31

UnVELO (Ours) L-2D+V 1.46 0.78 1.25 0.43 0.88 0.26 0.79 0.33
“L-P” denotes the input LiDAR data are raw point clouds. “L-2D” denotes the input LiDAR data are a 2D range
map, and “L-vox” denotes the input LiDAR data are 3D voxels.

In addition, Figure 6 plots the trajectories obtained by our UnVELO and the code-
available methods including SeVLO [27], DeepLO [18], and DeLORA [20] for a more
intuitive comparison. The plots show that our method obtained trajectories closer to the
ground truth than the others.

Sensors 2023, 23, 3967 13 of 17

(a) Sequence 09 (b) Sequence 10

Figure 6. Trajectories of sequences 09 and 10 on KITTI.

4.4.2. Comparison on DSEC

We also compared the proposed method with SeVLO [27], DeepLO [18], and De-
LORA [20] on the DSEC dataset, which contains both day and night scenarios with large
illumination variations. We should note that the generated vertex map will be sparser under
poor illumination conditions, since the 3D point clouds are obtained from the disparity
maps, as shown in Figure 7. Besides, the LiDAR used in this dataset had only 16 lines,
which is too sparse for the LOs. Thus, the compared LOs also took the 3D point clouds
obtained from the disparity maps as the input.

For a more comprehensive comparison, we chose a day sequence “zurich_city_06_a”
and a night sequence “zurich_city_03_a” with totally different illumination conditions for
testing. The comparison results are presented in Table 5, and the trajectories are plotted in
Figure 8. The results demonstrated the effectiveness of our method.

Table 5. Evaluation results on the DSEC dataset. The Modal column denotes the modalities of
network inputs, where “L” stands for LiDAR and “V” stands for visual. The best results are bold.

Method Modal Day(06_a) Night(03_a)
trel rrel trel rrel

Unsup.
DeLORA [20] † L-2D 22.53 9.93 39.00 12.48
DeepLO [18] † L-2D 42.43 20.77 51.26 31.12
SeVLO [27] L-Dep+V 8.42 5.78 22.43 24.37

UnVELO (Ours) L-2D+V 2.07 2.10 5.84 7.92
† The LiDAR only had 16 lines, which is too sparse for LOs. Therefore, LOs were also tested on 3D point clouds
projected from disparity maps.

zu
ric
h_

ci
ty
_0
6_
a

zu
ric
h_

ci
ty
_0
3_
a

Figure 7. Typical samples in the test sequences of DSEC.

Sensors 2023, 23, 3967 14 of 17

(a) zurich_city_06_a (b) zurich_city_03_a

Figure 8. Trajectories of sequence “zurich_city_06_a” (day scenario) and “zurich_city_03_a” (night
scenario) on DSEC.

5. Conclusions

Vision-dominant VLOs need to predict both dense depth maps and relative poses
for unsupervised training, but the noisy predicted depth map limits the accuracy of the
predicted pose. In this paper, we proposed an unsupervised vision-enhanced LiDAR
odometry, which projects visual and LiDAR data into two dense images with the same
resolutions to facilitate the visual–LiDAR fusion. A geometric loss and a visual loss were
proposed to exploit the complementary characteristics of these two modalities, leading to
a better robustness to the lighting condition variations compared to the vision-dominant
VLOs trained with view the synthesis loss. Moreover, an online correction module was
also designed to refine the predicted pose during test time. The experiments on KITTI and
DSEC showed that our method outperformed the other two-frame-based learning methods
and was even competitive with hybrid methods. Besides, while the pose accuracy of
vision-dominant VLOs is limited by the noisy predicted dense depth, our LiDAR-dominant
method only needs to predict the pose, which not only achieved better performance, but
also improved the optimization efficiency significantly.

Our method provides a novel promising design for VLO. In future work, it will be
necessary to explore the long-term temporal constraints for pose correction to improve the
robustness to the abrupt motion changes, dynamic objects, and other disturbances.

Author Contributions: Conceptualization, B.L. and X.G.; data curation, B.L.; formal analysis, B.L.
and X.G.; funding acquisition, X.G.; investigation, B.L.; methodology, B.L.; project administration,
B.L.; resources, X.G. and Z.X.; software, B.L. and H.Y.; supervision, X.G. and Z.X.; validation, H.Y.
and S.F.; visualization, B.L.; writing—original draft, B.L.; writing—review and editing, H.Y., S.F., X.G.
and Z.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Primary Research and Development Plan of Zhejiang
Province under Grant 2021C01196.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request. The
datasets used in this study are openly available in https://www.cvlibs.net/datasets/kitti/eval_
odometry.php (accessed on 1 May 2022) (KITTI odometry benchmark) and https://dsec.ifi.uzh.ch/
dsec-datasets/download/ (accessed on 30 January 2023) (DSEC dataset).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Y.; Yu, A.W.; Meng, T.; Caine, B.; Ngiam, J.; Peng, D.; Shen, J.; Lu, Y.; Zhou, D.; Le, Q.V.; et al. DeepFusion: Lidar-Camera Deep

Fusion for Multi-Modal 3D Object Detection. In Proceedings of the CVPR, New Orleans, LA, USA, 19–24 June 2022.
2. Vora, S.; Lang, A.H.; Helou, B.; Beijbom, O. PointPainting: Sequential Fusion for 3D Object Detection. In Proceedings of the

CVPR, Seattle, WA, USA, 13–19 June 2020.

https://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://dsec.ifi.uzh.ch/dsec-datasets/download/
https://dsec.ifi.uzh.ch/dsec-datasets/download/

Sensors 2023, 23, 3967 15 of 17

3. Pang, S.; Morris, D.; Radha, H. Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. In
Proceedings of the WACV, Waikoloa, HI, USA, 4–8 January 2022.

4. Ma, F.; Karaman, S. Sparse-to-dense: Depth prediction from sparse depth samples and a single image. In Proceedings of the
ICRA, Brisbane, QLD, Australia, 21–25 May 2018.

5. Hua, J.; Gong, X. A normalized convolutional neural network for guided sparse depth upsampling. In Proceedings of the IJCAI,
Stockholm, Sweden, 13–19 July 2018.

6. Hu, M.; Wang, S.; Li, B.; Ning, S.; Fan, L.; Gong, X. Penet: Towards precise and efficient image guided depth completion. In
Proceedings of the ICRA, Xi’an, China, 30 May–5 June 2021.

7. Rishav, R.; Battrawy, R.; Schuster, R.; Wasenmüller, O.; Stricker, D. DeepLiDARFlow: A deep learning architecture for scene flow
estimation using monocular camera and sparse LiDAR. In Proceedings of the IROS, Las Vegas, NV, USA, 25–29 October 2020.

8. Liu, H.; Lu, T.; Xu, Y.; Liu, J.; Li, W.; Chen, L. CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow and Scene
Flow Estimation. In Proceedings of the CVPR, New Orleans, LA, USA, 19–24 June 2022.

9. Wang, R.; Pizer, S.M.; Frahm, J.M. Recurrent Neural Network for (Un-)supervised Learning of Monocular Video Visual Odometry
and Depth. In Proceedings of the CVPR, Long Beach, CA, USA, 16–20 June 2019.

10. Bian, J.; Li, Z.; Wang, N.; Zhan, H.; Shen, C.; Cheng, M.; Reid, I. Unsupervised Scale-consistent Depth and Ego-motion Learning
from Monocular Video. In Proceedings of the NIPS, Vancouver, BC, Canada, 8–14 December 2019.

11. Xiong, M.; Zhang, Z.; Zhong, W.; Ji, J.; Liu, J.; Xiong, H. Self-supervised Monocular Depth and Visual Odometry Learning with
Scale-consistent Geometric Constraints. In Proceedings of the IJCAI, Online, 7–15 January 2020.

12. Feng, T.; Gu, D. SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial
Networks. IEEE Robot. Autom. Lett. 2019, 4, 4431–4437. [CrossRef]

13. Li, X.; Hou, Y.; Wu, Q.; Wan, P.; Li, W. Dvonet: Unsupervised monocular depth estimation and visual odometry. In Proceedings of
the VCIP, Sydney, Australia, 1–4 December 2019.

14. Li, S.; Wang, X.; Cao, Y.; Xue, F.; Yan, Z.; Zha, H. Self-Supervised Deep Visual Odometry with Online Adaptation. In Proceedings
of the CVPR, Seattle, WA, USA, 13–19 June 2020.

15. Zhang, J.; Sui, W.; Wang, X.; Meng, W.; Zhu, H.; Zhang, Q. Deep Online Correction for Monocular Visual Odometry. In
Proceedings of the ICRA, Xi’an, China, 30 May–5 June 2021.

16. Chen, Y.; Schmid, C.; Sminchisescu, C. Self-Supervised Learning with Geometric Constraints in Monocular Video: Connecting
Flow, Depth, and Camera. In Proceedings of the ICCV, Seoul, Republic of Korea, 27 October–2 November 2019.

17. Li, Q.; Chen, S.; Wang, C.; Li, X.; Wen, C.; Cheng, M.; Li, J. LO-Net: Deep Real-Time Lidar Odometry. In Proceedings of the CVPR,
Long Beach, CA, USA, 16–20 June 2019.

18. Cho, Y.; Kim, G.; Kim, A. Unsupervised Geometry-Aware Deep LiDAR Odometry. In Proceedings of the ICRA, Paris, France,
31 May–31 August 2020.

19. Iwaszczuk, D.; Roth, S. Deeplio: Deep Lidar Inertial Sensor Fusion for Odometry Estimation. ISPRS Ann. Photogramm. Remote
Sens. Spat. Inf. Sci. 2021, V-1-2021, 47–54.

20. Nubert, J.; Khattak, S.; Hutter, M. Self-supervised learning of lidar odometry for robotic applications. In Proceedings of the ICRA,
Xi’an, China, 30 May–5 June 2021.

21. Wang, G.; Wu, X.; Jiang, S.; Liu, Z.; Wang, H. Efficient 3D Deep LiDAR Odometry. arXiv 2021, arXiv:2111.02135.
22. Lu, W.; Zhou, Y.; Wan, G.; Hou, S.; Song, S. L3-net: Towards learning based lidar localization for autonomous driving. In

Proceedings of the CVPR, Long Beach, CA, USA, 16–20 June 2019.
23. Lu, W.; Wan, G.; Zhou, Y.; Fu, X.; Yuan, P.; Song, S. DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration.

In Proceedings of the ICCV, Seoul, Republic of Korea, 27 October–2 November 2019.
24. Xu, Y.; Huang, Z.; Lin, K.Y.; Zhu, X.; Shi, J.; Bao, H.; Zhang, G.; Li, H. SelfVoxeLO: Self-supervised LiDAR Odometry with

Voxel-based Deep Neural Networks. In Proceedings of the CoRL, Online, 16–18 November 2020.
25. Wang, G.; Wu, X.; Liu, Z.; Wang, H. Pwclo-net: Deep lidar odometry in 3d point clouds using hierarchical embedding mask

optimization. In Proceedings of the CVPR, Virtual, 19–25 June 2021.
26. Xu, Y.; Lin, J.; Shi, J.; Zhang, G.; Wang, X.; Li, H. Robust self-supervised lidar odometry via representative structure discovery and

3d inherent error modeling. IEEE Robot. Autom. Lett. 2022, 7, 1651–1658. [CrossRef]
27. Li, B.; Hu, M.; Wang, S.; Wang, L.; Gong, X. Self-supervised Visual-LiDAR Odometry with Flip Consistency. In Proceedings of the

WACV, Waikoloa, HI, USA, 5–9 January 2021.
28. Liu, Q.; Zhang, H.; Xu, Y.; Wang, L. Unsupervised Deep Learning-Based RGB-D Visual Odometry. Appl. Sci. 2020, 10, 5426.

[CrossRef]
29. An, Y.; Shi, J.; Gu, D.; Liu, Q. Visual-LiDAR SLAM Based on Unsupervised Multi-channel Deep Neural Networks. Cogn. Comput.

2022, 14, 1496–1508. [CrossRef]
30. Song, Z.; Lu, J.; Yao, Y.; Zhang, J. Self-Supervised Depth Completion From Direct Visual-LiDAR Odometry in Autonomous

Driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11654–11665. [CrossRef]
31. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In

Proceedings of the IROS, Algarve, Portugal, 7–12 October 2012.
32. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the RSS 2014—Robotics: Science and

Systems Conference, Berkeley, CA, USA, 12–16 July 2014.

http://doi.org/10.1109/LRA.2019.2925555
http://dx.doi.org/10.1109/LRA.2022.3140794
http://dx.doi.org/10.3390/app10165426
http://dx.doi.org/10.1007/s12559-022-10010-w
http://dx.doi.org/10.1109/TITS.2021.3106055

Sensors 2023, 23, 3967 16 of 17

33. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234.

34. Quist, E.B.; Niedfeldt, P.C.; Beard, R.W. Radar odometry with recursive-RANSAC. IEEE Trans. Aerosp. Electron. Syst. 2016,
52, 1618–1630. [CrossRef]

35. Zhang, J.; Singh, S. Visual-lidar odometry and mapping: Low-drift, robust, and fast. In Proceedings of the ICRA, Seattle, WA,
USA, 26–30 May 2015.

36. Cvišić, I.; Marković, I.; Petrović, I. SOFT2: Stereo Visual Odometry for Road Vehicles Based on a Point-to-Epipolar-Line Metric.
IEEE Trans. Robot. 2022, 23, 1–16.

37. Zhou, T.; Brown, M.; Snavely, N.; Lowe, D.G. Unsupervised learning of depth and ego-motion from video. In Proceedings of the
CVPR, Honolulu, HI, USA, 21–26 July 2017.

38. Zhang, J.; Su, Q.; Liu, P.; Xu, C.; Chen, Y. Unsupervised learning of monocular depth and ego-motion with space–temporal-
centroid loss. Int. J. Mach. Learn. Cybern. 2020, 11, 615–627. [CrossRef]

39. Yin, X.; Wang, X.; Du, X.; Chen, Q. Scale Recovery for Monocular Visual Odometry Using Depth Estimated with Deep Convolu-
tional Neural Fields. In Proceedings of the ICCV, Venice, Italy, 22–29 October 2017.

40. He, M.; Zhu, C.; Huang, Q.; Ren, B.; Liu, J. A review of monocular visual odometry. Vis. Comput. 2020, 36, 1053–1065. [CrossRef]
41. Li, R.; Wang, S.; Long, Z.; Gu, D. UnDeepVO: Monocular Visual Odometry Through Unsupervised Deep Learning. In Proceedings

of the ICRA, Brisbane, QLD, Australia, 21–25 May 2018.
42. Yin, Z.; Shi, J. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose. In Proceedings of the 2018

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.
43. Yang, N.; Wang, R.; Stuckler, J.; Cremers, D. Deep virtual stereo odometry: Leveraging deep depth prediction for monocular

direct sparse odometry. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018.
44. Yang, N.; Stumberg, L.; Wang, R.; Cremers, D. D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual

Odometry. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020.
45. Li, Z.; Wang, N. Dmlo: Deep matching lidar odometry. In Proceedings of the IROS, Las Vegas, NV, USA, 24 October 2020.
46. Tu, Y. UnPWC-SVDLO: Multi-SVD on PointPWC for Unsupervised Lidar Odometry. arXiv 2022, arXiv:2205.08150.
47. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings

of the CVPR, Honolulu, HI, USA, 21–26 July 2017.
48. Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987,

PAMI-9, 698–700. [CrossRef] [PubMed]
49. Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the Robotics: Science and Systems V, Seattle, WA, USA, 28

June–1 July 2009.
50. Serafin, J.; Grisetti, G. NICP: Dense normal based point cloud registration. In Proceedings of the IROS, Hamburg, Germany, 28

September–3 October 2015.
51. Fu, X.; Liu, C.; Zhang, C.; Sun, Z.; Song, Y.; Xu, Q.; Yuan, X. Self-supervised learning of LiDAR odometry based on spherical

projection. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221078669. [CrossRef]
52. Tibebu, H.; De-Silva, V.; Artaud, C.; Pina, R.; Shi, X. Towards Interpretable Camera and LiDAR Data Fusion for Autonomous

Ground Vehicles Localisation. Sensors 2022, 22, 8021. [CrossRef] [PubMed]
53. Wang, C.; Ma, C.; Zhu, M.; Yang, X. Pointaugmenting: Cross-modal augmentation for 3d object detection. In Proceedings of the

CVPR, Virtual, 19–25 June 2021.
54. Casser, V.; Pirk, S.; Mahjourian, R.; Angelova, A. Depth prediction without the sensors: Leveraging structure for unsupervised

learning from monocular videos. In Proceedings of the AAAI, Honolulu, HI, USA, 27 January–1 February 2019.
55. McCraith, R.; Neumann, L.; Zisserman, A.; Vedaldi, A. Monocular depth estimation with self-supervised instance adaptation.

arXiv 2020, arXiv:2004.05821.
56. Hong, S.; Kim, S. Deep Matching Prior: Test-Time Optimization for Dense Correspondence. In Proceedings of the ICCV, Montreal,

QC, Canada, 10–17 October 2021.
57. Zhu, W.; Huang, Y.; Xu, D.; Qian, Z.; Fan, W.; Xie, X. Test-Time Training for Deformable Multi-Scale Image Registration. In

Proceedings of the ICRA, Xi’an, China, 30 May–5 June 2021.
58. Li, S.; Wu, X.; Cao, Y.; Zha, H. Generalizing to the Open World: Deep Visual Odometry with Online Adaptation. In Proceedings

of the CVPR, Virtual, 19–25 June 2021.
59. Golub, G.H.; Van Loan, C.F. Matrix Computations; The Johns Hopkins University Press: Baltimore, MD, USA, 1996.
60. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
61. Suh, Y.; Han, B.; Kim, W.; Lee, K.M. Stochastic Class-based Hard Example Mining for Deep Metric Learning. In Proceedings of

the CVPR, Long Beach, CA, USA, 16–20 June 2019.
62. Chen, K.; Chen, Y.; Han, C.; Sang, N.; Gao, C. Hard sample mining makes person re-identification more efficient and accurate.

Neurocomputing 2020, 382, 259–267. [CrossRef]
63. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the KITTI vision benchmark suite. In Proceedings of the

CVPR, Providence, RI, USA, 16–21 June 2012.
64. Gehrig, M.; Aarents, W.; Gehrig, D.; Scaramuzza, D. Dsec: A stereo event camera dataset for driving scenarios. IEEE Robot. Autom.

Lett. 2021, 6, 4947–4954. [CrossRef]

http://dx.doi.org/10.1109/TAES.2016.140829
http://dx.doi.org/10.1007/s13042-019-01020-6
http://dx.doi.org/10.1007/s00371-019-01714-6
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://www.ncbi.nlm.nih.gov/pubmed/21869429
http://dx.doi.org/10.1177/17298806221078669
http://dx.doi.org/10.3390/s22208021
http://www.ncbi.nlm.nih.gov/pubmed/36298368
http://dx.doi.org/10.1016/j.neucom.2019.11.094
http://dx.doi.org/10.1109/LRA.2021.3068942

Sensors 2023, 23, 3967 17 of 17

65. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the NIPS, Vancouver, BC, Canada, 8–14
December 2019.

66. Wagstaff, B.; Peretroukhin, V.; Kelly, J. On the Coupling of Depth and Egomotion Networks for Self-Supervised Structure from
Motion. IEEE Robot. Autom. Lett. 2022, 7, 6766–6773. [CrossRef]

67. Wagstaff, B.; Peretroukhin, V.; Kelly, J. Self-supervised deep pose corrections for robust visual odometry. In Proceedings of the
ICRA, Paris, France, 31 May–31 August 2020.

68. Tu, Y.; Xie, J. UnDeepLIO: Unsupervised Deep Lidar-Inertial Odometry. In Proceedings of the 6th Asian Conference on Pattern
Recognition—ACPR 2021, Jeju Island, Republic of Korea, 9–12 November 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LRA.2022.3176087

	Introduction
	Related Work
	Visual and LiDAR Odometry
	Visual Odometry
	LiDAR Odometry
	Visual–LiDAR Odometry

	Visual–LiDAR Fusion
	Test Time Optimization

	Materials and Methods
	Data Pre-Processing
	Vertex Map
	Normal Map
	Vertex Color Map

	Pose Estimation
	Network Architecture
	Training Loss

	Online Pose Correction
	Formulation
	Hard Sample Mining

	Results
	Experimental Settings
	Dataset and Evaluation Metrics
	Implementation Details

	Ablation Studies
	Runtime Analysis
	Comparison to State-of-the-Art
	Comparison on KITTI
	Comparison on DSEC

	Conclusions
	References

