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Abstract: We used the first enzyme-free synthesis and stabilization of soluble melanochrome (MC)
and 5,6-indolequinone (IQ) derived from levodopa (LD), dopamine (DA), and norepinephrine (NE)
oxidation to develop a simple colorimetric assay for catecholamine detection in human urine, also
elucidating the time-dependent formation and molecular weight of MC and IQ using UV–Vis spec-
troscopy and mass spectrometry. The quantitative detection of LD and DA was achieved in human
urine using MC as a selective colorimetric reporter to demonstrate the potential assay applicability
in a matrix of interest in therapeutic drug monitoring (TDM) and in clinical chemistry. The assay
showed a linear dynamic range between 5.0 mg L−1 and 50.0 mg L−1, covering the concentration
range of DA and LD found in urine samples from, e.g., Parkinson’s patients undergoing LD-based
pharmacological therapy. The data reproducibility in the real matrix was very good within this
concentration range (RSDav% 3.7% and 6.1% for DA and LD, respectively), also showing very good
analytical performances with the limits of detection of 3.69 ± 0.17 mg L−1 and 2.51 ± 0.08 mg L−1

for DA and LD, respectively, thus paving the way for the effective and non-invasive monitoring of
dopamine and levodopa in urine from patients during TDM in Parkinson’s disease.

Keywords: Parkinson’s disease; therapeutic drug monitoring; urine analysis; levodopa; dopamine;
norepinephrine; melanochrome; indolequinone; catecholamines oxidation; colorimetric assay

1. Introduction

The development of a simple colorimetric assay is at the forefront of (bio)analysis as a
result of its outstanding merits for point of care and spot-testing for real-time sensing with
simplified procedures, and the reduced time and cost of the analyses [1–3].

Recently, we focused our work on the development of colorimetric (and fluorescence-
based) methods for the quantification of analytes of different molecular weights, within
matrices of increasing complexity, i.e., chlorine in water, sugars in beer wort, p-nitrophenol
in urine, polyphenols and anthocyanins in foods, proteins in human serum and urine,
and catecholamines in therapeutic drugs. In particular, the development of simple, rapid,
and low-cost assays that work in real matrices as urine for drug monitoring in clinical
chemistry is of relevance. We recently developed a colorimetric assay for the selective
detection and quantification of levodopa in the co-presence of carbidopa, and vice versa, in
some pharmaceutical formulations for the treatment of patients with Parkinson’s disease
(PD) [4,5], i.e., an age-associated progressive neurodegenerative disorder affecting millions
of people worldwide but still without a cure other than the pharmacological treatment of
symptoms using the synthetic catecholamine levodopa (LD) to restore the concentration of
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the naturally occurring neurotransmitter dopamine (DA) in the brain in order to improve
the quality of life of patients [6–8].

The method was based on the discovery of the capability of magnesium cation in
dimethyl sulfoxide to trigger the development of a purple/blue color in the presence
of levodopa or dopamine, whereas this color was absent, in the same environment, for
norepinephrine (NE) and for synthetic catecholamine analogues carbidopa (CD) and benser-
azide [5]. We ascribed the purple/blue color to melanochrome (MC) formation, an elusive
intermediate stage of catecholamine polymerization, previously generated through enzy-
matic oxidation of LD, 5,6-dihydroxyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid
(DHICA) [9–14] and described as biindolyls isomers generated from the nucleophilic attack
of DHI molecule on the electrophile molecule 5,6-indolequinone (IQ) [12–14].

In this work, we develop the study of the MC and IQ formation to better define their
use as colorimetric reporters in the quantitative detection of catecholamines. Then, we
move on to the application of the assay to human urine samples to demonstrate its potential
applicability in LD therapeutic drug monitoring (TDM). The uncertainty regarding the
precise structure of MC arose from its high instability when obtained with previous methods
that required the chemical reduction and the acetylation of the colored precipitate to achieve
soluble fractions for the analyses, impairing the direct investigation of the molecule [12–14].
Analogously, any previous attempt to isolate and characterize the IQ failed, and indirect
chemical evidence of an indolequinone formation was obtained through the oxidation
of analogue model molecules with protected reactive positions that conferred a longer
stability to the transient intermediates [15–19]. Here, instead, we took the advantage
of the first enzyme-free synthesis and stabilization in Mg2+/DMSO at basic pH of both
soluble MC (λmax 540–600 nm), derived from the oxidation of DA or its synthetic analogue
LD, and soluble IQ (λmax 340–360 nm) derived from the oxidation of norepinephrine
(NE). Accordingly, it was possible to shed light on their molecular weight (MW) and time
evolution through the direct examination of such compounds by means of LC-MS/MS-
based analysis and using UV–Vis spectroscopy, confirming the MW indicated for the
enzymatic product for the purple/blue melanochrome [12]. The MC was the main reaction
product, with a m/z value 293.1 [M+H]+, for synthesis starting from DA or LD, although
with slightly different kinetics, as highlighted by visible spectroscopy, therefore, indicating
the decarboxylation of the latter monomer during the synthesis. Differently, according to an
m/z value 147.2 (M+H)+ and the UV–Vis spectra, we found that the reaction product of NE,
in the same condition, was mainly the IQ, without melanochrome formation, underlining
the main influence of the β-hydroxyl group on the oxidative pathway of NE. The oxidative
pathway of catecholamines, leading to melanochrome and indolequinone formation, is
appreciably time-dependent, due to several steps of oxidation, intra-, and intermolecular
reactions [15–19]. Such kinetics were here analyzed using visible spectroscopy, and by
recording the absorbance values over time at 340 nm, which is associated with IQ formation,
and 590 nm, which is associated with MC.

We believe that stable melanochrome generation and quantification in situ could facili-
tate the quantification of DA and LD for monitoring the LD-based therapy in PD. To this
end, we evaluated the MC formation for the first time in human urine samples fortified with
DA and LD with concentrations within the range found in urine samples from Parkinson’s
patients undergoing LD-based pharmacological therapy, obtaining very good analytical
performances (RSDav% 3.7% and LOD 3.69 ± 0.17 mg L−1 for DA, RSDav% 6.1% and LOD
2.51± 0.08 mg L−1 for LD). Accordingly, such selective synthesis of melanochrome in a real
matrix appears to be very useful for the effective and non-invasive monitoring of dopamine
and levodopa in urine, helping to develop more effective pharmacological treatments of
the symptoms, avoiding inappropriate dosages or toxic effects, that could become part of
the Internet of Things in healthcare, as discussed recently [20].
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2. Materials and Methods
2.1. The Chemicals

Magnesium acetate tetrahydrate, ammonium chloride, hydrochloric acid, dimethyl
sulfoxide, dopamine hydrochloride, norepinephrine, levodopa, and all mass spectrometry
solvents and reagents were obtained from Sigma-Aldrich (Milan, Italy). Artificial urine
(AU) was obtained from LCTech GmbH (Obertaufkirchen, Germany). AU composition: pH
6.6 ± 0.1, 25.00 g L−1 urea, 9.00 g L−1 sodium chloride, 2.50 g L−1 potassium dihydrogen
orthophosphate, 2.50 g L−1 disodium hydrogen orthophosphate anhydrous, 3.00 g L−1

sodium sulphite hydrated, 3.00 g L−1 ammonium chloride and 2.00 g L−1 creatinine.

2.2. Standard Solutions and Urine Samples

Standard mixtures of levodopa, dopamine, and norepinephrine for quantitative
analysis were prepared via the serial dilution of each catecholamine in a proper buffer
(150 mM Mg(Ac)2, 150 mM NH4Cl at pH 9.4 in DMSO:H2O 1:1 (v/v)) [4]. The same buffer
was used to dilute 1:8 (v/v) artificial urine or human urine samples from volunteers that did
not consume levodopa-based drugs. The urine samples were spiked with a known amount
of catecholamine spanning from 5.0 to 50.0 mg L−1 to simulate post-drug administered
urine specimens [21,22].

2.3. Visible Spectroscopy

Absorbance studies were performed at 25 ◦C using Ocean View VIS-NIR (Maybach-
strasse, Germany). The samples were analyzed in cuvettes with an optical path length
of 1.0 cm. Time-dependent studies were performed on levodopa, dopamine, and nore-
pinephrine standard mixtures, recording the visible spectra up to 144 min. Absorbance
measurements of spiked urine samples were performed in 96-well microplate using Thermo
Scientific Multiskan GO Microplate Spectrophotometer (Fisher scientific, Rodano (MI)) for
the assessment of matrix effect in a quantitative bioanalytical assay. All colorimetric data
from catecholamines oxidation within urine samples were fitted using the linear equation

A585nm = m × C + a (1)

where A585nm represents the absorbance at 585 nm due to formation of a purple/blue
melanochrome, m represents the slope of the calibration curve, C represents the cate-
cholamine concentration, and a represents the absorbance of unspiked urine samples at
585 nm (blank). The limit of detection (LOD) and the limit of quantification (LOQ) were
calculated based on the standard deviation (SD) of the mean of the blank values (unspiked
urine samples), as 3 × SD/m and 10 × SD/m, respectively, where m indicates the slope
of the calibration curve. The assay reproducibility is reported as (mean) relative standard
deviation % (RSDav%).

2.4. LC–MS/MS

The mass analysis was performed by injecting 1 µL of standard mixtures of dopamine,
levodopa, and norepinephrine via HPLC auto sampler of a 6420 triple quadrupole system
with an HPLC 1100 series binary pump from Agilent Technologies equipped with a C18
reverse phase column from Supelco. The samples were eluted (starting 1 min after injection)
with a linear gradient of eluent B (0.1% formic acid and 5 mM ammonium formate in
methanol) in A (0.1% formic acid and 5 mM ammonium formate in water) from 10% to
80% in 4 min. The column was re-equilibrated at the initial conditions for 4 min. A mass
spectrometry method analysis based on multiple reaction monitoring (MRM) tandem mass
spectrometry was set up to analyze the samples using a turbo ion spray source operating
in positive-ion mode.
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3. Results and Discussion

We first report the results achieved on the direct MC and IQ formation from cate-
cholamines oxidation, respectively, dopamine (DA), levodopa (LD) forming MC and NE,
IQ, instead. The LC-MS/MS and UV–Vis spectroscopic studies identified these products
and showed the kinetics of their formation in solution after catecholamines addition. These
findings allow the further use of MC and IQ as colorimetric reporters in the catecholamines
quantitative detection. Furthermore, the direct MC formation is here demonstrated for the
first time in human urine samples, paving the way to quantitative detection of DA and LD
in this matrix. To that end, DA and LD spiked urine samples have been analyzed using the
colorimetric assay based on MC formation and detection at 585 nm.

3.1. LC–MS/MS Analysis

Dopamine standard mixture at 50 µg L−1 was used for the optimization of the MRM
transitions of melanochrome (MC), while an analogue norepinephrine solution was used
for the optimization of IQ analysis. The samples were automatically tuned, accurately se-
lecting ionization polarity, production, and collision energy (CE). A MS/Full Scan analysis
was performed to find precursor ions of the target molecules. Subsequently, the selection of
tandem mass spectral parameters improved the precursor ion detection. Finally, fragmenta-
tion experiments were performed at different collision energy (CE) values for identification
of the products of reaction (see Table 1). Figure S1 (see Supplementary Materials) reports
the MRM transitions of MC derived from DA and LD, where the coelution of the selected
precursor/fragment ion pairs, using the most intense one for quantification, and the others
as qualifiers of the products can be observed. The chromatograms indicates that MC eluted
before DA or LD. NE generated IQ molecules only, whereas MC was not detected.

Table 1. Results of LC-MS/MS analysis with MRM parameters in positive-ion mode.

Molecule Precursor Ion [M+H]+ Product Ions Collision Energy (eV)

DA 154.1
137.2 10
91.1 25
65.2 35

LD 198.1

152.1 10
139.0 15
135.0 15
107.0 35
79.0 35

1 MC 293.1

214.9 15
136.9 15
121.9 25
58.9 30

NE 170.1
107.1 15
135.0 15
151.8 15

2 IQ 147.2
103.2 10
73.9 20

1 Melanochrome from DA or LD. 2 5,6-indolequinone from NE.

3.2. Spectroscopic Characterization of Products

The UV–Vis spectra in Figure 1 indicate that the products of the oxidation of dopamine
or levodopa in Mg2+/DMSO at basic pH are strictly related, although not identical in shape
and relative intensity of the bands, and very different from the products of the oxidation of
norepinephrine in the same conditions.
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Figure 1. Time-dependent oxidation of natural catecholamines 0.2 g L−1 in DMSO:H2O 1:1 (v/v)
in the presence of 150 mM Mg(Ac)2, 150 mM NH4Cl at pH 9.4 and 25 ◦C between 2 min and
144 min. UV–Vis spectra (upper panels) and absorbance values (lower panels) at 340 nm (orange
circles/dashed line) and 590 nm (purple circles/dashed lines) for dopamine (DA), levodopa (LD),
and norepinephrine (NE).

Dopamine products gave a broad absorbance with a main peak in the visible region
corresponding to the λmax value found for the blue 2,2′-DHI-dimer (590–600 nm) [10],
plus a barely visible shoulder at the λmax value, which was previously associated with
the purple 2,4′- and 2,7′-DHI-dimer (540 nm) as well as with the melanochrome formed
through levodopa oxidation [9–14]. Spectra from LD were similar to those from DA but
the two visible peaks are almost equal in intensity (Figure 1, upper panels). Notably,
these soluble purple/blue molecules (Figure S2) were obtained directly via DA and LD
dissolution in a proper solvent system without enzymatic and chemical oxidation, tran-
sition metals, or the acetylation of 5,6-dihydroxyindoles, which was previously required
to achieve soluble fractions of melanochrome for the analyses [12–14]. Differently, there
was very low absorbance for NE in the spectral region associated with melanochrome
formation, showing instead a larger absorbance band with a less defined λmax value of
approximately 340–360 nm (Figure 1). This broad band covers the visible region, conferring
a yellow color to the solutions. A similar peak at 340–360 nm also appeared after the oxida-
tion of DA and LD, reaching roughly 50% or 100% of the corresponding melanochrome
absorbance, respectively. According to literature data and the results from mass spectrom-
etry (see above) the absorbance band with a λmax about 340–360 nm was ascribed to IQ,
here appearing stable, differently from any previous characterization attempt confined
to 5,6-dihydroxyindole analogues presenting substituents at the reactive positions of the
indole ring [9,15–19]. Finally, the melanochrome formation appears faster for LD than for
DA (Figure 1, lower panels), reaching a plateau after 1 h of reaction at 25 ◦C for LD only.

Considering the equal boundary conditions here explored for synthesis and analysis,
in terms of concentrations, temperature, solvents, ionic strength, and pH, we ascribed the
differences described above between spectra to the different abundance of reaction products,
depending on the substituents of the catecholamine monomer, i.e., the α-carboxylic group
for LD, and the β-hydroxyl group for NE. These findings for DA and LD oxidation, in
fact, agree with previous studies carried out on DHI and DHICA, where the oxidative
coupling led to several melanochrome isomers, with the same m/z, with different kinetics
of formation [18,23–25]. Analogously, our results on the oxidation of NE agree with
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the evidence found in the literature that this neurotransmitter, although able to generate
synthetic or natural melanins, evades the melanochrome formation reported for DA through
a different oxidative pathway [26,27].

Taken together, the results reported in this paper could provide further insights into
the biological route to melanins. In fact, the large amount of IQ here detected for NE
oxidation underlined that IQ formation is not sufficient for the melanochrome synthesis.
In particular, considering that the formation of the 2,2′-, 2,4′-, and 2.7′-biindolyls, i.e., the
melanochrome isomers, previously isolated through the oxidation of DHI [12–14,23], was
associated with the nucleophilic attack of DHI molecule to the electrophile molecule IQ,
it appears, at least in our conditions, that the redox equilibrium of indole derivatives
upon NE oxidation is largely dominated by IQ, largely limiting the nucleophilic reagent
concentration and thus impairing the melanochrome formation.

3.3. Quantification of Catecholamines in Urine

The melanochrome was used as a selective colorimetric reporter, developing a quanti-
tative diagnostic assay for DA and LD in urine. The experimental procedure was firstly
optimized for levodopa in artificial urine (AU), obtaining the maximum absorbance sig-
nal at 585 nm, i.e., the best available optical filter for melanochrome detection, at an
AU-to-buffer volume ratio of 1:8. The same experimental conditions were applied to the
melanochrome generation in human urine spiked with DA, LD, and NE up to 50.0 mg L−1,
covering the concentration range of DA and LD found in urine samples from Parkinson’s
patients undergoing LD-based pharmacological therapy [21,22]. After 15 min, NE did
not generate the purple color at any catecholamine monomer concentration, spanning
from 5.0 to 50.0 mg L−1, as expected from zero absorbance after 15 min at 585 nm for NE
in Figure 1. Conversely, the real human urine matrix did not impair the melanochrome
formation in the presence of DA and LD, as showed by the linear concentration-dependent
signal at 585 nm (Figure 2), where the absorbance signals are close to the values obtained
in buffer after 15 min (Figure 1), demonstrating a limited matrix effect on the selective
color development. The absorbance values for LD oxidation appear larger than those for
DA at this reaction time, which is in further agreement with the kinetics of melanochrome
formation showed in Figure 1 (lower panels). The linear fitting of calibration curves in
Figure 2 gave good results (Table S1), with limits of detection (LOD) of 3.69 ± 0.17 mg L−1

and 2.51 ± 0.08 mg L−1 for DA and LD, respectively, which are lower than the minimum
catecholamine concentration found in the literature for urine upon pharmacological ther-
apy (27.75–56.57 mg L−1 for DA and 3.73–33.48 mg L−1 for LD [22]), being close to free
dopamine levels found in healthy volunteers (1.71–3.22 mg L−1 [22]), previously reported
to be, on average, 10 times lower than those found in urine samples from patients treated
with levodopa [21,22]. The reproducibility of data in Figure 2, expressed as RSDav%, was
3.7% and 6.1% for DA and LD, respectively (Table S1). These excellent analytical perfor-
mances could pave the way for the facile quantification of DA and LD in clinically relevant
diagnostics and in therapeutic drug monitoring (TDM).
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Figure 2. Catecholamines calibration curves in human urine spiked with levodopa (LD, pur-
ple circles), dopamine (DA, white circles), and norepinephrine (NE, orange circles), from 5.0 to
50.0 mg L−1, and dilute 1:8 (v/v) with a proper buffer (150 mM Mg(Ac)2, 150 mM NH4Cl at pH 9.4
in DMSO:H2O 1:1 (v/v)) [4]. Absorbance at 585 nm was acquired at 25 ◦C after 15 min of solution
mixing. Each point represents the mean ± SD (n = 4).

4. Conclusions

We demonstrated the selective direct formation of soluble melanochrome from dopamine
and levodopa, compatible with the formation of purple/blue biindolyl molecules, pre-
viously indicated for the elusive enzymatic product of oxidation of these neurotrans-
mitters. Moreover, we found that norepinephrine in the same condition gave only the
5,6-indolequinone monomer, previously characterized only for analogues model molecules.
We thus determined the molecular weight of MC and IQ and showed their formation
kinetics. This controlled generation of melanochrome was further quantified in spiked
human urine samples within the range of DA and LD found in urine post-LD-based drugs,
achieving very good analytical performances (RSDav% 3.7% and LOD 3.69 ± 0.17 mg L−1

for DA, RSDav% 6.1% and LOD 2.51 ± 0.08 mg L−1 for LD), and thus appearing to be very
useful for the sensitive, selective, reproducible, low-cost, and non-invasive monitoring
of therapy of Parkinson’s disease; the therapeutic drug monitoring allows the testing of
inappropriate dosage that limits the benefits or generates toxic effects [28]. Recently, it has
been reported that the chemical modification of phenolic and primary amine functional
groups enabled the mapping of the dopamine and serotonin pathways, together with other
neurotransmitters, metabolites, and amino acids via MALDI–MS imaging [29]. In this
framework, the direct and selective melanochrome formation in situ from dopamine, as
reported in the present study, may also contribute to better characterize the dopamine
pathway using the highly sensitive mass spectrometry imaging applied to ex-vivo tissue
specimen from the human brain with positive impacts towards more effective attempts in
the pharmacological treatment of motor symptoms of Parkinson’s disease [29,30].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23083971/s1, Figure S1: MRM chromatograms; Figure S2:
Time-dependent oxidation of catecholamines at 25 ◦C (Spectra in Figure 1). Chosen pictures of
dopamine (DA1 and DA2), norepinephrine (NE1 and NE2), and levodopa (LD1 and LD2) 0.2 g L−1

in (1) DMSO:H2O 1:1 (v/v) or (2) H2O in presence of 150 mM Mg(Ac)2, 150 mM NH4Cl at pH 9.4
after 2 min,10 min, 30 min, and 60 min; Table S1: Dopamine and levodopa colorimetric quantification
in human urine (Figure 2).
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