
Citation: Alimisis, V.; Gennis, G.;

Gourdouparis, M.; Dimas, C.;

Sotiriadis, P.P. A Low-Power Analog

Integrated Implementation of the

Support Vector Machine Algorithm

with On-Chip Learning Tested on a

Bearing Fault Application. Sensors

2023, 23, 3978. https://doi.org/

10.3390/s23083978

Academic Editor: Hossam A. Gabbar

Received: 16 March 2023

Revised: 8 April 2023

Accepted: 11 April 2023

Published: 14 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Low-Power Analog Integrated Implementation of the Support
Vector Machine Algorithm with On-Chip Learning Tested on a
Bearing Fault Application
Vassilis Alimisis *, Georgios Gennis, Marios Gourdouparis, Christos Dimas and Paul P. Sotiriadis

Department of Electrical and Computer Engineering, National Technical University of Athens,
15780 Athens, Greece
* Correspondence: alimisisv@gmail.com

Abstract: A novel analog integrated implementation of a hardware-friendly support vector machine
algorithm that can be a part of a classification system is presented in this work. The utilized
architecture is capable of on-chip learning, making the overall circuit completely autonomous at
the cost of power and area efficiency. Nonetheless, using subthreshold region techniques and a low
power supply voltage (at only 0.6 V), the overall power consumption is 72 µW. The classifier consists
of two main components, the learning and the classification blocks, both of which are based on
the mathematical equations of the hardware-friendly algorithm. Based on a real-world dataset, the
proposed classifier achieves only 1.4% less average accuracy than a software-based implementation of
the same model. Both design procedure and all post-layout simulations are conducted in the Cadence
IC Suite, in a TSMC 90 nm CMOS process.

Keywords: support vector machine; bulk-controlled circuits; low-power design; bearing fault
application; analog-hardware implementation

1. Introduction

There is a growing trend towards using more sophisticated design concepts for the
development of new sensor systems, especially for so-called smart sensor systems that
integrate sensing elements with signal processing, conversion, and output units [1,2].
These modern smart sensor systems employ an increasing number of sensors to sense a
range of physical variables, thanks to continuous advancements in technology that offer
promising solutions in miniaturization and power-efficiency [3]. Integrated circuit (IC)
technologies have resulted in complex but power- and area-efficient devices that address
the challenges of smart sensor systems. This is particularly true for analog ICs, which
can achieve high-performance computations based on the physical laws of MOS or BJT
transistors [4,5]. In analog computing, various mathematical equations and models can
be efficiently approximated using analog ICs. These models are used in machine learning
(ML) applications that, in the case of real-time interactions, can benefit from the efficiency
of ICs. However, digital implementations usually require power-hungry analog-to-digital
conversions compared to analog implementations [6].

To extract useful information, a typical hardware-friendly ML classification system
contains a sensor, an instrumentation amplifier (IA) or an analog front-end for signal
processing, a feature extractor (FE) block, and a classifier [7,8]. In the traditional approach,
only the sensor-related circuitry is analog, and a power-costly ADC is used to convert
raw analog data to digital for further processing [9]. In this configuration, the (possibly
strong) correlation and redundancy in the high-rate raw data are not useful to the digital
feature extractor, as shown in Figure 1a. Therefore, to minimize the ADC’s conversion rate
and reduce power consumption, the feature extraction part can be shifted to the analog
domain, as presented in Figure 1b [5,10,11]. This way, only a small amount of uncorrelated
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analog data is converted to digital. The next step towards pure analog computing is the
use of simple analog-based ML models (which cannot achieve high accuracies) as wake-up
circuits, as shown in Figure 1c [8]. In this case, the analog ML models are probably not
accurate enough to operate autonomously, but their inclusion benefits the overall system
in terms of power consumption by minimizing the use of the digital classifier. In other
words, an analog classifier decides when the ADC and the digital classifier are turned
on. Therefore, the power-hungry digital components operate for only a fraction of the
overall time, reducing the system’s time-average power consumption. With constant
advancements in analog ML circuits, the digital back-end processing is diminished [12].
It is important to note that the key characteristic of the pure analog approach, presented
in Figure 1d, is its very low power consumption, which for certain battery-dependent
applications is critical.
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Figure 1. Different architectures for a classification system. (a) All digital inference; only the sensor
related circuitry is analog. (b) The analog feature extractor replaces the digital one. (c) The analog
front-end is used as a wake-up circuit in order to power up/down the digital back-end. (d) A pure
analog approach. From (a–d), the power requirements of the ADC are reduced.

In the literature, a variety of ML algorithms and models (classifiers) have been im-
plemented in analog hardware. This includes radial basis function (RBF) neural networks
(NN) [13] or Gaussian RBF networks (GRBFN) [14], Gaussian mixture model (GMM) [15],
Bayesian [16], K-means-based [17] classifiers, voting classifier [18], support vector regres-
sion [19], NN classifiers [20,21], deep machine learning engine [22], artificial NN implemented
Gaussian kernel functions [23], and anomaly detection circuits [24]. It is important to note that,
although these classifiers may seem different, they can all be similarly employed in various
classification tasks, regardless of the implemented ML model. It is also worth noting that the
training procedure for these classifiers is not implemented in silicon and requires external
assistance. In this work, a fully autonomous classifier is proposed, and the necessary circuitry
for training the support vector machine (SVM) algorithm is also included in the design.

A highly researched topic in the literature is the hardware implementation of SVMs
to be used as classifiers. In digital implementations, this involves FPGA-based architec-
tures [25–29]. There have also been several mixed signal [30] and analog [31–34] architec-
tures for hardware implementation of SVMs.

The work presented in [31] utilizes an array of analog translinear circuits with floating
gate transistors operating in the subthreshold region to implement a quadratic kernel SVM
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classifier. The low power computation provided by translinear and subthreshold techniques
is combined with analog non-volatile memory storage due to the existence of floating gate
transistors. This specific implementation achieves very low power consumption, regardless
of the very large-scale setup. It performs multi-class SVM for 24 classes, with input vectors
of 14 dimensions and as many as 720 support vectors. However, the learning procedure
is not performed on-chip, as a PC-in-loop technique is used instead, where a computer
is connected to the system that performs the update of the learning parameters of SVM
in software. These parameters are then downloaded to the analog floating gate array.
In contrast, the circuit architectures presented in [32–34] perform on-chip learning and
classification based on the SVM.

In reference [32], a fully analog implementation of the SVM using floating gate tran-
sistors operating in the subthreshold region is presented. To implement the learning
procedure, projection neural networks adapted for SVM are proposed, and the constrained
quadratic problem is solved by a set of ordinary differential equations. However, this fully
analog approach has only been realized through MATLAB and Spice simulations, with-
out an actual analog VLSI design taking place. This is reasonable because the analog circuit
design and tape-out of such an architecture would be complicated due to the presence of
floating gate transistors.

In reference [33], a row-parallel architecture is presented that uses transistors operating
in the subthreshold region. It employs a hardware-friendly version of the SVM algorithm
that is also used in this work. The proposed implementation includes the learning circuit
and is area-efficient while achieving low power consumption. However, the proof of
concept chip fabricated as part of this work can only classify input vectors of 2 dimensions.
Additionally, to implement the training mode of the SVM, an ADC and a digital block in a
feedback loop configuration realizing a binary search algorithm are necessary.

In reference [34], a fully analog and parallel architecture is presented. The basic circuit
components of this architecture enable an area-efficient implementation of analog kernels,
as well as a more robust design compared to other works, suitable for implementing high-
dimensional kernels accommodating inputs of up to 64 dimensions each. This architecture
also makes use of the hardware-friendly SVM algorithm but realizes it with fully analog
circuitry [33]. The analog circuits are self-converging, determining the proper Lagrange
multiplier values for SVM learning without the presence of an external digital clock. For
the realization of multivariate RBF kernels, this architecture uses circuits with transistors
operating in the saturation region. While this design choice increases the speed of operation
and the robustness of the architecture against process variations, it leads to higher power
consumption compared to implementations exclusively using transistors operating in the
subthreshold region.

Motivated by the need for low-power smart sensors [35,36] we combine subthreshold-
based analog computing techniques with ML ones [37]. To this end, in this work, an analog,
integrated, low-voltage (0.6 V), low-power (72 µW) SVM model with on-chip learning is
introduced and tested on a bearing fault management classification problem. It is realized
based on the hardware-friendly mathematical model proposed in in [33], using a variety
of sub-circuits. Specifically, ultra-low power Gaussian function circuits [38], multiplier
circuits [39], switch cells [39], adjuster circuits [39], and an argmax operator circuit [40] are
employed as building blocks. The classifier is trained and tested on a real-world bearing
fault management dataset [41]. Post-layout simulation results are conducted on a TSMC
90 nm CMOS process using the Cadence IC suite and compared with a software-based
implementation. Additionally, Monte Carlo analysis confirms the proper sensitivity of the
implemented architecture.

The current implementation is designed to operate in the subthreshold region, with the
aim of reducing power consumption in comparison to state-of-the-art publications [30] and
analog ones [31–34]. Specifically, it employs a power supply of only 0.6 V and has a low
bias current. Furthermore, by controlling the bulk of the MOS transistors, we are able to
manipulate parameters that were not adjustable in prior implementations (in the case of
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the Gaussian function circuit). Our implementations based on mathematical approaches
leverage the subthreshold region and bulk-controlled techniques, thereby eliminating the
need for additional analog (exponentiator, absoluter, translinear loops, etc.) or digital or
conversion (ADC, digital memories, etc.) blocks.

The remainder of this paper is organized as follows. Section 2 refers to the hardware-
friendly mathematical model of this work. More specifically, the SVM learning and classifi-
cation rules are explained. The proposed high-level architecture of the analog integrated
SVM implementation is presented in Section 3. The main basic building block for the
learning and the classification blocks is thoroughly analyzed in Section 4. The proper oper-
ation of the implemented classifier is confirmed via a real-world bearing fault management
dataset in Section 5. A performance summary regarding analog SVM classifiers is provided
in Section 6. Concluding remarks are given in Section 7.

2. Hardware-Friendly SVM

An SVM-based classifier is a classic binary classification algorithm in which the La-
grange multipliers’ values are determined by solving the constrained quadratic program-
ming problem. The gradient-descent algorithm that is usually used for solving this prob-
lem is:

ai ←− ai −
∂W(a, b)

∂ai
ni, (1)

where ni is the learning rate and a,b are the bias values. However, this SVM learning rule
can be modified to be more compatible with analog hardware. In this work, a hardware-
friendly version of the SVM learning rule, which was first introduced in [33] and also used
in [34], is adopted.

For choosing the learning rate equal to

ni =
1

K(xi, xi)
, (2)

and in the case of K being a self-normalized kernel like the Gaussian kernel (K(xi, xi) = 1),
the hardware-friendly SVM update rule is defined as follows:

ai ←− min(C, max(0, 1− yi ∑i 6=m ymamK(xi, xm))). (3)

In this update rule, the bias value b is set to 0. The characteristics of the Gaussian
kernel, which maps the input vectors to a space of infinite dimensions, makes the omission
of a single bias value b possible, as its effect on the total result can be considered negligible.

The derived SVM update rule of the last equation is more suitable for hardware
implementation, thanks to the specific properties it demonstrates. First, there is no need
for extra memory to store previous ai values, as they do not appear in the right-hand
side of the update rule. Furthermore, the form of the update rule resembles that of the
classification rule (4), meaning that common hardware blocks could be used for both tasks.
This would simplify the system architecture and make it more compact and area-efficient.
The classification rule is given by

f (x) = sign[
N

∑
i=1

aiyiK(x, xi) + b], (4)

for input test vector x and a training set [xi,yi]
N
i=1.

3. Proposed High-Level Architecture

In this section, the proposed classifier’s high level architecture and its two main blocks
is discussed. The first one, shown in Figure 2, is related to the classifier’s learning and
contains the hardware-friendly, rule-based ML methods.
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Figure 2. An illustration of the learning block. The RBF cells receive the learning samples and output
the multivariate RBF kernel. The input labels are imported to the training circuit via the following
switches. The adjusters implement the min and max operators.

From a system-level perspective, the learning block is designed to realize the update
rule of the hardware-friendly SVM. In practice, there is a need for circuits that realize the
Gaussian kernels, multiply with a specific value ai, incorporate labels, and perform the
appropriate iterations of the learning rule. The second block, depicted in Figure 3, aims to
implement the SVM’s decision rule in (4) in hardware. It shares certain common building
blocks with the learning block due to the resemblance of the two realized mathematical
expressions. However, the classification block also contains circuits that determine the sign
of a summed expression or that perform the argmax operator. In both the learning and
classification blocks, the Lagrange multipliers’ and kernel function’s values are realized
with transistor currents, while the labels yi = +− 1 correspond to the positive and negative
supply voltages, respectively. The learning block receives M vectors of N dimensions as
inputs (learning samples) along with M corresponding labels and produces M output
currents, which represent the Lagrange multiplier values. These current values are inserted
as parameters to the classification block together with M learning samples (support vectors)
and their M labels. Periodically, the classification block receives a new input vector of N
dimensions (test sample) and produces a set of output currents with binary values that
encode the classifier’s decision in a one-hot-vector format.
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Ibiask IbiasM
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Iout2
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Figure 3. The prediction block of the classifier (classification block). The RBF cells receive the input
and produce the appropriate RBF functions based on the trained parameters. These RBF functions
represent the support vectors. The sign of the support vectors is imported to the classification block
by the switches. The WTA is used to compare the positive and the negative values.

3.1. Learning Block

The learning block is composed of an array of M2 RBF cells, where M is the number
of samples involved in the learning procedure. The learning samples, which are the inputs
of the system, are received by the RBF cells. In practice, each RBF cell implements a
multivariate RBF kernel of N dimensions. The M(M− 1) switches provide the appropriate
input labels to the learning block. The output of every Xi,j RBF cell, for i 6= j, from the
matrix XM·M of the RBF cells, is inserted into a single switch cell. Here, the switch cell
implements an operation between the label values of the corresponding row and column.
Depending on the result of the operation, the output current of each RBF cell is driven
through one of the two outputs of the switch cell (Ixi and Iyi). For every row of the RBF
cells’ XM·M matrix, the output currents that have the same operation results are summed
together. Each of these currents corresponds to a specific input learning sample of the
block. Then, each branch of summed currents is connected to the appropriate input of an
adjuster circuit.

In the aforementioned case, there are M adjuster circuits that essentially implement the
non-linear min–max operations of the hardware-friendly update rule. The summed output
currents for the row j of the matrix XM·M that are produced by the RBF cells are received
by an adjuster circuit whose output current is fed back to the bias current for the RBF cells
of the column j. Thus, a feedback loop configuration is formed, and the learning circuitry
self-converges without the use of an external clock. The learning process is completed in
a fully parallel and autonomous fashion, determining the correct values for the adjusters’
output currents, which represent the learning parameters of the SVM algorithm.

3.2. Classification Block

The classification block consists of M RBF cells, M switches, and a winner-take-all
(WTA) circuit (argmax operator circuit). The test samples (vectors of N dimensions) are
synchronously (based on an external clock) fed to the classification block. During every
clock cycle, each of the M RBF cells computes the RBF kernel function of the cycle’s test
vector based on the learning samples that were used in the training procedure. In practice,
the RBF cells of the classification block are biased with copies of the adjusters’ output
currents of the learning block.

In order to determine the classifier’s prediction, the sign of the sum in Equation (4)
of the SVM’s decision rule has to be calculated. To do so, instead of adding all of the
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currents together and inspecting whether the sum is positive or negative, we add the
positive and the negative currents separately. This can be easily achieved since the positive
(or negative) currents are ones that correspond to an input learning sample with a positive
(or negative) label. This separation is implemented with switches, and the comparison
between the negative and positive values is achieved through a current-mode circuit called
WTA circuit. The WTA’s output encodes the classifier’s prediction into a one-hot-vector
format ([Iout1, Iout2]). A WTA circuit is used instead of a comparator due to the fact that
information processing in the system is performed mainly in current-mode.

4. Circuit Implementation

The main building circuits for both the learning and the classification blocks are
thoroughly analyzed in this section. Based on Section 3, the learning block requires three
main cells: an RBF, a switch, and an adjuster (min–max operator) cell. On the other
hand, for the classification block, two main building blocks are needed: an RBF cell and an
argmax operator circuit. The whole architecture aims at utilizing ultra-low-power circuits as
building blocks for implementing the main cells and hence all transistors of the architecture
operate in the subthreshold region. To enhance the classifier’s applicability in battery-
dependent cases, the power supply rails are set to VDD = −VSS = 0.3 V. The proposed
architecture was tested on a real-world dataset [41], for both learning and classification,
using 8 learning samples of 13 dimensions.

4.1. Gaussian Function Circuit

Each RBF cell in the proposed system architecture is composed of a multidimensional
Gaussian function circuit (specifically bump circuits) and an analog multiplier. Gaussian
function circuits are analog circuits that produce a univariate Gaussian function as their
output [15,38].

Bump circuits are preferred for implementing multivariate Gaussian functions because
two or more bump circuits can be connected in a cascaded format, and the output of the last
bump is equal to their multiplication [42]. This approach works well for a Gaussian function
with a diagonal covariance matrix, since the multivariate function can be calculated as
the multiplication of the individual univariate ones. An example of a multidimensional
Gaussian function circuit is shown in Figure 4. In this configuration, only the first bump
circuit is biased with a current Ibias, and the last bump circuit’s output is used as input
current for the analog multiplier.

Ibias

Ibias

VDD

VDD

VDD

Vc1

Vr1

Vin1
Bump 1

Vin

Vr

Vc

Iout

VSS

VSS
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VDD

VDD

Vc2
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Vin2
Bump 2

Vin

Vr
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VDD

VDD

Vc N

Vr N

Vin N
Bump N

Vin

Vr
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Iout

VSS

VSS

Iout N-1

Figure 4. By connecting N simple bump circuits sequentially, the output of the last one is equivalent
to an N–D Gaussian function. Each bump circuit’s parameters (Vr, Vc, Ibias) are tuned independently.

The multiplier adjusts the height of the Gaussian function, and its output current is
the output of the entire RBF cell.

The original bump circuit was proposed by Delbruck [43] and, since then, there have
been numerous implementations following different design approaches for realizing a
Gaussian function in analog hardware [38]. The primary challenges in designing Gaussian
function circuits are usually low power consumption, accurate approximation of the Gaus-
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sian function, as well as independent and electronic tunability of the Gaussian function’s
characteristics (height, mean value, and variance). The Gaussian function circuit used in
the proposed system, depicted in Figure 5, was firstly proposed in [15,44]. It consists of
two main building blocks, a differential difference pair (Mn1–Mn4) and a symmetric cur-
rent correlator (Mp1–Mp6), along with transistors Mn5–Mn10 that form the cascode current
mirrors used for biasing. Each bump circuit receives a unique input voltage Vin and two
parameter voltages Vr and Vc. The output current of the current correlator is a Gaussian
function of Vin, with parameters Ibias, Vr, and Vc adjusting the height, the mean value,
and the variance of the Gaussian function output, respectively [15,44]. Thus, the proposed
circuit exhibits electronic tunability of all the Gaussian function’s characteristics. All the
transistors’ dimensions in the circuit are summarized in Table 1.

✄ ☎ ✠

✄ ☎ ✞

✄ ☎ ✡

☛

☞ ✎

☛

☞

✏ ✑ ✒
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✔

✒ ✑ ✏
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✜
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Vc Vc Vr
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Mp2

✁ ✁ ✁ ✁VDD ✁ ✁

I1 I2

Mp5 Mp6

✄ ☎
✔Mn10Mn9Mn8

Figure 5. The utilized Gaussian function circuit is presented. The output current Iout resembles a
Gaussian function controlled by the input voltage Vin. The parameter voltages Vr, Vc, and the bias
current Ibias control the Gaussian function’s mean value, variance, and peak value, respectively.

Table 1. Bump circuit transistors’ dimensions.

NMOS Differential Block W/L (µm/µm) Current Correlator W/L (µm/µm)

Mn1, Mn4 1.6/0.4 Mp3, Mp4 0.4/1.6
Mn2, Mn3 0.8/0.4 Mp1, Mp2 1.2/1.6
Mn5–Mn8 0.4/1.6 Mp5, Mp6 0.4/1.6
Mn9, Mn10 1.2/1.6 - -

The proposed Gaussian function circuit possesses several essential characteristics that
make it a fundamental building block of the proposed system architecture [15,44]. Firstly,
the use of cascode current mirrors, instead of simple ones, provides precise biasing for
the differential difference pair, resulting in accurate current mirroring even for very small
currents, as low as 1 nA. Moreover, compared to a simple current correlator, the symmetric
current correlator used in the circuit improves the symmetry of the Gaussian function
output curve. These modifications result in a more robust circuit architecture suitable for
high-dimensional RBF kernel applications, although they require extra transistors, which
increase the circuit area. For a detailed explanation of the circuit’s operation, as well as
mathematical analysis and simulation results, refer to [15,44].



Sensors 2023, 23, 3978 9 of 20

A limitation of this design, however, is that when the number of bump cells in such
a cascaded implementation is increased in order to accommodate high-dimensional data,
the current scaling caused by the Ibias is not entirely linear. This loss of linearity can be
attributed to small inaccuracies of analog circuits, which may be negligible for low di-
mensional inputs; however, as more bumps are connected in series, these inaccuracies
accumulate and affect the output current considerably. In the SVM case particularly, the bias
current of each cascaded bump circuit is the parameter that gets updated during the learn-
ing procedure, so linear scaling of the RBF’s output’s current is of paramount importance.

4.2. Multiplier Circuit

In order to achieve accurate linear scaling, the output current of each multidimensional
(cascaded) bump circuit is connected to an analog multiplier circuit, depicted in Figure 6.
The multiplier is a translinear circuit operating based on the translinear principle [39]. In
particular, the translinear principle dictates that the the clockwise translinear elements’
product of the currents in a translinear loop is equal to the counterclockwise translinear
elements’ product of the currents that is derived in this loop. In essence, the translinear
principle in subthreshold MOS transforms the sum of gate-to-source voltages across a
translinear loop into the product of currents. The sum of gate-to-source voltages across
the loop is a result of Kirchhoff’s voltage law applied around the loop. Its translation to a
product of currents is possible due to the exponential characteristics of the subthreshold
MOS current with respect to its gate-to-source voltage.

✜

✢ ☞ ✣ ✤

✁ ✁

Mn2Mn1

Ib

VDD

Mn4Mn3

Mp4Mp3

Mp2Mp1

✁ ✁

VDD

Mn6Mn5 Mn9

✁ ✁

Ibias

VDD
✁ ✁

Imul

VDD

Mp8Mp7

Mp6
Mp5

Iout

✁ ✁

VSS

Mn7

Mn8

Figure 6. Analog multiplier circuit. To achieve accurate linear scaling, the output current of each
multidimensional bump circuit is connected to this analog multiplier circuit. This implementation is
based on the translinear priciple.

In the proposed translinear multiplier circuit, transistors Mn5, Mn6, Mn8, and Mn9
form a translinear loop with a so-called alternating loop topology that produces an output
current independent of the subthreshold slope factor κ. Furthermore, cascode NMOS and
PMOS current mirrors (transistors Mn1–Mn4 and Mp1–Mp8) have been used to achieve
precise current mirroring. Supposing that all four transistors (Mn5, Mn6, Mn8, and Mn9)
operate in the subthreshold region and based on the translinear principle, the multiplier’s
output current is the following:

Iout =
Ib Ibias
Imul

, (5)

where Ib is the cascaded bump circuit’s output current, Ibias is the multiplying term, and Imul
is a normalizing current with a constant value. Transistor Mn7 is used for proper biasing
of the translinear loop. The multiplier circuit’s transistor dimensions are summarized in
Table 2.
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Table 2. Multiplier’s transistor dimensions.

Current Mirrors W/L (µm/µm) Translinear Loop W/L (µm/µm)

Mn1–Mn4 0.4/1.6 Mn5, Mn9 0.4/1.6
Mp1–Mp4 0.4/1.6 Mn6 3.6/1.6
Mp5–Mp8 0.4/1.6 Mn8 4/1.6

Mn7 1.2/0.8 - -

In the case of GMM-based classifiers’ architectures, the peak of the RBF’s output
current is controlled via the bias current of the cascaded bump architecture’s first bump
cell [15,44]. Instead of this, in this work, the first bump circuit is biased with a constant bias
current of 16 nA. Then, the output current of the cascaded bump is inserted as Ib to the
multiplier circuit of Figure 6, which is also biased with a constant bias current Imul=16 nA.
Thus, the height of the RBF cell’s output current is determined by the multiplier’s input
current Ibias. This current corresponds to the Lagrange multipliers and is derived from
SVM’s update rule.

The contribution of the multiplier circuit in achieving linear scaling of the RBF cell’s
output current is evident in Figure 7. In this figure, the maximum of a 16− D RBF cell’s
output current is depicted. Ibump is the output current of the 16− D cascaded bump circuit
when its peak is scaled by the bias current of the first bump circuit of the cell. Iout is the peak
of the output current if a multiplier is used. The desirable linearity is achieved, with the
output current having only a small and constant dc offset compared to Ibias, which is the
desired output of the multiplier.

Figure 7. Effect of multiplier on output current of the multidimensional bump circuit. It provides a
linear output current that has the same behavior with the Ibias current.

4.3. Switch Cell

In the learning block, in order to satisfy the hardware-friendly SVM update rule,
the product of the two learning samples’ labels has to be multiplied with each kernel. As
the labels of all learning samples are either 1 or −1, the result of this product is either the
positive or the negative value of the kernel that corresponds to these specific learning sam-
ples. Thus, the output current of each RBF cell that represents the kernel’s value is driven
as a positive value Iy or as a negative value Ix, depending on the aforementioned product.
The positive value Iy corresponds to Y1 = Y2, while the negative value Ix corresponds to
Y1 = −Y2. The labels are represented with voltages, with a positive label corresponding
to the positive power supply voltage (300 mV) and a negative label corresponding to the
negative one (−300 mV).

The selective driving of the RBF cell’s current through either Iy or Ix is achieved via a
switch circuit [39]. The switch circuit is depicted in Figure 8 and essentially implements
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an compact switch. Each switch circuit receives as inputs the labels of the two learning
samples of the RBF cell with which it is connected. For inputs Y1 = Y2 = 300 mV, RBF’s
current Ibias flows through Mp5 as Iy, while for inputs Y1 = −Y2 = 300 mV, RBF’s current
Ibias flows through Mp4 as Ix. For inputs Y1 = Y2 = −300 mV and Y1 = −Y2 = −300 mV,
RBF’s current Ibias is equal to 0 nA, since a PMOS switch is used to power-down the current
mirror. This switch implementation is more compact than the one implemented with CMOS
static logic, as it consists of 6 transistors instead of 8. The switch cell’s transistor dimensions
are summarized in Table 3.

VSS

VSS

Mp1

Mn1
Mp4

Mp5

Mp3 Mp2

Mp6

✜

✢ ☞ ✣ ✤Ibias

✁ ✁

VDD

✁ ✁

VDD

Y1

IxIy

Y2

Figure 8. The circuit used to implement the switch cell is presented. This is a compact gate with only
6 transistors. For inputs Y1 = Y2 = 300 mV, RBF’s current Ibias flows through Mp5 as Iy, while for
inputs Y1 = −Y2 = 300 mV, RBF’s current Ibias flows through Mp4 as Ix.

Table 3. Switch’s transistor dimensions.

Transistors W/L (µm/µm)

Mn1 0.8/0.2
Mp1,Mp6 0.8/0.2
Mp2–Mp5 0.4/1.6

4.4. Adjuster Circuit

The hardware-friendly SVM update rule of Equation (3) can be transformed in the
following current-mode equation:

Inewi = min(Icon, max(0, Icon − yi ∑i 6=m ym Im)), (6)

where Inewi is the updated value of the bias current of the ith RBF cell, and Icon is a parameter
current corresponding to regularization parameter C of the SVM. The adjuster is the circuit
that performs the non-linear minimum and maximum operations as well as iterations on
the above-mentioned equation, forming a feedback loop to update the current values [39].
The adjuster circuit is shown in Figure 9 and its dimensions are summarized in Table 4. It
is a current mirror-based circuit with constant bias current Icon = 40 nA and the following
input currents:

Iy = ∑yi=ym
Im, (7)

Ix = ∑yi 6=yk
Ik (8)

for the ith adjuster circuit. The min and max operations are realized thanks to the unilateral
current flow in NMOS transistors Mn6, whose current can not be lower than zero, and Mn7,
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whose current may not exceed the value of Icon. The proper operation of the adjuster circuit for
the input current Iy and different values of Ix and Icon = 30 nA is demonstrated in Figure 10.
The adjuster circuit exhibits the desirable behavior based on the following expression:

Iout = min(Icon, max(0, Icon − Iy + Ix). (9)

✜

✢ ☞ ✣ ✤

✁ ✁

Mn2Mn1

Iy

VDD

✁ ✁

VSS

Mp2Mp1

✜

✢ ☞ ✣ ✤

✁ ✁

Mn4Mn3

Ix

VDD

✁ ✁

✁ ✁

Mn6
Mn5

✁ ✁

Icon

VDD

Mn7

Mp4Mp3

✁ ✁

✁ ✁

Iout1

...
Mp5

✁ ✁

✁ ✁

IoutM

✁ ✁

VDD

Figure 9. The adjuster circuit is presented. This circuit performs the non-linear minimum and
maximum operations and also performs iterations based on mathematical equations, forming a
feedback loop to update the current values.

Table 4. Adjuster’s MOS transistor dimensions.

Transistors W/L (µm/µm)

Mn1, Mn2 0.4/6.4
Mn3, Mn4 0.4/6.4
Mn5–Mn7 0.4/6.4
Mp1, Mp2 0.4/6.4
Mp3, Mp4 0.4/6.4
Mp5–Mp7 0.4/6.4

Figure 10. The output current of the adjuster circuit.

4.5. Winner-Take-All Circuit

The WTA circuit receives N input signals and presents in the output the response of
only the largest input signal while suppressing the responses of the other N − 1 inputs. In
essence, the WTA circuit implements the argmax function.

There have been several voltage-mode WTA circuit implementations [40] as well as
current-mode WTA circuits [45] and an ultra-low-supply voltage implementation (only
0.3 V) [46]. All such current-mode WTA circuit architectures are modifications of the
original WTA circuit presented by Lazzaro [40].

The circuit architectures of the NMOS- and PMOS-based variance of the WTA circuit
for two inputs are presented in Figures 11 and 12, respectively. For the NMOS case,
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the simple WTA circuit is composed of 4 NMOS transistors of the same W and L parameters
operating in the subthreshold region, and it is biased by a constant current Ibias. The
transistors’ dimensions are (W/L) = 400 nm

1600 nm . For equal input currents Iin1 = Iin2, the
output currents are Iout1 = Iout2 = 0.5Ibias. Due to the fact that Mn1 and Mn4 have the same
VGS voltage, for input currents Iin1 > Iin2, it follows that VDMn1 = VGMn2 > VGMn3 = VDMn4 .
Supposing that both output transistors Mn2 and Mn3 operate in saturation and, due to the
fact that they both have the same source voltage, a small difference in their gate voltages
results in an exponentially larger difference in the output currents. In this case, Iout1 = Ibias
and Iout2 = 0. Thus, for input currents differing by a sufficient amount, only the output
current corresponding to the largest input current will be non-zero.

✄ ☎
✟Mn2 ✄☎

✟Mn3

✄☎
✟Mn1

VSS

✜

✢ ☞ ✣ ✤

Iin1

✁ ✁

VDD
Iout1 Iout2

✄ ☎
✟Mn4

VSS

✜

Iin2

✁ ✁

VDD

Ibias
✁ ✁

VSS
Figure 11. Simple NMOS winner-take-all circuit composed of two neuron cells. It is suitable for a
2-class classification problem.

The WTA circuit can be extended to accommodate multiple inputs. In our case,
however, two inputs are required in order for the circuit to compare the positive and the
negative kernel values and perform classification based on the SVM decision rule. In the
proposed circuit architecture, instead of using a simple NMOS or PMOS WTA circuit,
a triple WTA circuit, depicted in Figure 13, is used. It consists of an NMOS, a PMOS, and
another NMOS WTA circuit connected in series, with the output currents of the one WTA
block being the input currents to the next one. All 3 WTA blocks are biased with the same
constant Ibias = 40 nA and essentially perform the argmax function 3 consecutive times. In
Figure 14, it can be observed that by using the triple WTA circuit as opposed to the simple
architecture, the minimum current difference required by the WTA system to differentiate
its inputs is cut down significantly. As a result, the accuracy of the classification procedure
and the quality of the digital output are increased.
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✄ ☎
✟

Mp2

✄☎
✟

Mp3

✄☎
✟

Mp1

✜

✢ ☞ ✣ ✤

Iin1

✁ ✁

Iout1 Iout2

✄ ☎
✟

Mp4

✜Iin2

✁ ✁

VSS

Ibias

✁ ✁

VDD

VDD VDD

VSS
Figure 12. Simple PMOS winner-take-all circuit composed of two neuron cells. It is suitable for a
2-class classification problem.

✜

✢ ☞ ✣ ✤

✁ ✁

Mn2Mn1

Ibias

VDD

VSS

Mn5Mn4

Ibias

Iin1,N1

Iin2,N1

✜

✢ ☞ ✣ ✤

✁ ✁

VDD

Iin1
✁ ✁

VDD

Iin2

Iout1,N1

Iout2,N1

NMOS WTA

Ibias

Iin1,P1

Iin2,P1

PMOS WTA

Iout1

Iout2

✁ ✁

Mp4Mp3

Ibias

VSS

Mp2Mp1

VDD

✁ ✁

VSS

VSS

VDD

✁ ✁

VDD

Iout1,P1

Iout2,P1

Iin1,N2

Iin2,N2

Iout1,N2

Iout2,N2

NMOS WTA

Ibias
✁ ✁

VSS

VSS

Mn3

Mn6

Figure 13. The implemented triple cascaded WTA circuit built by alternating the simple NMOS and
PMOS WTA designs.
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Figure 14. A comparison between the simple and the implemented WTA circuits.

5. Application Examples and Simulation Results

In this section, the proposed circuit is tested in terms of both classification accuracy
and circuit sensitivity. To do so, the real-world bearing vibration data under time-varying
rotational speed conditions (VSBD) [41] dataset found on the Mendeley Data website [47]
is used. The dataset is composed of vibration signals measured by an accelerometer that
was directly attached to the motor. These signals can be used to predict the motor’s
operating condition, specifically identifying whether the motor is healthy or damaged on
the inner or outer raceway. However, since the SVM algorithm’s primary usage involves
binary classification problems, in this work, the motor’s condition is classified as operating
correctly or faulty (with no distinction between an inner or an outer raceway defect). The
layout that was used for the simulations is shown in Figure 15. Its implementation is based
on the common-centroid technique, and extra dummy transistors are used in order to avoid
mismatches and manufacturing considerations [48].

1.12mm

0.
73
m
m

Figure 15. Layout of the proposed hardware-friendly SVM algorithm based on the design methodol-
ogy (extra dummy transistors are used).

The data were processed before being used to train the classifier. In particular, the drive-
end accelerometer data included multiple 10-s-long time series entries that are split into
10 1-second segments. The sample rate for the accelerometer was 200× 103 samples per
second, which greatly exceeded the needs of this application and therefore were down-
sampled. Finally, from each segment, the 13 features shown in Table 5 are extracted, and a
random train–test slit is used to train and validate both the analog and the software-based
SVMs (which will be used for comparison purposes).
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Table 5. Extracted features [49].

Statistic Equation Statistic Equation

Root mean square RMS =
√

1
N ∑N

i=1 x2
i

Crest factor CF = max(xi)
RMS

Square root of amplitude SRA =
(

1
N ∑N

i=1
√
|xi|
)2 Impulse factor IF = N·max(xi)

∑N
i=1 |xi |

Kurtosis value KV = 1
N ∑N

i=1

(
xi−µx

σx

)4 Margin factor MF = max(xi)
SRA

Skewness value SV = 1
N ∑N

i=1

(
xi−µx

σx

)3 Frequency center FC = 1
N ∑N

i=1 fi

Peak-to-peak value PPV = max(xi)−min(xi) Root-mean-square frequency RMSF =
√

1
N ∑N

i=1 f 2
i

Shape factor SF = max(xi)
SV

Root variance frequency RVF =
√

1
N ∑N

i=1( fi − FC)2

Kurtosis factor KF = KV
RMS4 - -

The analog classifier needs to be tested both as a classifier and as an analog circuit.
Therefore, first, the training procedure is repeated 20 independent times to provide a robust
classification accuracy and minimize random effects caused by it. In each iteration, both
the analog and the software implementations are compared using the same training and
validation data. Table 6 summarizes the results of this test. It is evident that the results of
the hardware implementation of the proposed classifier are approximately 1% less accurate
that those of an identical software-based implementation. Additionally, the deviation of
their results for different train–test iterations is similar. For a more detailed comparison,
the exact classification accuracy histograms are presented in Figure 16.

Table 6. Accuracy results for the VSBD dataset (over 20 iterations).

Method Best (%) Worst (%) Mean (%) Std. (%)

Software 85.3 83.8 84.6 0.4
Hardware 84.5 82.3 83.2 0.5

Figure 16. The classification results comparing the software and the proposed implementations for
20 iterations.

A Monte Carlo analysis was conducted for the second test with N = 100 points
to verify the sensitivity behavior of the classifier circuit. This test used the training data
of one of the 20 candidates from the previous test as input. The results are illustrated
by the Monte Carlo histogram depicted in Figure 17. Its mean value is µM = 83.2%,
which is close to the previous test’s mean value, and the standard deviation is as low as
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σM = 0.5%. In general, these results demonstrate the highly sensitive behavior of the
classifier. Additionally, the classifier demonstrates “systematic robustness” where, even
if the internal sub-circuits are not entirely robust, as long as they behave similarly with
each other, the overall classifier will output robust results. Therefore, the total system’s
results are presented. In terms of corners, the worst-case scenario is slow cold, where all
transistors are in the slow corner and operating at −35 ◦C. Here the classification accuracy
is equal to 81.7%. Conversely, in the case of fast hot, where all transistors are in the fast
corner and operating at 150 ◦C, the classification accuracy is 84.2%.

Figure 17. Post-layout Monte Carlo simulation results of the proposed architecture (for one of the
previous 20 iterations).

6. Performance Summary and Discussion

In this section, a performance summary of recent analog and mixed-mode SVM
algorithms, along with that in this work, is provided. All the classifiers presented in this
work are based on a hardware-friendly kernel function of the SVM algorithm. Nonetheless,
it is worth mentioning that a fair comparison between hardware-based ML implementations
is not possible, since there are numerous aspects that need to be considered combinatorially,
such as the implemented technology, the application, the power and area specifications,
the computation speed, and so forth. A performance summary for recent existing hardware-
friendly SVM algorithm implementations is provided in Table 7. The aim of this work
is the implementation of a power- and area-efficient classifier. As a result, subthreshold
region techniques are used in order to provide a power-efficient system with minimum
power supply (only 0.6 V). However, due to the complexity of the training block, the power
consumption is equal to 72 µW.

The total power includes the entire classifier with biasing circuits but excludes analog
memories and pre-processing circuits. In Table 7, only one classifier has a lower power
consumption [31] at the cost of a larger chip area. On the other hand, the more area-efficient
implementation [33] has a higher power consumption and provides a smaller number of
classifications per energy unit consumed. Thus, this design provides a trade-off between
high accuracy and power-area efficiency, which can be given as a summary.

The main characteristics of the classifiers presented in Table 7 are analyzed in the
Introduction. Regarding the power and area of the proposed circuit, the number of support
vectors and their dimensions affect these metrics. While an exact equation cannot be
derived, we can predict that the power consumption and chip area are a function of n2 with
respect to the number of SVs and a function of n with respect to their dimensions.

The proposed training method is highly parallel, so in practice, the number of support
vectors (training samples) has little effect on the training speed, which is approximately
0.3 µs. This also applies to the classification procedure. However, the number of dimen-
sions directly affects the processing speed. Specifically, each additional dimension adds
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approximately 0.5 µs to the overall settling time. The proposed classifier can achieve a
processing speed of 140 K classi f ications

second , with a settling time of approximately 7.1 µs.

Table 7. Performance summary.

[34] [32] [33] [31] [30] This Work

Technology 180 nm 180 nm Simulation 0.5 µm 0.5 µm 90 nm

Power Supply 5 V 1.8 V N/A 4 V 5 V 0.6 V

Power
Consumption 220 µW N/A N/A 840 nW 5.9 mW 72 µW

Area 0.06 mm2 0.125 mm2 N/A 9.0 mm2 9.0 mm2 0.818 mm2

Energy per
Classification 252.9 pJ N/A N/A 21 nJ 59 nJ 576 pJ

Kernel Function Gaussian Gaussian Gaussian Quadratic Linear Gaussian

Operation Learning/
Classification

Learning/
Classification

Learning/
Classification Classification Classification Learning/

Classification

No. of Classes 2 2 2 24 2 2

No. of
Dimensions 2 64 2 14 256 13

7. Conclusions

In this work, a low-power analog integrated implementation of the SVM algorithm
with on-chip learning capabilities was introduced. It utilizes the learning block, which
consists of an array of RBF cells, switches, and adjuster circuits, and the classification block,
which consists of RBF cells, switches and a WTA circuit. Its classification parameters were
generated by on-chip training using the hardware-friendly SVM algorithm. The proposed
architecture is applied to a real-world dataset targeting bearing fault diagnosis. Two main
tests were conducted related to classification accuracy and sensitivity to variations and
mismatches. All post-layout simulation results were extracted using the Cadence IC Suite
in a TSMC 90 nm technology.
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