Electrical Parameters as Diagnostics of Fresh Engine Oil Condition—Correlation with Test Voltage Frequency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrical Testing Methodology
2.3. Physicochemical Testing Methodology
2.4. Statistical Analysis
3. Results
3.1. Applicability of Electrical Parameters for Engine Oil Testing
Impedance Magnitude
3.2. Phase Shift Angle
3.3. Conductance
3.4. Susceptance
3.5. Capacitance
3.6. Quality Factor
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Besser, C.; Steinschütz, K.; Do, N.; Novotny-Farkas, F.; Allmaier, G.; Dörr, N. Impact of Engine Oil Degradation on Wear and Corrosion Caused by Acetic Acid Evaluated by Chassis Dynamometer Bench Tests. Wear 2014, 317, 64–76. [Google Scholar] [CrossRef]
- Soleimani, M.; Sophocleous, M.; Glanc, M.; Atkinson, J.; Wang, L.; Wood, R.J.K.; Taylor, R.I. Engine Oil Acidity Detection Using Solid State Ion Selective Electrodes. Tribol. Int. 2013, 65, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Gomółka, L.; Augustynowicz, A.; Maciąg, A. Analiza stopnia degradacji oleju smarującego w silnikach spalinowych. Silniki Spalinowe 2011, 50, 3. [Google Scholar]
- Wolak, A.; Zając, G. The Kinetics of Changes in Kinematic Viscosity of Engine Oils under Similar Operating Conditions. Eksploat. Niezawodn. 2017, 19, 2. [Google Scholar] [CrossRef]
- Wakiru, J.; Pintelon, L.; Muchiri, P.N.; Chemweno, P.K.; Mburu, S. Towards an Innovative Lubricant Condition Monitoring Strategy for Maintenance of Ageing Multi-Unit Systems. Reliab. Eng. Syst. Safe 2020, 204, 107200. [Google Scholar] [CrossRef]
- Wei, L.; Duan, H.; Jin, Y.; Jia, D.; Cheng, B.; Liu, J.; Li, J. Motor Oil Degradation during Urban Cycle Road Tests. Friction 2021, 9, 1002–1011. [Google Scholar] [CrossRef]
- De Rivas, B.L.; Vivancos, J.-L.L.; Ordieres-Meré, J.; Capuz-Rizo, S.F. Determination of the Total Acid Number (TAN) of Used Mineral Oils in Aviation Engines by FTIR Using Regression Models. Chemom. Intell. Lab. Syst. 2017, 160, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Wolak, A. TBN Performance Study on a Test Fleet in Real-World Driving Conditions Using Present-Day Engine Oils. Measurement 2018, 114, 322–331. [Google Scholar] [CrossRef]
- Besser, C.; Dörr, N.; Novotny-Farkas, F.; Varmuza, K.; Allmaier, G. Comparison of Engine Oil Degradation Observed in Laboratory Alteration and in the Engine by Chemometric Data Evaluation. Tribol. Int. 2013, 65, 37–47. [Google Scholar] [CrossRef]
- Shinde, H.M.; Bewoor, A.K. Evaluating Petrol Engine Oil Deterioration through Oxidation and Nitration Parameters by Low-Cost IR Sensor. Appl. Petrochem. Res. 2020, 10, 83–94. [Google Scholar] [CrossRef]
- Wang, S.S. Road Tests of Oil Condition Sensor and Sensing Technique. Sens. Actuators B Chem. 2001, 73, 106–111. [Google Scholar] [CrossRef]
- Abdulmunem, O.M.; Abdul-Munaim, A.M.; Aller, M.M.; Preu, S.; Watson, D.G. THz-TDS for Detecting Glycol Contamination in Engine Oil. Appl. Sci. 2020, 10, 3738. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, N.Y.; Park, S.Y.; Lee, D.-K.; Lee, J.H. Classification and Individualization of Used Engine Oils Using Elemental Composition and Discriminant Analysis. Forensic Sci. Int. 2013, 230, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.M.; Ahmed, N.S.; Abdel-Hameed, H.S.; El-Kafrawy, A.F. Synthesis and Utilization of Non-Metallic Detergent/Dispersant and Antioxidant Additives for Lubricating Engine Oil. Tribol. Int. 2016, 93, 297–305. [Google Scholar] [CrossRef]
- Zmozinski, A.V.; de Jesus, A.; Vale, M.G.R.; Silva, M.M. Determination of Calcium, Magnesium and Zinc in Lubricating Oils by Flame Atomic Absorption Spectrometry Using a Three-Component Solution. Talanta 2010, 83, 637–643. [Google Scholar] [CrossRef]
- Gong, Y.; Guan, L.; Feng, X.; Wang, L.; Yu, X. In-Situ Lubricating Oil Condition Sensoring Method Based on Two-Channel and Differential Dielectric Spectroscopy Combined with Supervised Hierarchical Clustering Analysis. Chemom. Intell. Lab. Syst. 2016, 158, 155–164. [Google Scholar] [CrossRef]
- Basterrechea, D.A.; Rocher, J.; Parra, L.; Lloret, J. Low-Cost System Based on Optical Sensor to Monitor Discharge of Industrial Oil in Irrigation Ditches. Sensors 2021, 21, 5449. [Google Scholar] [CrossRef]
- Wakiru, J.M.; Pintelon, L.; Muchiri, P.N.; Chemweno, P.K. A Review on Lubricant Condition Monitoring Information Analysis for Maintenance Decision Support. Mech. Syst. Signal Process. 2019, 118, 108–132. [Google Scholar] [CrossRef]
- Brouwer, M.D.; Gupta, L.A.; Sadeghi, F.; Peroulis, D.; Adams, D. High Temperature Dynamic Viscosity Sensor for Engine Oil Applications. Sens. Actuators A Phys. 2012, 173, 102–107. [Google Scholar] [CrossRef]
- Zhu, X.; Zhong, C.; Zhe, J. Lubricating Oil Conditioning Sensors for Online Machine Health Monitoring–A Review. Tribol. Int. 2017, 109, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Caneca, A.R.; Pimentel, M.F.; Galvão, R.K.H.; da Matta, C.E.; de Carvalho, F.R.; Raimundo, I.M.; Pasquini, C.; Rohwedder, J.J.R. Assessment of Infrared Spectroscopy and Multivariate Techniques for Monitoring the Service Condition of Diesel-Engine Lubricating Oils. Talanta 2006, 70, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Potyrailo, R.A.; Tokarev, I.; Go, S.; Ottikkutti, P.; Kuzhiyil, N.; Mihok, J.; Anzini, C.; Shartzer, S. Multivariable Electrical Resonant Sensors for Independent Quantitation of Aging and External Contaminants in Lubricating Oils. IEEE Sens. J. 2019, 19, 1542–1553. [Google Scholar] [CrossRef]
- Wu, T.; Wu, H.; Du, Y.; Peng, Z. Progress and Trend of Sensor Technology for On-Line Oil Monitoring. Sci. China Technol. Sci. 2013, 56, 2914–2926. [Google Scholar] [CrossRef]
- Katika, K.; Ahkami, M.; Fosbøl, P.L.; Halim, A.Y.; Shapiro, A.; Thomsen, K.; Xiarchos, I.; Fabricius, I.L. Comparative Analysis of Experimental Methods for Quantification of Small Amounts of Oil in Water. J. Pet. Sci. Eng. 2016, 147, 459–467. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Li, N.; Qian, Z.; Liu, D.; Qian, Z.; Zhang, C. A New Inductive Debris Sensor Based on Dual-Excitation Coils and Dual-Sensing Coils for Online Debris Monitoring. Sensors 2021, 21, 7556. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, F.; Zhao, M.; Wang, B.; Yang, C. A Method for Measurement of Nonferrous Particles Sizes in Lubricant Oil Independent of Materials Using Inductive Sensor. IEEE Sens. J. 2021, 21, 17723–17731. [Google Scholar] [CrossRef]
- Wang, C.; Bai, C.; Yang, Z.; Zhang, H.; Li, W.; Wang, X.; Zheng, Y.; Ilerioluwa, L.; Sun, Y. Research on High Sensitivity Oil Debris Detection Sensor Using High Magnetic Permeability Material and Coil Mutual Inductance. Sensors 2022, 22, 1833. [Google Scholar] [CrossRef] [PubMed]
- Zhe, J.; Zhu, X.; Zhong, C. A High Sensitivity Wear Debris Sensor Using Ferrite Cores for Online Oil Condition Monitoring. Meas. Sci. Technol. 2017, 28, 75–102. [Google Scholar] [CrossRef]
- Fan, B.; Feng, S.; Mao, J.; Xie, Y.B. Investigations on the Relationship between Wear Debris Residence Time in Lubrication Systems and Online Oil Sampling Interval. Tribol. Trans. 2019, 62, 374–381. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, H.; Huo, D.; Yu, S.; Su, J.; Xie, Y.; Li, W.; Ma, L.; Chen, H.; Sun, Y. An Ultrasensitive Microsensor Based on Impedance Analysis for Oil Condition Monitoring. IEEE Trans. Ind. Electron. 2022, 69, 7. [Google Scholar] [CrossRef]
- Heredia-Cancino, J.A.; Carrillo-Torres, R.C.; Félix-Domínguez, F.; Álvarez-Ramos, M.E. Experimental Characterization of Chemical Properties of Engine Oil Using Localized Surface Plasmon Resonance Sensing. Appl. Sci. 2021, 11, 8518. [Google Scholar] [CrossRef]
- Masud, M.; Baù, M.; Demori, M.; Ferrari, M.; Ferrari, V. Contactless Interrogation System for Capacitive Sensors with Time-Gated Technique. Proceedings 2017, 1, 395. [Google Scholar] [CrossRef] [Green Version]
- Martini, A.; Ramasamy, U.S.; Len, M. Review of Viscosity Modifier Lubricant Additives. Tribol. Lett. 2018, 66, 58. [Google Scholar] [CrossRef]
- ASTM International ASTM D2896-11: Total Base Number (TBN) Forward Titration. Annu. B. ASTM Stand. 2015. Available online: https://aquaanalytics-tekhnika.ru/assets/products/704/obratnoye-titrovaniye-obshcheye-shchelochnoye-chislo-tbn-ASTM%20D2896-11.pdf (accessed on 10 December 2020).
- ASTM International ASTM D664 − 11a: Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. Annu. B. ASTM Stand. 2011, 1–7. Available online: https://cir.nii.ac.jp/crid/1360013172793291520 (accessed on 10 December 2020).
Name of Manufacturer | Number of Oils | Name of Manufacturer | Number of Oils | Name of Manufacturer | Number of Oils |
---|---|---|---|---|---|
Castrol | 6 | Shell | 1 | Agip | 1 |
Elf | 3 | Xado | 2 | Gulf | 1 |
Eneos | 4 | Fuchs | 2 | Liqui Moly | 1 |
Millers | 4 | Motul | 2 | Lotos | 1 |
Mobil | 3 | Revline | 1 | Orlen | 1 |
Total | 3 | Valvoline | 1 | Ravenol | 1 |
Mannol | 2 | Wolver | 1 |
ACEA | Number of Oils | Oil Name(s) | |||
A * | B * | C * | |||
- | - | C3 | 22 | Eneos_#1, Castrol_#5, Castrol_#6, Revline, Mannol_#1, Motul_#1, Elf_#1, Mobil_#1, Valvoline, Orlen, Fuchs_#2, Millers_#2, Millers_#4, Loqui, Ravenol, Gulf, Mannol_#2, Xado_#1, Agip, Lotos, Shell, Total_#3 | |
A5 | B5 | - | 4 | Eneos_#3, Total_#2, Elf_#3, Mobil_#3 | |
A3 | B4 | C3 | 3 | Fuchs_#1, Wolver, Xado_#2 | |
- | - | C2 | 3 | Castrol_#2, Total_#1, Millers_#1 | |
A1/A5 | B1/B5 | - | 2 | Castrol_#1, Castrol_#4 | |
- | - | C2/C3 | 2 | Millers_#3, Motul_#2 | |
A1/A5 | B1/B5 | C2 | 1 | Eneos_#4 | |
A3 | B3/B4 | C3 | 1 | Eneos_#2 | |
A3 | B3/B4 | - | 1 | Castrol_#3 | |
- | - | C3/C4 | 1 | Elf_#2 | |
A3 | B3/B4 | C2/C3 | 1 | Mobil_#2 | |
API Rating | Number of Oils | Oil Name(s) | |||
S * | C ** | ||||
SN | CF | 11 | Castrol_#4, Castrol_#5, Motul_#1, Elf_#1, Millers_#1, Millers_#2, Millers_#3, Mannol_#2, Lotos, Shell, Total_#3 | ||
SN | - | 9 | Castrol_#1, Castrol_#2, Castrol_#6, Mannol_#1, Fuchs_#2, Loqui, Ravenol, Motul_#2, Agip | ||
SN | CF/CE | 1 | Wolver | ||
SN/SM | CF | 3 | Eneos_#2, Eneos_#4, Revline | ||
SM | CF | 1 | Total_#1 | ||
SM/SF | - | 1 | Xado_#1 | ||
SM/SL | CF | 1 | Mobil_#2 | ||
SM/SL | - | 1 | Mobil_#1 | ||
SL | - | 1 | Mobil_#3 | ||
SL | CF | 3 | Castrol_#3, Total_#2, Elf_#3 | ||
Not specified | 9 | Eneos_#1, Eneos_#3, Elf_#2, Valvoline, Fuchs_#1, Millers_#4, Gulf, Xado_#2, Orlen |
Group No. 1 | Group No. 2 | Group No. 3 | Group No. 4 | Group No. 5 |
---|---|---|---|---|
Castrol_#3 Castrol_#4 Eneos_#2 Gulf Mannol_#1 Millers_#2 Ravenol Revline Total_#1 Xado_#1 | Castrol_#1 Castrol_#6 Elf_#2 Eneos_#3 Eneos_#4 | Agip Castrol_#2 Castrol_#5 Elf_#1 Eneos_#1 Loqui Millers_#1 Mobil_#1 Mobil_#2 Motul_#1 Motul_#2 Orlen Shell Total_#3 Valvoline Wolver Xado_#2 | Fuchs_#1 Fuchs_#2 Millers_#3 Millers_#4 | Elf_#3 Lotos Mannol_#2 Mobil_#3 Total_#2 |
Group No. 1 | Group No. 2 | Group No. 3 | Group No. 4 | Group No. 5 |
---|---|---|---|---|
Elf_#3 Lotos Mannol_#2 Mobil_#3 Total_#2 | Castrol_#3 Eneos_#2 Eneos_#3 Eneos_#4 Mannol_#1 Millers_#3 Millers_#4 Revline Total_#1 | Agip Elf_#1 Eneos_#1 Fuchs_#1 Fuchs_#2 Gulf Loqui Millers_#1 Motul_#1 Motul_#2 Orlen Total_#3 Valvoline Wolver Xado_#1 Xado_#2 | Castrol_#2 Castrol_#5 Castrol_#6 Elf_#2 Millers_#2 Mobil_#1 Mobil_#2 Ravenol Shell | Castrol_#1 Castrol_#4 |
Group No. 1 | Group No. 2 | Group No. 3 | Group No. 4 | Group No. 5 |
---|---|---|---|---|
Castrol_#1 Castrol_#4 Castrol_#5 Castrol_#6 Elf_#1 Millers_#2 Mobil_#1 Ravenol Total_#3 Xado_#1 Xado_#2 | Castrol_#3 Elf_#3 Eneos_#2 Eneos_#3 Lotos Mannol_#2 Mobil_#3 Revline Total_#2 | Fuchs_#1 Fuchs_#2 Motul_#1 Orlen Valvoline | Agip Castrol_#2 Elf_#2 Eneos_#1 Gulf Loqui Millers_#1 Mobil_#2 Motul_#2 Shell Wolver | Eneos_#4 Mannol_#1 Millers_#3 Millers_#4 Total_#1 |
Group No. 1 | Group No. 2 | Group No. 3 | Group No. 4 | Group No. 5 |
---|---|---|---|---|
Elf_#3 Eneos_#4 Lotos Mannol_#2 Mobil_#3 Total_#2 | Castrol_#3 Eneos_#2 Eneos_#3 Mannol_#1 Millers_#3 Revline Total_#1 | Castrol_#1 Elf_#2 | Agip Castrol_#2 Castrol_#4 Castrol_#5 Castrol_#6 Elf_#1 Eneos_#1 Gulf Millers_#1 Millers_#2 Mobil_#1 Mobil_#2 Motul_#2 Ravenol Shell Total_#3 Valvoline Wolver Xado_#1 Xado_#2 | Fuchs_#1 Fuchs_#2 Loqui Millers_#4 Motul_#1 Orlen |
Group No. 1 | Group No. 2 | Group No. 3 | Group No. 4 | Group No. 5 |
---|---|---|---|---|
Elf_#3 Mannol_#2 Mobil_#3 Total_#2 | Agip Castrol_#2 Castrol_#5 Elf_#1 Eneos_#1 Loqui Millers_#1 Mobil_#1 Mobil_#2 Motul_#1 Orlen Total_#1 Total_#3 Valvoline Wolver Xado_#2 | Castrol_#3 Castrol_#4 Eneos_#2 Gulf Lotos Mannol_#1 Millers_#2 Motul_#2 Ravenol Revline Shell Xado_#1 | Fuchs_#1 Fuchs_#2 Millers_#3 Millers_#4 | Castrol_#1 Castrol_#6 Elf_#2 Eneos_#3 Eneos_#4 |
Group No. 1 | Group No. 2 | Group No. 3 | Group No. 4 | Group No. 5 |
---|---|---|---|---|
Agip Eneos_#1 Loqui Mannol_#2 Motul_#1 Orlen | Fuchs_#1 Fuchs_#2 Millers_#3 Millers_#4 | Castrol_#2 Castrol_#3 Castrol_#5 Elf_#1 Elf_#3 Mannol_#1 Millers_#1 Mobil_#1 Mobil_#2 Mobil_#3 Motul_#2 Revline Shell Total_#1 Total_#2 Total_#3 Valvoline Wolver Xado_#1 Xado_#2 | Castrol_#4 Eneos_#2 Gulf Lotos Millers_#2 Ravenol | Castrol_#1 Castrol_#6 Elf_#2 Eneos_#3 Eneos_#4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolak, A.; Żywica, R.; Molenda, J.; Banach, J.K. Electrical Parameters as Diagnostics of Fresh Engine Oil Condition—Correlation with Test Voltage Frequency. Sensors 2023, 23, 3981. https://doi.org/10.3390/s23083981
Wolak A, Żywica R, Molenda J, Banach JK. Electrical Parameters as Diagnostics of Fresh Engine Oil Condition—Correlation with Test Voltage Frequency. Sensors. 2023; 23(8):3981. https://doi.org/10.3390/s23083981
Chicago/Turabian StyleWolak, Artur, Ryszard Żywica, Jarosław Molenda, and Joanna Katarzyna Banach. 2023. "Electrical Parameters as Diagnostics of Fresh Engine Oil Condition—Correlation with Test Voltage Frequency" Sensors 23, no. 8: 3981. https://doi.org/10.3390/s23083981
APA StyleWolak, A., Żywica, R., Molenda, J., & Banach, J. K. (2023). Electrical Parameters as Diagnostics of Fresh Engine Oil Condition—Correlation with Test Voltage Frequency. Sensors, 23(8), 3981. https://doi.org/10.3390/s23083981