Indoor Robot Path Planning Using an Improved Whale Optimization Algorithm
Abstract
:1. Introduction
2. The Whale Optimization Algorithm
3. The Problem Statement and Improvement Were Measured
4. Verification and Analysis of Simulation Experiments
4.1. Standard Test Function Experiment
4.2. Path Planning
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Hu, X.; Jiang, Q. Design and optimization of logistics distribution route based on improved ant colony algorithm. Optik 2023, 273, 170405. [Google Scholar] [CrossRef]
- Ren, T.; Luo, T.; Jia, B.; Yang, B.; Wang, L.; Xing, L. Improved ant colony optimization for the vehicle routing problem with split pickup and split delivery. Swarm Evol. Comput. 2023, 77, 101228. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, H.; Chen, Y.; Cheng, L.; Zhang, B. Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization algorithm. Appl. Soft Comput. 2022, 116, 108192. [Google Scholar] [CrossRef]
- Qu, C.; Gai, W.; Zhong, M.; Zhang, J. A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Appl. Soft Comput. 2020, 89, 106099. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, Z.; Zhang, H.; Wang, X.; Guo, Y. A short-term wind power prediction model based on CEEMD and WOA-KELM. Renew. Energy 2022, 189, 188–198. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Deng, L.; Jia, M.; Xu, J. Ship motion attitude prediction model based on IWOA-TCN-Attention. Ocean Eng. 2023, 272, 113911. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, M.; Niu, Y.; Ji, G. Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM. Sensors 2022, 22, 6281. [Google Scholar] [CrossRef]
- Li, J.; Cheng, X.; Peng, J.; Meng, Z. A new adaptive parallel resonance system based on cascaded feedback model of vibrational resonance and stochastic resonance and its application in fault detection of rolling bearings. Chaos Solitons Fractals 2022, 164, 112702. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems. Expert Syst. Appl. 2023, 215, 119269. [Google Scholar] [CrossRef]
- Dadashzadeh, S.; Aghaie, M.; Zolfaghari, A. Optimal design of separation cascades using the whale optimization algorithm. Ann. Nucl. Energy 2022, 172, 109020. [Google Scholar] [CrossRef]
- Han, Q.; Yang, X.; Song, H.; Du, W. Multi-objective ship path planning using non-dominant relationship-based WOA in marine meteorological environment. Ocean Eng. 2022, 266, 112862. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, J.; Zeng, J.; Tang, J. Three-dimensional path planning for autonomous underwater vehicles based on a whale optimization algorithm. Ocean Eng. 2022, 250, 111070. [Google Scholar] [CrossRef]
- Manikandan, N.; Gobalakrishnan, N.; Pradeep, K. Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Comput. Commun. 2022, 187, 35–44. [Google Scholar] [CrossRef]
- Bo, L.; Li, Z.; Liu, Y.; Yue, Y.; Zhang, Z.; Wang, Y. Research on Multi-Level Scheduling of Mine Water Reuse Based on Improved Whale Optimization Algorithm. Sensors 2022, 22, 5164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guo, Y.; Wang, Y.; Liu, X. A discrete whale algorithm and its application. J. Univ. Electron. Sci. Technol. 2020, 49, 622–630. [Google Scholar] [CrossRef]
- Wu, K.; Tan, S. UAV flight path planning based on improved whale optimization algorithm. J. Aeronaut. 2020, 41, 107–114. [Google Scholar] [CrossRef]
- Lee, K.-N.; Le, M. Improved whale optimization algorithm based on selection of mirror images. J. Nanjing Univ. Aeronaut. Astronaut. 2020, 37, 115–123. [Google Scholar] [CrossRef]
- Chu, D.L.; Chen, H.; Wang, X.G. Whale optimization algorithm based on adaptive weights and simulated annealing. J. Electron. 2019, 47, 992–999. [Google Scholar]
- Yang, W.; Peng, Z.; Yang, Z.; Guo, Y.; Chen, X. An enhanced exploratory whale optimization algorithm for dynamic economic dispatch. Energy Rep. 2021, 7, 7015–7029. [Google Scholar] [CrossRef]
- Kumar, S.; Parhi, D.R.; Kashyap, A.K.; Muni, M.K. Static and dynamic path optimization of multiple mobile robot using hybridized fuzzy logic-whale optimization algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 5718–5735. [Google Scholar] [CrossRef]
- Dai, Y.; Yu, J.; Zhang, C.; Zhan, B.; Zheng, X. A novel whale optimization algorithm of path planning strategy for mobile robots. Applied Intelligence 2022, 1–15. [Google Scholar] [CrossRef]
- Cai, Y.; Du, P. Unmanned vehicle path planning based on balanced whale optimization algorithm. Control. Decis. Mak. 2021, 36, 2647–2655. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, C. Discrete whale optimization algorithm-based path planning for AGVs in warehouse logistics. Logist. Technol. 2022, 41, 115–119+139. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, H.; Wang, Y.; Song, T.; Wang, L. Whale optimization algorithm with embedded Circle mapping and dimension by dimension small-hole imaging backward learning. Control. Decis. Mak. 2021, 36, 1173–1180. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, D.; Zhao, G.; Wang, H. Research on long range support composite interference airspace planning. J. Northwestern Polytech. Univ. 2018, 36, 1176–1184. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, M. Research on dual-loop composite control of air-craft rudder electric loading system based on WOA. Vib. Shock 2021, 40, 246–253+289. [Google Scholar] [CrossRef]
- Sun, L.; Huang, J.; Xu, J.; Ma, Y. Feature selection algorithm based on adaptive whale optimization algorithm and fault tolerant neighborhood rough set. Pattern Recognit. A-Rtificial Intell. 2022, 35, 150–165. [Google Scholar] [CrossRef]
Parameter Name | Parameter Value |
---|---|
Population size N | 30 |
Search Dimension | 30 |
Maximum number of iterations | 500 |
Nonlinear factor minimum | 0 |
Nonlinear factor maximum | 2 |
Balancing parameter A in ILWOA algorithm | 1.3 |
Remaining parameters of WOA algorithm | Referring to the literature [24] |
Remaining parameters of MWOA algorithm | Referring to the literature [25] |
Remaining parameters of TWOA algorithm | Referring to the literature [26] |
Remaining parameters of IWOA algorithm | Referring to the literature [27] |
Remaining parameters of AWOA algorithm | Referring to the literature [28] |
Standard Functions | Dimensionality | Search Space | Minimum Value |
---|---|---|---|
30 | [−30, 30] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−50, 50] | 0 | |
30 | [−50, 50] | 0 | |
30 | [−65.536, 65.536] | 1 | |
2 | [−2, 2] | 3 | |
4 | [0, 1] | −3.86 | |
4 | [0, 10] | −10 |
Function Name | Statistical Results | ILWOA | WOA | MWOA | TWOA | IWOA | AWOA |
---|---|---|---|---|---|---|---|
F1 | Average value | 2.75 × 101 | 2.79 × 101 | 2.80 × 101 | 2.80 × 101 | 2.79 × 101 | 2.82 × 101 |
Standard deviation | 2.82 × 10−1 | 4.51 × 10−1 | 2.09 × 10−1 | 4.09 × 10−1 | 5.28 × 10−1 | 3.90 × 10−1 | |
F2 | Average value | 1.96 × 10−2 | 4.53 × 10−1 | 1.96 × 10−1 | 4.25 × 10−1 | 5.87 × 10−1 | 6.19 × 10−1 |
Standard deviation | 8.30 × 10−3 | 2.66 × 10−1 | 7.42 × 10−3 | 2.46 × 10−1 | 3.38 × 10−1 | 3.40 × 10−1 | |
F3 | Average value | 8.92 × 10−4 | 2.95 × 10−2 | 1.00 × 10−2 | 1.68 × 10−2 | 2.85 × 10−2 | 3.46 × 10−2 |
Standard deviation | 4.44 × 10−4 | 3.04 × 10−2 | 4.81 × 10−3 | 8.98 × 10−3 | 1.93 × 10−2 | 2.71 × 10−2 | |
F4 | Average value | 3.31 × 10−2 | 4.90 × 10−1 | 1.47 × 10−1 | 5.22 × 10−1 | 5.71 × 10−1 | 5.48 × 10−1 |
Standard deviation | 1.91 × 10−2 | 1.93 × 10−1 | 8.41 × 10−2 | 3.19 × 10−1 | 2.33 × 10−1 | 2.87 × 10−1 | |
F5 | Average value | 9.98 × 10−1 | 3.23 | 1.29 | 4.32 | 3.68 | 2.31 |
Standard deviation | 2.45 × 10−11 | 3.29 | 9.75 × 10−1 | 4.35 | 3.77 | 2.66 | |
F6 | Average value | 3.00 | 3.00 | 3.03 | 3.00 | 3.90 | 3.00 |
Standard deviation | 4.51 × 10−7 | 1.86 × 10−4 | 8.94 × 10−2 | 2.58 × 10−4 | 4.95 | 7.18 × 10−4 | |
F7 | Average value | −3.86 | −3.85 | −3.84 | −3.85 | −3.86 | −3.85 |
Standard deviation | 1.96 × 10−5 | 1.71 × 10−2 | 1.74 × 10−2 | 2.20 × 10−2 | 7.65 × 10−3 | 1.65 × 10−2 | |
F8 | Average value | −1.02 × 101 | −8.69 | −1.01 × 101 | −8.18 | −7.30 | −9.04 |
Standard deviation | 7.75 × 10−4 | 2.45 | 1.17 × 10−1 | 2.63 | 2.91 | 2.27 |
Evaluation Indicators | ILWOA | WOA | MWOA | TWOA | IWOA | AWOA |
---|---|---|---|---|---|---|
Average length of path | 30.667 | 32.210 | 31.793 | 31.517 | 31.862 | 32.140 |
Path standard deviation | 0.956 | 2.024 | 1.792 | 1.153 | 1.302 | 1.767 |
Average number of iterations | 36 | 66 | 57 | 61 | 63 | 64 |
Evaluation Indicators | ILWOA | WOA | MWOA | TWOA | IWOA | AWOA |
---|---|---|---|---|---|---|
Average length of path | 53.467 | 58.533 | 57.530 | 57.400 | 56.867 | 56.670 |
Path standard deviation | 1.479 | 4.725 | 2.956 | 2.851 | 3.848 | 3.252 |
Average number of iterations | 73 | 93 | 83 | 79 | 82 | 86 |
Evaluation Indicators | ILWOA | WOA | MWOA | TWOA | IWOA | AWOA |
---|---|---|---|---|---|---|
Average length of path | 90.667 | 99.667 | 96.600 | 95.533 | 97.600 | 96.733 |
Path standard deviation | 2.746 | 17.301 | 6.35 | 5.888 | 6.61 | 7.956 |
Average number of iterations | 98 | 113 | 103 | 108 | 103 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Q.; Li, C. Indoor Robot Path Planning Using an Improved Whale Optimization Algorithm. Sensors 2023, 23, 3988. https://doi.org/10.3390/s23083988
Si Q, Li C. Indoor Robot Path Planning Using an Improved Whale Optimization Algorithm. Sensors. 2023; 23(8):3988. https://doi.org/10.3390/s23083988
Chicago/Turabian StyleSi, Qing, and Changyong Li. 2023. "Indoor Robot Path Planning Using an Improved Whale Optimization Algorithm" Sensors 23, no. 8: 3988. https://doi.org/10.3390/s23083988
APA StyleSi, Q., & Li, C. (2023). Indoor Robot Path Planning Using an Improved Whale Optimization Algorithm. Sensors, 23(8), 3988. https://doi.org/10.3390/s23083988