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Abstract: In recent years, crowdsourcing approaches have been proposed to record the WiFi signals
annotated with the location of the reference points (RPs) extracted from the trajectories of common
users to reduce the burden of constructing a fingerprint (FP) database for indoor positioning. How-
ever, crowdsourced data is usually sensitive to crowd density. The positioning accuracy degrades
in some areas due to a lack of FPs or visitors. To improve the positioning performance, this paper
proposes a scalable WiFi FP augmentation method with two major modules: virtual reference point
generation (VRPG) and spatial WiFi signal modeling (SWSM). A globally self-adaptive (GS) and a
locally self-adaptive (LS) approach are proposed in VRPG to determine the potential unsurveyed
RPs. A multivariate Gaussian process regression (MGPR) model is designed to estimate the joint
distribution of all WiFi signals and predicts the signals on unsurveyed RPs to generate more FPs.
Evaluations are conducted on an open-source crowdsourced WiFi FP dataset based on a multi-floor
building. The results show that combining GS and MGPR can improve the positioning accuracy
by 5% to 20% from the benchmark, but with halved computation complexity compared to the con-
ventional augmentation approach. Moreover, combining LS and MGPR can sharply reduce 90%
of the computation complexity against the conventional approach while still providing moderate
improvement in positioning accuracy from the benchmark.

Keywords: indoor positioning; crowdsourcing; WiFi fingerprinting; machine learning; augmentation

1. Introduction

Indoor positioning has attracted tremendous research interest in recent years. Al-
though GPS has been served for years to provide location-based services in outdoor scenar-
ios, it cannot provide highly reliable positioning accuracy in indoor environments due to
signal attenuation and multi-path effects. Therefore, researchers have developed a variety
of positioning techniques, such as using magnetic field [1–3], radio frequency identification
(RFID) [4–6], and WiFi [7–11] to compensate for the shortage of GPS in indoor positioning.

Nowadays, most mobile communication devices, such as mobile phones, smart-
watches, and laptops, are embedded with WiFi chips to detect WiFi signals in indoor
environments. WiFi is widely adopted in many public and private areas to provide users
with internet connections. Since no extra infrastructure is needed, fingerprinting based on
WiFi received signal strength (RSS) has become the most prevalent method to solve the
indoor positioning problem over the last decade [12]. This fingerprinting technique usually
has two stages: online and offline stages [13–15]. The offline stage involves collecting data
from wireless networks without actually being connected to them. This can be achieved
using specialized equipment or software, such as wireless network scanners, that passively
scan for nearby networks and collect data on their RSS value, SSID, and MAC address.
Such data are usually annotated with the location where it was acquired, namely WiFi
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fingerprints (FPs). A radio map is then constructed based on the WiFi FPs to be used to
identify the location of a device or track its movements. In the online stage, WiFi devices
actively transmit data over the network, and their identifying information can be collected
in real time by the user. The online data is compared to the FPs on the radio map to
determine the most likely location where the signal was acquired.

A critical factor that affects the positioning accuracy using WiFi fingerprinting is the
number of FPs on the radio map. Volunteers are asked to collect WiFi data at hundreds of
reference points (RPs) in the investigated indoor region to obtain sufficient FPs. Such a site
survey is usually time-consuming and labor-intensive [16]. The study from Wang et al. [17]
mentions that it took about 10 h for two graduate students to take FPs at 150RPs of an area
of 281 m2. It is even worse when considering a multi-floor building scenario, such as an
airport or shopping mall.

Therefore, a crowdsourcing approach [18–20] has been proposed to collect WiFi data
and record the location by utilizing the trajectories of common users. With the inertial
sensors and WiFi cards in users’ smartphones, the WiFi RSS FPs can be collected and
annotated by their location and movements [21]. For example, HimLoc is specifically
tailored for smartphone users and makes use of commonly available sensors such as
the compass, accelerometer, and WiFi card. Its functionality is based on the idea of a
crowdsourced WiFi training set, which is generated by the movements of people within
the building [22]. LiFS [23] is a system that has been developed and is based on the
sensors in mobile phones and user movement to create a radio map of a building. Unlike
traditional radio-based solutions, it does not require site surveys and uses off-the-shelf WiFi
infrastructure, making it easy to deploy with minimal human intervention. Even without
site surveys, LiFS achieves accuracy that is comparable to previous approaches. However,
relying on crowdsourced data also brings some challenges. For example, it is expected
that the data amount will be very low at the beginning stage of deploying a crowdsourced
indoor positioning system in a certain building due to a limited number of users. Such data
is not enough to cover the entire indoor environment to provide an accurate positioning
service. Furthermore, the crowdsourced data cannot guarantee to be updated everywhere
as time changes though more user contributions are involved as the user number grows.
This is attributed to low positioning accuracy in some areas as they do not have as many
visitors as others.

This paper proposes a scalable WiFi FP augmentation method for 3D crowdsourced
indoor positioning systems in large, complex indoor environments. The contributions are
summarized as follows:

• We propose a WiFi FP augmentation method for 3D crowdsourced indoor position-
ing systems. The proposed method can generate effective WiFi FPs in unsurveyed
locations to improve positioning accuracy.

• Two self-adaptive virtual RP generation (VRPG) approaches are designed based on
and beyond the conventional approach in determining the virtual RPs of the new FPs.

• A multivariate Gaussian process regression (MGPR)-based spatial WiFi signal mod-
eling (SWSM) algorithm is designed to model the distribution of all WiFi FPs and
predict the signals on virtual RPs in a 3D environment.

• Experiments on an open 3D public dataset are conducted to comprehensively evaluate
the positioning accuracy, floor identification accuracy, and computation complexity of
the proposed augmentation method.

2. Problem Statement and Motivations

He et al. introduce a technique for creating a radio map with FPs based on the
radio propagation model [24]. However, the radio model can be easily influenced by
environmental changes, and the location of each AP is needed. Similarly, Jun et al. [25]
present an indoor positioning system named AP-Sequence that aims to reduce the human
effort in FP map creation with the location of each AP as a prior. Rather than using the
propagation model, Sinhua et al. [26,27] propose to use linear interpolation to augment
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the WiFi RSS to generate more training data. Besides the linear interpolation method,
Sun et al. [28] proposed using Gaussian process regression (GPR) to model the spatial
distribution of the RSS of each AP and predict the RSS values of each AP on unsurveyed
locations to generate new FPs. Nevertheless, such a method needs to create multiple GPR
models for all APs in the target area. Since the signal distribution of each AP is different in
the complex indoor environment, tuning all GPR models is inefficient and inappropriate
for large indoor spaces with a large number of APs.

Through the literature analysis, one problem of the existing augmentation methods is
scalability. Either using linear interpolation or pass loss model (propagation model) cannot
well predict the signal distribution in different indoor environments. The recent machine
learning-based approaches use regression models to model each AP’s signal distribution in
the targeted indoor area. Although such methods have better generalization ability, they
are not scalable and rational in practice. Usually, a WiFi RSS FP dataset for a building with
multiple floors contains hundreds of APs. For example, an open-source dataset published
in the EU Zenodo repository [29] contains more than 900 different MAC addresses in a
five-floor building. Building and tuning the regression model for each AP for the entire
building is highly time-consuming. Due to a lack of scalability, all the aforementioned
methods were designed and evaluated in small 2D environments, such as a lab, an office,
or a corridor associated with multiple rooms. It is doubtful whether such methods could
still maintain the performance considering a large complex environment.

Furthermore, where to generate the new FPs should also be focused on when augment-
ing the WiFi FPs dataset. Most of the literature adopts a simple grid-based approach [30]
that assumes the rectangle shape of a certain area according to the farthest points from
the training RPs. However, such an approach does not consider the distribution of the
RPs and will generate many non-necessary RPs that do not contribute to the positioning
phase. The predicted new FPs on such non-necessary RPs will not improve the positioning
performance but increase the computation complexity of the system.

Therefore, to solve the aforementioned two major problems, this paper proposes a
novel WiFi FP augmentation method to improve positioning performance with higher
scalability and lower computation complexity for 3D crowdsourced indoor positioning
systems. The details are elaborated in the next section.

3. Methodology
3.1. Framework

As shown in Figure 1, the proposed method is mainly constructed of two elements:
virtual reference point generation (VRPG) and spatial WiFi signal modeling (SWSM). Three
VRPG approaches (two of which are proposed in this study) are developed to generate
virtual RPs, and the SWSM is designed to model the WiFi FPs’ distribution to generate new
WiFi signals on the virtual RPs to augment the dataset. The details are as follows.

3.2. Virtual Reference Point Generation

Each WiFi FP is composed of an RSS vector f = [RSS1, RSS2, . . . , RSSM] (M is the
total number of detected APs in the entire dataset) and a location vector c = [x, y, z].
Considering a 3D coordinate system, x, y, and z stand for the coordinate along x, y, and
z-axis (in meters). To obtain more WiFi FPs for positioning, we first stipulate a strategy
to determine the locations where they should be generated. In this study, based on the
grid-based (GB) approach [30] that was mentioned in the previous section, we propose
two novel self-adaptive approaches: a globally self-adaptive (GS) approach and a locally
self-adaptive (LS) approach.
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Figure 1. Framework of the proposed WiFi FP augmentation method.

3.2.1. A Grid-Based Approach

Before introducing the two proposed approaches, we first introduce the simple and
well-adopted GB approach. For a certain floor at h m, such an area can be simply described
as a rectangle restrained by the maximum and minimum value of the coordinates of all the
RPs along x and y-axes on the same floor, so that the four vertexes of such rectangle region
are (xmin, ymin, h), (xmax, ymin, h), (xmin, ymax, h) and (xmax, ymax, h). We define a virtual RP
in the targeted region as c∗ = [x∗i , y∗j , h]. The entire region is partitioned into multiple
1 × 1 m2 grids along x and y axes. The coordinates of the virtual RPs are represented by
the locations of the vertexes of each grid. So that:

x∗i = xmin, xmin + 1, xmin + 2, . . . xmax (1)

y∗j = ymin, ymin + 1, ymin + 2, . . . ymax (2)

hence, we can obtain t virtual RPs, where t can be calculated by:

t = (xmax − xmin + 1)(ymax − ymin + 1) (3)

One example of applying the GB approach to a specific floor is shown in Figure 2.

Figure 2. An example of applying the grid-based approach to a specific floor.
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3.2.2. A Globally Self-Adaptive Approach

Beyond the GB approach, we design a new GS approach to reduce the non-necessary
virtual RPs outside the targeted region.

The GS approach first generates the virtual RPs the same as the GB approach. Then,
Graham’s scan [31] is used to detect the convex hull of the targeted region. Considering
detecting the convex hull in a 2D environment on a floor, an initial RP with the lowest
y-coordinate is selected. Then, the rest of the RPs are sorted in increasing order of the angle
calculated between them and the initial RP along the z-axis. For the RPs with the same
angle, only the farthest RP is kept (Euclidean distance is used to calculate the distance
in this study). Then, we iterate the ordered RPs and calculate the angle formed by the
three sequential RPs: previous RP, current RP, and next RP. The three RPs are kept if the
angle is counterclockwise, or the current RP is dropped. Once the iteration finishes, the
combination of the left RPs describes the convex hull of the targeted region, and only the
virtual RPs that are inside the convex hull are kept.

To further remove the non-necessary virtual RPs, the virtual reference points are
divided into many sub-areas by the mean-shift clustering algorithm. The mean-shift
algorithm is a density-based unsupervised machine learning algorithm [32]. It senses
changes in data density and updates the centroid by computing the average shift vector
over a given centroid at an arbitrary sample RP. Given a set of data xi, i = 1, 2, ..., n on a
d-dimensional space Rd, the mean shift vector of x can be expressed by:

mh(x) =
∑n

i=1 xiG
(∥∥∥ x−xi

h

∥∥∥2
)

∑n
i=1 G

(∥∥∥ x−xi
h

∥∥∥2
) − x (4)

where G
(∥∥∥ x−xi

h

∥∥∥2
)

is the kernel function and h is the bandwidth (h = 10 in this study).

The principle of mean shift is successively calculate the mean shift vector mh(x) and update
the new x (x = x + mh) until convergence.

The RPs eventually converge to the same centroid and are clustered in the same sub-
areas. The virtual RPs in the sub-areas with no raw RPs are removed. One example of
applying the GS approach to a specific floor is shown in Figure 3.

Figure 3. An example of applying the globally self-adaptive approach to a specific floor.
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3.2.3. A Locally Self-Adaptive Approach

Different from the previous two approaches, we also propose an LS approach that
focuses on exploring the local distribution of the raw RPs and detecting where the virtual
RPs should be generated. For a targeted region, the local approach first uses a mean-shift
cluster algorithm to separate the region into several sub-areas from the training samples.
Only sub-areas with three points and more are processed by Graham’s scan method to
recognize their convex hulls. A similar scheme is adopted to generate virtual RPs in each
sub-area. One example of applying the LS approach to a specific floor is shown in Figure 4.

Figure 4. An example of applying the locally self-adaptive approach to a specific floor.

3.3. Spatial WiFi Signal Modeling

In this subsection, we present how we model the distributions of the spatial WiFi
signal in a 3D environment to estimate the RSS values on the generated virtual RPs. For
all RSS vectors { f1, f2, . . . , fN} in F, and {c1, c2, . . . , cN} in C, the mapping between the
locations and the RSS vectors can be expressed by:

F = λ(C) + η (5)

where η represents the independent and identically distributed Gaussian noise with zero
mean and variance, which can be denoted by η ∼ N (0, σ2

n).
To solve the mapping problem, we assume that all RSS vectors in the investigated

indoor area obey a multivariate Gaussian process of multiple high-dimensional joint
Gaussian distributions. Therefore, such a Gaussian process can be represented by the
mean function m(C) and covariance function k(ci, cj), as shown in the following equation:

λ(C) ∼ GP(m(C), k(C)) (6)

m(C) = E[ f (C)] (7)

k(ci, cj) = E[( f (ci)−m(ci))( f (ci)−m(cj))] (8)
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where E(·) denotes the expectation operator. Therefore, the covariance matrix K can be
expressed by:

K =


k(c1, c1) k(c1, c2) · · · k(c1, cN)
k(c2, c1) k(c2, c2) · · · k(c2, cN)

...
...

. . .
...

k(cN , c1) k(cN , c2) · · · k(cN , cN)

 (9)

where N denotes the total number of WiFi FPs (or the total number of RPs).
Through the grid-based RP algorithm mentioned in the previous subsection, we obtain

N∗ potential RPs C∗. This means that we have N∗ new WiFi RSS vectors (FPs) F∗ to be
inferred. The RSS vectors F in the original dataset and RSS vectors F∗ to be inferred
should also follow a joint multivariate Gaussian distribution, which can be stated by the
following equation:[

F
F∗

]
∼ N

([
m(C)
m(C∗)

]
,
[

K(C, C)N×N K(C, C∗)N×N∗

K(C∗, C)N∗×N K(C∗, C∗)N∗×N∗

])
(10)

The posterior distribution p(F∗|F)can then be expressed as:

f ∗| f ∼ N (K(C∗, C)K(C∗, C)−1F),

K(C∗, C∗)− K(C∗, C)K(C∗, C)−1K(C, C∗))
(11)

Hence, the posterior mean and covariance of the observed RSS vectors can be com-
puted to obtain a model to predict the new RSS vectors on the unsurveyed potential RPs.

In addition, the covariance function k
(
ci, cj

)
(also called kernel function) plays a

vital role in a Gaussian process to denote the relation between the RSS vectors and the
corresponding RPs. One popular kernel function is the squared exponential kernel, which
assumes that the process of the system is very smooth [33]. This is not suitable to describe
the relationship among the high-dimensional RSS vectors in the large complex indoor
scenario in our case. In [28], a mixture of Matern and Rational Quadratic (RQ) kernels
performs the best in capturing the variation of RSS values in comparison with other kernels.
The Matern kernel is defined as:

kMatern
(
ci, cj

)
=

1
Γ(ε)2ε−1

(√
2ε

l
d
(
ci, cj

))ε

Kε

(√
2ε

l
d
(
ci, cj

))
(12)

where ε denotes the smoothness of the function; l is the length scale; Kε(·) and Γ(·) are
the gamma function and the modified Bessel function [33], respectively; d is the Euclidean
distance which can be calculated by:

d =
√
(ci − cj)T(ci − cj) (13)

The Rational Quadratic kernel can be described as:

kRQ
(
ci, cj

)
=

(
1 +

d
(
ci, cj

)2

2αl2

)−α

(14)

where α stands for the shape parameter. Therefore, the mixed kernel in our case is designed
as follows:

kmixed = µ ∗ kMatern + ν ∗ kRQ (15)

where µ and ν are the weighting parameters (initially set to 0.5). All the above-mentioned hy-
perparameters can be optimized by minimizing the negative logarithmic marginal likelihood.

After the MGPR model has been fine-tuned, it can forecast the RSS values for virtual
RPs produced by the VRPG approaches, with the predicted RSS values presented in the
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same format as the training data. The predicted RSS values are then used to create new
WiFi FPs, which are annotated with the location of the virtual RPs.

4. Preliminaries
4.1. Dataset

We evaluate the proposed WiFi FP augmentation method on a long-term public
benchmark open-source WiFi fingerprinting dataset [29]. The data was collected from a
five-floor University building (about 22,570 m2) in Tampere, Finland. The height of each
floor is 0, 3.7, 7.4, 11.1, and 14.8 m, respectively. During the data collection stage, data
was collected using twenty-one distinct Android devices, which were utilized by various
individuals and placed in different orientations. In some cases, multiple people used the
same device to replicate a scenario where data was crowdsourced.

The data is stored in CSV format and consists of four separate files: Coordinate, RSS,
Date, and Device. Each of these files contains both training and test data and has multiple
rows corresponding to the number of measurements recorded.

As listed in Table 1, 4648 FPs were collected, where 15% (697 FPs) were obtained for
training and 85% (3951 FPs) for testing. A total of 992 MAC addresses (APs) were detected.
The RSS value from non-detected APs in each FP was set to +100 by default in the dataset.

Table 1. The number of samples (reference points) on each floor in the training and testing set.

Floor * Train Test

0 226 1265
3.7 197 1108
7.4 139 770

11.1 118 699
14.8 17 109

Total 697 3951
* Note that the floor number is denoted by the value of the z-axis of the samples.

4.2. Data Pre-Processing

The RSS values from non-detected APs were set to −110 dBm before any analysis
and experiments in both training and test sets. All RSS values were normalized by the
maximum and minimum values before training the MGPR model. The 3D coordinates
were also normalized by the maximum and minimum values along each training axes. The
equation for normalization is shown below:

mnorm
i =

mi −mmin

mmax −mmin (16)

where one sample mi is normalized to mnorm
i by the maximum value mmax and minimum

value mmin.

4.3. Positioning Algorithm

This study did not propose a new positioning algorithm but applied a widely adopted
weighted K-nearest neighbors algorithm (WKNN) to predict the locations. WKNN aims
to find the k FPs in the training set with the nearest weighted distance to the test sample.
The WKNN algorithm in this study was implemented using Scikit-learn [34]. The distance
metric was set to Euclidean distance, and k was 3.

4.4. Training of the MGPR Model

To visualize the training results, we plot the heat maps over the multiple floors to
show the generalization ability of the model. Figure 5 gives an example of comparing the
WiFi signal distribution of one single AP (No.250) in the 3D environment. We can see from
the figure that the well-trained model can predict the WiFi RSS values on the unsurveyed
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locations following a certain distribution in the 3D space. Although the majority of the
observations of this AP are on the ground floor, the model can make informative predictions
near the observations on both the same floor and the floor above.

(a)

(b)

Figure 5. 3D visualization of the heat map of AP 250 in the targeted building: (a) raw training data;
(b) augmented training data (associated with GB approach).

5. Experiments and Evaluations
5.1. Experimental Settings

In this experiment, we randomly selected a portion of the training data from the
original training set with different percentages (from 10% to 100%). This was to simulate
the growth of the training data coverage in the entire building. As the crowdsourced indoor
positioning systems employ users’ contributions to construct the training set, the training
data amount and its coverage are expected to be very limited at the beginning stage due to
few users. As time goes by, the training set is expected to grow and finally cover the entire
building as more and more users and their contributions are involved. It can be seen from
Figure 6 that the coverage of the partial training data is very limited when the sampling
ratio is very low. Most of the areas are not surveyed. As the sampling ratio increases, the
training data grows and finally covers the entire building.
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(a) (b) (c)

Figure 6. 3D visualization of the partial training data and the test data: (a) sampling ratio = 10%;
(b) sampling ratio = 50%; (c) sampling ratio = 100%.

We trained the proposed MPGR model with such partial training data and predicted
new RSS values on the virtual RPs from different VRPG approaches to generate new
FPs. The new FPs and the partial training FPs were mixed into a new augmented dataset
for positioning.

5.2. Performance Evaluations

In this subsection, we evaluate the performance of the proposed WiFi FP augmentation
method through three aspects, including positioning accuracy, floor identification accuracy,
and computation complexity.

5.2.1. 3D Positioning Accuracy

The 3D positioning accuracy is calculated from the mean of the absolute positioning
error between all predictions and the ground-truth coordinates. As shown in Figure 7, the
positioning error decreases sharply at the beginning as the sampling ratio increases from
10% to 20%. Then, it declines steadily as more training FPs are involved. The positioning
error with the augmented dataset using the GB, the GS approach, and the LS approach
shows a similar trend as the partial training data but less error at each stage. We can
observe from the figure that although there is a slight fluctuation, augmented data can
always provide better positioning accuracy than raw data.

We can also observe from the figure that the approaches with augmented data show
significant improvement (10–20%) at the beginning stage when only 40% of raw training
data are used. However, the improvement decreases steadily when more raw training data
is involved. This is because of the saturation of raw training data. Although the new FPs
generated by the MGPR model can complement the limited number of raw training data
at the beginning, the contribution of such new FPs weakens as the coverage of the raw
training data grows.

Moreover, we can see some fluctuations in the improvement of positioning accuracy.
This is because the distribution of raw training data is usually uneven, which is attributed
to different positioning accuracy in different areas. Such a situation is consistent with
the real situation that more users may visit some areas in the building, which provides
more informative data and higher positioning accuracy. This motivates us to conduct the
following experiment on region-based augmentation.
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Figure 7. Mean positioning error of using different percentages of the training set.

In addition, among the three approaches of using the augmented dataset, it can be
seen from Table 2 that the LS approach usually provides a worse accuracy than the other
two when the sampling ratio is lower than 50%. This is because such a low number of
training data cannot cover most of the indoor environment. Hence, the augmented data
from the sub-areas partitioned directly from the training data through the local approach
cannot significantly improve the positioning accuracy. However, when the sampling ratio
is higher than 50%, the positioning accuracy is better than the GB approach. Due to the
higher data coverage in the indoor region, the LS approach can estimate the penitential
infrastructure/floor plan of the building to generate more effective RPs, which can enhance
the positioning performance.

Table 2. 3D positioning accuracy evaluations on building-based augmentation *.

Samping Ratio Raw Data (m) GB (m) GS (m) LS (m)

10% 21.27 17.21 18 19.82
20% 14.47 12.95 13.06 13.08
30% 13.57 11.22 10.34 12.10
40% 13.01 11.72 11.76 12.21
50% 11.36 10.60 10.55 10.72
60% 10.93 10.24 9.85 10.00
70% 10.14 9.17 9.07 9.26
80% 9.83 9.36 8.85 8.86
90% 9.06 8.59 8.37 8.44

100% 8.94 8.46 8.27 8.38
* Note that the highest positioning accuracy in each case is marked with bold fonts.

Oppositely, the GS approach shows the best performance in most of the cases (7 out of
10) in providing higher positioning accuracy. This is because the GS approach augments
the indoor environment by first detecting the boundary of the entire training data per floor.
Although the training data cannot densely cover the entire region, the convex hull of the
training data can describe the majority of the floor plan. Therefore, more virtual points can
be generated for positioning.
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5.2.2. Floor Identification Accuracy

Specifically, we calculate floor identification accuracy by using different approaches.
The floor identification accuracy is calculated by the ratio of the number of cases predicted
correctly and the total number of samples. It can be seen from Figure 8 that the approaches
with augmented data can always provide a higher identification accuracy than only using
the raw data, which is similar to the 3D positioning accuracy. As listed in Table 3, the GS
approach can enhance floor identification accuracy more than the other two approaches
(5 out of 10). It can significantly improve the accuracy (around 10%) even if there is little
training data (less than 40%). While the performance of the LS approach is between the GB
and the GS approach. Although it can improve the floor identification accuracy in all cases
against using the raw data, the improvement is always limited to around 2%.

Figure 8. Floor identification accuracy of using different percentages of the training set.

Table 3. Floor identification accuracy evaluations on building-based augmentation *.

Sampling Ratio Raw Data (%) GB (%) GS (%) LS (%)

10% 60.01 66.67 68.21 62.90
20% 74.79 74.66 75.53 75.96
30% 76.26 86.46 85.90 82.49
40% 80.49 81.22 82.38 81.60
50% 82.36 82.99 82.97 83.24
60% 83.85 88.10 87.37 85.50
70% 86.76 89.67 90.66 89.95
80% 89.24 91.09 91.24 91.07
90% 89.32 91.39 91.60 91.27

100% 89.67 91.72 91.35 91.07
* Note that the highest floor identification accuracy in each case is marked with bold fonts.

5.2.3. Computation Complexity in Positioning Phase

In this part, we investigate the contribution of different VRPG approaches to the
computation complexity of the final positioning algorithm. Given the final positioning algo-
rithm of WKNN, the computation complexity of such an algorithm is usually proportional
to the number of training samples, which can be calculated as:

O[DN] (17)
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where N denotes the total number of training samples and D represents the dimensionality
of each sample. In this study, each training sample is annotated with an RP. Therefore, the
computation complexity of different augmentation approaches is mainly affected by the
total number of RPs (mix of training RPs and virtual RPs).

As the numbers of total RPs in all cases are listed in Table 4, the GB approach always
uses the largest amount of RPs, which leads to higher computation than the other two
approaches. Compared to the GS approach, the computation complexity of GB is usually
doubled. This is because the GB approach generates the virtual points by filling the indoor
region with grids partitioned from a rectangle boundary by the farthest RPs in the training
data. Although such an approach can cover all possible indoor areas even when the data
amount is insufficient, it also generates a lot of virtual points that do not belong to the
investigated indoor areas. As an example is shown in Figure 9, most of the virtual points
are outside of the real floor plan, which does not contribute to improving the positioning
performance but degrades the computation complexity. Beyond the GB approach, the
proposed GS approach detects the convex hull and conducts the information density
analysis, which eliminates most of the areas that are out of the investigated region to reduce
the computation complexity.

(a) (b) (c)

Figure 9. 3D visualization of the augmented data from different approaches: (a) the grid-based
approach; (b) the globally self-adaptive approach; (c) the locally self-adaptive approach.

Other than the GB and GS approaches, the proposed LS approach shows extremely
low computation complexity. Such an approach can provide reliable improvement in
positioning performance with a low computation complexity when there is sufficient data.
It can be seen from Figure 10 that LS uses no more than 10% of virtual RPs of GB and
around 5% of virtual RPs of GS when the data is fully sampled. This is because the LS
approach first performs the local indoor area partitioning on the training sets and then
augments the local areas. Furthermore, it can be observed from Table 4 that the number
of RPs generated by LS is even less than about 2% of the GB approach in some cases
when the sampling ratio is lower than 40%. Although the augmented data can improve
the positioning performance against using only the raw data, the improvement is not as
significant as the GB and GS approach. This is because the LS approach partitioned the
indoor areas locally, which highly relies on the distribution of the raw data. When the data
amount and density are very low, the LS approach will fail to cover the investigated indoor
region by missing many areas.
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Figure 10. The number of RPs in the different floors (when sampling ratio = 100%).

Table 4. Comparison of the number of RPs in different cases *.

Floor 0 Floor 1 Floor 2 Floor 3 Floor 4

GB GS LS GB GS LS GB GS LS GB GS LS GB GS LS

10% 5850 2935 272 6133 3213 174 5232 1881 13 2533 1311 50 2 1 1
20% 11,016 4915 427 7295 3244 300 7670 3672 102 4779 2852 167 3303 1119 3
30% 11,411 6038 662 8438 4361 595 7571 4338 369 3427 2436 204 3349 207 7
40% 9196 5520 1101 8463 4925 656 10,406 4940 372 6116 3685 261 666 227 17
50% 13,327 6757 1398 8748 5083 851 7057 4269 439 5865 3233 338 511 209 9
60% 12,363 6628 1473 8962 5266 1224 10,703 4363 587 6270 3937 489 3658 1132 39
70% 12,197 7209 1665 8982 5866 1265 8097 5094 747 5799 3277 701 612 103 22
80% 11,044 7292 1757 9135 5339 1329 10,736 4521 794 6561 4112 630 693 178 40
90% 13,757 7795 1839 9154 5439 1399 8132 4430 955 6576 4231 723 3742 1155 43
100% 13,787 7903 2100 9173 5466 1501 10,764 4458 847 6586 4019 760 3743 1156 45

* Note that the lowest number of total RPs in each case is marked with bold fonts.

5.2.4. Comparison with State-of-the-Art

In the earlier sections, we thoroughly assessed the performance of the three VRPG
algorithms linked with the proposed SWSM in terms of positioning accuracy, floor identifi-
cation accuracy, and computation complexity. In this section, our focus shifts to evaluating
the proposed SWSM’s generalization ability in comparison to the widely used inverse dis-
tance weighting (IDW) algorithm, as well as its effect on positioning accuracy. Specifically,
we analyze the ability of both methods to generate RSS values on unsurveyed points and
how this influences the accuracy of the resulting position estimates.

Inverse Distance Weighting: The IDW algorithm is a commonly used interpolation
technique used in geographic information systems (GIS) to estimate values at unsampled
locations based on nearby sampled points [35]. It works by assigning a weight to each
sampled point based on its distance to the unsampled point, with closer points being
given higher weights. The estimated value at the unsampled point is then calculated as
a weighted average of the values at the nearby sampled points, where the weights are
determined by their distance to the unsampled point. The IDW algorithm assumes that the
values being interpolated have a spatial correlation and that closer points have a greater
influence on the estimated value than more distant points. The algorithm is widely used in
environmental modeling, spatial analysis, and cartography. In this study, we interpolate
the RSS values by APs and assemble them as new FPs on each location.

The error of WiFi signal modeling: To compare the generalization ability of IDW and
the proposed MGPR, we predicted the RSS values of each AP on the reference points in



Sensors 2023, 23, 4095 15 of 18

the test set and calculated the absolute error between the ground-truth RSS and predicted
RSS. The RSS values with a default value (−110 dBm ) that denote the non-detected signals
have been removed from the test set before calculation.

As listed in Table 5, the MGPR shows a similar median error to the IDW but a lower
mean and standard deviation in predicting RSS values on unsurveyed locations. In addition,
we define an invalid estimation of RSS value if it equals −110 dBm. We can see from
the table that IDW provides more invalid RSS predictions than MGPR, which shows a
weaker generalization ability. Furthermore, we can observe from the histogram of the RSS
prediction errors in Figure 11 that the proposed MGPR has a higher frequency to show a
lower RSS estimation error than 30 dBm. Contrastingly, the IDW has a higher chance of
gaining an error higher than 30 dBm.

Table 5. Comparison of the error in predicting RSS values using different algorithms.

IDW MGPR

Number of invalid RSS predictions 1371 494
Mean error (dBm) 16.83 16.67
Median error (dBm) 16.08 16.08
Standard deviation (dBm) 11.51 10.39

Figure 11. Histogram of the RSS error between the ground-truth and the predictions.

Positioning performance: We compared the positioning performance of the IDW and
the proposed MGPR on accuracy in positioning and floor identification. We used the entire
dataset with a sampling ratio of 1.0 for evaluation. Figure 12 shows that the IDW, with the
three VRPG approaches, generally improves positioning accuracy compared to using only
raw data. However, in all cases using GB, GS, and LS, MGPR showed lower positioning
errors than IDW. This is because the proposed MGPR can capture the global distribution of
all WiFi FPs in the 3D environment and generate new FPs that are distinct from each other.
This helps the positioning algorithm better identify the user’s position.

On the other hand, the IDW outperforms MGPR in floor identification accuracy, as
illustrated in Figure 13. This suggests that the FPs generated by MGPR have better locality
but worse commonalities than those generated by IDW. The reason for this is that MGPR
models the distribution of all FPs in the 3D environment and maps the RSS values of each
FP to a specific coordinate. In contrast, IDW first interpolates the RSS values with APs and
then assembles the new RSS values to new FPs on each coordinate. As a result, for the new
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FPs generated by IDW, it is easier to identify their commonalities and they perform better
in floor identification.

Figure 12. The comparison of mean position accuracy using different algorithms.

Figure 13. The comparison of floor classification accuracy using different algorithms.

6. Conclusions

In this paper, we have proposed a scalable WiFi FP augmentation method for 3D
crowdsourced indoor positioning systems in large complex indoor environments. One
key element of augmentation with the proposed method is the proposed SWSM algorithm
that creates an MGPR model to estimate the joint distribution of all WiFi signals in a 3D
environment. Another one is to design two self-adaptive VRPG approaches to reduce
the non-necessary virtual RPs from the well-adopted GB approach. With these two ele-
ments, we generate more FPs by estimating the RSS values on virtual RPs to augment the
training set. Experiments on an open public dataset of a 3D building have shown that the
proposed WiFi FP augmentation method can improve positioning accuracy and building
identification accuracy even with insufficient data coverage. Furthermore, the two self-
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adaptive VRPG approaches can provide better improvement in positioning performance
than the conventional GB approach. In detail, the GS can significantly improve positioning
performance with halved computation complexity than GB; while the LS approach can
reduce 90% of the computation complexity of GB and maintain a moderate improvement
in positioning performance when there is sufficient data coverage.

However, a comparison between the proposed MGPR model and the widely-adopted
IDW algorithm shows that the proposed algorithm can generate FPs with a better locality
but worse commonalities. This is attributed to the fact that the MGPR provides higher
positioning accuracy but lower floor identification accuracy than IDW, which motivates us
to focus on developing floor-based MGPR models in future work, aiming to enhance the
commonality of augmented FPs.
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The following abbreviations are used in this manuscript:

RFID Radio frequency identification
RSS Received signal strength
FP Fingerprint
RP Reference point
GPR Gaussian process regression
MGPR Multivariate Gaussian process regression
VRPG Virtual reference point generation
SWSM Spatial WiFi signal modeling
GB Grid-based
GS Globally self-adaptive
LS Locally self-adaptive
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