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Abstract: Sleep-deprived fatigued person is likely to commit more errors that may even prove to be
fatal. Thus, it is necessary to recognize this fatigue. The novelty of the proposed research work for
the detection of this fatigue is that it is nonintrusive and based on multimodal feature fusion. In the
proposed methodology, fatigue is detected by obtaining features from four domains: visual images,
thermal images, keystroke dynamics, and voice features. In the proposed methodology, the samples
of a volunteer (subject) are obtained from all four domains for feature extraction, and empirical
weights are assigned to the four different domains. Young, healthy volunteers (n = 60) between the
age group of 20 to 30 years participated in the experimental study. Further, they abstained from
the consumption of alcohol, caffeine, or other drugs impacting their sleep pattern during the study.
Through this multimodal technique, appropriate weights are given to the features obtained from the
four domains. The results are compared with k-nearest neighbors (kNN), support vector machines
(SVM), random tree, random forest, and multilayer perceptron classifiers. The proposed nonintrusive
technique has obtained an average detection accuracy of 93.33% in 3-fold cross-validation.

Keywords: alertness; fatigue; non-intrusive; sleep deprivation; voice analysis

1. Introduction

Sleep deprivation has a considerable impact on human motor function and cognitive
impairments. Lack of sleep results in the reduction of a person’s ability to perform a
variety of psychomotor tasks by increasing reaction times for simple and complex tasks.
For example, sleep deprivation has been associated with longer reaction times and reduced
force [1]. Impairment of alertness poses a danger not only to an individual but also often to
the public at large. Fatigue caused by prolonged sleepiness is the predominant risk factor
in driving and is probably the most critical one. The term fatigue may seem analogous
to sleepiness but rather has a different meaning. Fatigue is defined as the collective
physiological and psychological disinclination to perform a task; it arises from prolonged
physical or emotional work engagement or from monotony due to the frequency of work
engagement [2]. Numerous researchers have reported that prolonged sleep deprivation
results in a decline in cognitive abilities. Henceforth, sleep deprivation results in fatigue
and increases the possibility of human error, which further results in fatal accidents [3].
Therefore, assessment of the fatigue induced due to sleep deprivation is an important task.

Various physiological features like blood volume pulse (BVP), electroencephalography
(EEG), electromyography (EMG), and electrooculography (EOG) are intrusive means of
detection, as many electrodes must be put on the subject’s body to acquire the signal [4]. The
intrusive methods have some inherent disadvantages, like a biasing in the received signal
due to the subject’s awareness of being examined. Recently researchers have successfully
implemented nonintrusive methods, like image analysis (eye-blinking rate, pupil diameter),
voice analysis (speech patterns), and body reflex analysis, to assess the fatigue induced
by the reduced sleeping time [2,4]. However, there is a scope to improve the accuracy of
detection methods.
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The present research work proposes improving sleep deprivation-induced fatigue
detection by combining multiple domain information acquired in a nonintrusive manner.
Subsequently, a computer-based multimodal feature fusion system has been developed for
fatigue detection, in which the ambulatory subject is not aware of being examined.

1.1. Literature Review

In past research work, various intrusive and nonintrusive methods have been im-
plemented for detecting fatigue. Since this research work has been carried out for multi-
domain-based sleep-deprive-induced fatigue detection; thus, we considered intrusive and
nonintrusive techniques and recent research considering all four domains for the literature
review section.

1.1.1. Literature Review Based upon Facial Features

Fatigue detection through facial features is an active research area, and several tech-
niques are being developed to detect fatigue through facial features, including eye-tracking
for eye movements, such as longer blinks. Fatigue can be detected by analyzing facial
features, such as drooping eyelids, redness in the eyes, and changes in facial expressions.
K. A. Brookhuis et al. discussed traffic accidents caused by inadequate mental workload, i.e.,
low vigilance or elevated stress. Further, they exhibited the possibility of modern high-end
driving simulators for monitoring mental workload while performing a task [5]. Vural et al.
employ a machine learning technique for determining the influence of drowsiness on
human behavior. The system can approximately detect sleepiness with 90% accuracy [6].
Similarly, an approach for drowsiness detection from greyscale images was suggested by
M. J. Flores et al. in 2008. They considered the eye-blinking rate as an indicator to detect
a driver’s fatigue [7]. X. Fan et al. conceptualized monitoring human fatigue from facial
image sequences by deploying the Gabor-based dynamic representation. In their approach,
the image sequence is segregated into dynamic units, and further, a histogram of each
dynamic unit is combined as a dynamic feature [8]. In 2013, N. Sharma et al. used thermal
imaging of facial regions. Their work is based on the facial features and thermal features
acquired through video input. Additionally, they developed a database named ANU Stress
DB. However, they obtained a moderately accurate system with 72% detection accuracy
through feature fusion [9].

1.1.2. Literature Review Based upon Vocal Features

Human voice features can be considered for detecting fatigue due to sleep depri-
vation. Vocal features include speech analysis to detect the changes in pitch, tone, and
rate of speech, which are significant indicators of fatigue. The voice of a fatigued person
tends to become more monotone and less expressive. The human voice is also related to a
person’s drowsiness and alertness; therefore, it is considered for the study. Hansen et al.
performed experimental work to analyze the voice under stress. They explored various
stress perception characteristics that affect the speech production system [10]. In com-
parison, Tawari et al. introduced a feature set based on the cepstrum analysis of voice
pitch and voice intensity. An overall accuracy of around 84% is reported by them [11].
R. Fernandez et al. demonstrate a speech recognition model to evaluate the structure of
naturally occurring speech of various subjects. They reported 70% detection accuracy and
30% false alarms [12]. Mel-frequency cepstral coefficient (WMFCC) features are considered
for spectral weights from a recorded speech sample by E. Bozkurt et al. They concluded
that the performance of classifiers based on WMFCC features is better than those with
conventional spectral features [13]. J. Krajewski et al. evaluated various classifiers, and the
phonetic feature set models’ vocal features for fatigue detection achieved 78.3% accuracy
for speaker classification [14]. For fatigue detection, M.J. Caraty et al. experimented with
continuous oral reading patterns of various subjects. They implemented a dual-class SVM
classifier and achieved an accuracy of 94.1% for the training set and 68.2% for the test
set [15]. Body reflex is an unplanned involuntary action in response to a stimulus. Sleep
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deprivation also causes muscle fatigue, affecting body reflexes like keyboard typing and
hand grips. A. Jaimes et al. studied the methods focused on the body, gesture, and eye
gaze, including emotion analysis from audio [16].

1.1.3. Literature Review Based upon Reflex Analysis

Reflex analysis is another way to detect fatigue by measuring reaction time. Fatigue
contributes to slowing down the reflexes of a person, resulting in elongated reaction time.
Analyzing a reaction time is straightforward, such as pressing a button in response to a
visual stimulus, which can be used to measure reaction time. It is a promising approach
having potential in research studies. L. M. Vizer et al. proposed a methodology to detect
stressed subjects by monitoring the interaction pattern of a keyboard. Outcomes from
their experimental study exhibit the possibility for stress classification through keystroking
patterns [17]. Y. M. Lim et al. investigated the characteristics of keyboard and mouse
activity to classify stressed subjects. They concluded that the keyboard and mouse behavior
is affected due to the stress induced by time pressure and mental arithmetic problem [18].
In addition to this, Nahin et al. discussed an approach to detect a state of mind by analyzing
keyboard typing patterns. The collective keystroke dynamics and text sequence analysis
show 80% accuracy [19]. Hooda R et al. studied the necessity of real-time fatigue detection
more accurately, including biological and physical features [20].

1.1.4. Recent Literature Review Based upon Modern Techniques

Overall, detecting fatigue is a complex task, and it often requires a combination of
techniques to achieve accurate results. However, with the improvement in modern tech-
nologies and machine learning algorithms, detecting fatigue through multimodal features
is becoming easier. V. J. Kartsch et al. studied the various research efforts made to compute
the degree of drowsiness by eye-tracking and analyzing physiological features through
EEG signals [21]. Similarly, Chunhua et al. assessed mental fatigue through EEG to pre-
vent the risk of performance degradation. The accuracy of their language understanding
experimental approach is 87.9% [22]. N. Wu et al. experimented on the speech signal by
extracting the Mel frequency cepstrum coefficient (MFCC) and implementing machine
learning techniques for estimating fatigue. They compared various algorithms, including
the self-adaption quantum genetic algorithm (SQGA), back propagation neural network
(BPNN), k-nearest neighbor (kNN), and support vector machine (SVM). 94.0% detection
accuracy was obtained only by SVM [23]. Similarly, AI Siam et al. experimented with
emotion recognition through facial images and speech. Their real-time deep learning ap-
proach included machine vision and speech modalities. Furthermore, they used principal
component analysis (PCA) for feature decomposition. They claimed 97% detection accu-
racy for simulation only. [24]. A. A. Alnuaim proposed a real-time approach to emotion
detection through speech to develop modules for speech emotion recognition (SER) to
support applications related to human-computer interfaces (HCI). In their research, they
discussed the results of the various classification approaches and feature fusion to en-
hance emotion detection accuracy. Unlike most previous studies, their analysis is based on
multi-lingual data sets [25]. T. Tuncer et al. proposed a framework based on EEG to detect
driver fatigue. In their approach, they presented a hybrid three-layered feature selection
method. Their nonintrusive method obtained 97.29% classification accuracy through EEG
signals for driver fatigue detection [26]. B. Fatima et al. investigated micro-sleep patterns
and developed a cost-effective solution for detecting driver fatigue. They distinguished
open and closed eyes through SVM and AdaBoost algorithms. Micro-sleep patterns are
determined to detect fatigue state and eventually trigger a warning alarm. They achieved
an average accuracy of 96.5% and 95.4% for SVM and AdaBoost, respectively [27]. In
recent research, K. O’Keeffe et al. investigated the effect of fatigue on human performance
and investigated the efficacy of the existing methods for inducing mental fatigue. In their
experiment, they conducted six sessions with 12 participants and performed two cognitive
tests; the first was an AX-continuous performance test (AX-CPT), and the second was the
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TloadDback test [28]. K.J. Heaton et al. worked on the prediction of the changes the perfor-
mance through electrodermal activity and speech-motor coordination. They interpreted
the decline in cognitive performance and alertness with the increase in workload [29].
G. Sikander et al. studied the various techniques for detecting driver fatigue. Nowadays,
automakers are installing driver assistance technologies (ADAS) in automobiles which
include fatigue detection devices. They reviewed and compared numerous approaches and
methodologies for the detection of fatigue through physiological features and vehicular
features [30]. M. Doudou et al. proposed an embedded methodology to monitor drivers’
alertness and detect real-time drowsiness levels. Their research is based on vehicle behavior
and driver behavior through video and physiological signals to figure out the applicabil-
ity and accuracy in terms of intrusiveness and practical usage viewpoint [4]. In recent
research, C. Zhao emphasized driving safety in the modern era of smart devices and the
proliferation of the internet of vehicles (IoV). They implemented a Bayesian convolutional
neural network (BCNN) data selection strategy and introduced the uncertainty-weighted
asynchronous aggregation (UWAA) algorithm [31]. Moreover, Y. Zhang et al. experimented
with detecting mental fatigue through EEG signals to reduce the probability of traffic acci-
dents. Their research work is based upon logistic regression, one-way analysis of variance,
and recursive feature elimination (logistic-ARFE), and they implemented Gaussian SVM
for classification purposes and achieved an accuracy of 73.33% [32]. In recent research,
Chen, J. et al. developed a BP neural network model for detecting fatigue through eye
closure, yawning, and percentage of eye closure time (PERCLOS) from the recorded video.
The accuracy of the proposed model with facial expressions increased by 8.4%. The pro-
posed model can filter out artifacts caused due to facial expressions while detecting driver
fatigue [33]. Furthermore, Li, Y. et al. proposed a lightweight wearable device based upon
a convolution neural network for detecting driver fatigue through eye images [34]. As
fatigue detection technologies continue to advance, they have the potential to improve
safety and performance. With the development of technologies and machine learning
algorithms, it is becoming easier to detect fatigue. Still, there is a requirement to overcome
the research gaps in this field.

2. Research Gaps

Researchers are making many efforts to detect stress through various modalities.
Nevertheless, more research is needed to develop more reliable methods for detecting
fatigue in real-world settings. There is a scope for improvement to enhance the detection
accuracy and interface medium. After studying the available literature, the following
research gaps have been identified.

1. The existing systems to detect fatigue due to the lack of sleep are primarily intrusive. In
such kinds of systems, several biomedical sensors must be employed on an ambulatory
subject’s body. The main disadvantage of using intrusive methods is that the subject
remains aware during the detection process. Thus, there is a chance of a biased result
in that case. Moreover, intrusive systems restrict the subject’s movement, leading
to distortion.

2. Furthermore, in most of the previous studies, uni-modal systems have been consid-
ered for such purposes, i.e., features from one domain are implemented. There is a
possibility that the outcome will be significantly more accurate by using a multimodal
feature fusion approach and hence include more features/parameters. Therefore, a
nonintrusive system based on multimodal feature fusion is required to better assess
fatigue caused by inadequate sleep.
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3. Material and Methodology
3.1. Material

The multimodal fatigue detection system’s apparatus consists of a desktop computer
of Make: HP, Model: R-15 (including wireless keyboard and mouse) used as an interface
for signal processing and computation task. A high definition (HD) webcam of Make:
Logitech, Model: C920, captures visual spectrum images. Flir’s C2 thermal camera captures
thermal images, as shown in Figure 1. A MATLAB version: 2016a software, incorpo-
rated with the image processing toolbox, is used for multimodal information processing
and categorization.
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Figure 1. Demonstrating experimental apparatus.

3.2. Subjects

A group of 120 healthy subjects was constituted between 20 and 28 years. They
also abstained from caffeine, alcohol consumption, and psychoactive drugs that may
influence sleep patterns. All subjects were well informed about the study’s purpose, and
we instructed them to fill out a subjective sleepiness scoring questionnaire. Subjects were
kept awake for 18 h and called for data acquisition in a controlled environment. When they
had taken sound sleep for more than 8 h, the same subjects called again for the baseline
(alert state) data acquisition. For consistent circadian rhythm, data was acquired in the
morning between 7:00 A.M. to 9:00 A.M. Data acquisition comprises four domains as
follows: 1. Visual facial image capturing. 2. Thermal image capturing. 3. Voice acquisition.
4. Keystroke data acquisition. Data acquired from the mentioned four domains are required
for cumulative dataset preparation. This dataset is used for developing, testing, and
validating the classifier. The entire procedural process is discussed in Section 3.3.

3.3. Methodology

Human emotions can be distinguished through facial expressions, gestures, speech
patterns, and physiological indicators [35]. L. Tang et al. proposed an image fusion
framework for infrared and visible images in real time [36]. This experimental study aims
to identify the significant physiological parameters from different domains for fatigue
detection and develop a computer-aided system using multimodal features.

Due to sleep deprivation, there will be a considerable change in the various physio-
logical parameters. The significant parameters for detecting human fatigue are eye cues,
facial expressions, body reflexes, voice patterns, and the facial region’s thermal spectrum.
An experimental apparatus has been prepared to detect these physiological parameters
and behavioral changes, as described in Section 3.2. A graphical user interface has been
developed for interface purposes and to facilitate the whole process.

The overall procedure is carried out in five stages, as depicted in Figure 2. This
apparatus designed by us is a multimodal feature fusion from four domains as follows:
1. Visual spectra facial image analysis, 2. Keystroke analysis, 3. Voice analysis, and
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4. Thermal spectra image analysis. The whole methodology consists of five stages,
including 1. Data acquisition, 2. Feature extraction, 3. Multimodal feature fusion,
4. Processing and analysis, and 5. Classification and detection.
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3.3.1. Data Acquisition

The foremost step is to acquire data in a noise-free and constrained environment.
A protocol has been made to keep the dataset uniform and get reliable results, and the
apparatus has been installed in an isolated chamber with diffused lights for consistency in
ambient light. A direct light source was not there in the chamber, reflecting the subject’s
face. Further, we maintained consistency in ambient temperature, which was within the
range of 22 ◦C to 28 ◦C. External sound interference was negligible. The subject’s seating
distance was 50 to 60 cm apart from the apparatus.
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3.3.2. Feature Extraction

Significant features have been obtained from the four domains to detect fatigue, i.e., a.
Visual image features, b. Thermal image features, c. Keystroke dynamics, and d. Vocal features.

(a) Visual Spectra Facial Image Features: We obtain discrete pictures from the web-
cam, and the facial region is confined automatically from the discrete images using the
Viola-Jones algorithm. Afterward, the Viola-Jones algorithm detects the eye-pair region
automatically in the particular facial region. The eye-pair region is cropped and converted
into a grayscale image for processing time minimization. Here, cropping and converting
RGB images to grayscale images have improved overall efficiency. In the subsequent step,
histogram equalization is performed, followed by morphological operations.

SN = T(rN) = ∑N
j=0 Pr

(
rj
)
= ∑N

j=0

(
nj
n

)
(1)

Here, SN represents the intensity value of the resulting image, corresponding to the
intensity amount of an input image rN; N represents total grayscale levels, and P represents
probability. Morphological operations incorporate four steps; the first step is the disk
structure element per retina’s shape. The second and third stages comprise the opening
of the image function, trailed by the closing of the image closing function to form a filter.
The filtered image is processed through a dilation operation to get notable edges from the
dilated image obtained in the fourth step. After morphological operations, the image is
converted into binary, later utilized for the decision-making process. We used the image-
profile function on a binary image segment to differentiate between closed and open eye
pairs. The image profile function provided us with notable information through the pixel
value plot of a line. We decide on a threshold limit based on pixel values. Hence, a binary
classifier is formed to classify open and closed eyes.

Open and closed eyes are differentiated by a binary algorithm developed for classifica-
tion. Eight perpendicular lines are formed when an eye pair is open across the image profile
line. These perpendicular lines characterize the number of white pixels across the lines. The
opened eyes, nose, and pupil segments make more than eight perpendicular lines. Whereas
in closed eyes, only nose boundaries are observed, resulting in only two perpendicular
lines in a function of the image profile. This binary algorithm can automatically distinguish
open or closed eye pairs across the perpendicular line count. Afterward, significant fea-
tures were extracted from the images, followed by feature reduction. Feature reduction
is performed through Fisher’s discrimination ratio (FDR). Elevated FDR denotes that the
feature’s capability to discriminate between two classes is higher [37]. The FDR value for
the nth feature is calculated as described in Equation (2).

FDRn =

∣∣∣∣∣∣ µan − µbn√(
σ2

an + σ2
bn
)
∣∣∣∣∣∣ ∀ n ∈ [1, 11] (2)

Here, µa = mean of class ‘a’; µb = mean of class ‘b’; σa = standard deviation of class ‘a’
and σb = standard deviation of class ‘a’. Based on the highest FDR and minimum correlation
coefficient, the six most significant features have been identified out of ten facial image
features, as shown in Table 1.

(b) Thermal Image Features: Overall, five features (listed in Table 2) are considered
significant from the captured thermal images. The facial region is initially cropped and
extracted from the image acquired from the thermal camera to extract the pixel count
value. Then, the extracted thermal image of the facial region is converted into grayscale.
Cropping the image and converting it to grayscale reduces the processing time significantly.
Afterward, the grayscale image is transformed into a binary image, as shown in Figure 3.
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Table 1. List of features from visual spectra facial image.

S. No. Features Description

1 Eyes Close Period (ECP) The time period for closed eyes in a 3-min
video sample

2 Open to Close Changeover Period (OCOP) The time for the eye state to change from an
open state to the closed state

3 Close to Open Changeover Period (COCP) The time for the eye state to change from a
closed state to an open state

4 Total Changeover Time (TCT) Time period for total changeover states
(OCOP+COCP)

5 Inter Changeover Frame Count (ICFC) Changeover frames count

6 Eyes Blink Count (BKC) Total eye blinks number in a 3-min
video sample

Table 2. List of features from the thermal image.

S. No. Features Description

1 Pixel count Total number of white pixels in binary image

2 FHFa Angular Sum of Forehead region

3 FHFr Radial sum of forehead region

4 PRFa Angular sum of periorbital region

5 PRFr Radial sum of periorbital region
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To extract the other four thermal features (two from the periorbital region and two from
the forehead region), the ROIs from the thermal image have been selected, as shown in
Figure 3. During experiments, it has been observed that the periorbital region and forehead
region are significant RIOs. Thermal and visual spectrum images are captured by the same
camera, i.e., Flir C2. The visible spectra image is resized to match the thermal image size,
i.e., 320 × 240 pixels. Afterward, the eye pair region is extracted from the visual spectrum
image using the Viola-Jones algorithm, and we get a bounded box over the eye pair. The
coordinates of the bounded box to get the ROIs for the periorbital region from the thermal
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image. The exact size bounded box is put adjoining above this to obtain forehead features.
After getting ROIs, the next step is to obtain FPS (Fourier power spectrum) features from
selected ROIs. This texture model provides texture features related to information, like
contrast, grain size, and orientation. The discrete Fourier transform (DFT) approach has
been used to quantify the texture features. Afterward, the angular sum and the radial
sum of the DFT were calculated to obtain the texture features. FPS features are computed
through the frequency domain and power spectrum.

|F(u, v)|2 = F(u, v) F× (u, v) (3)

Here, the DFT of an image is F (u, v), and F× (u, v) is the complex conjugate of the DFT
of an image. To obtain function Sr(θ), spectral features are represented as polar coordinates.
Further, frequency is defined as Sr(θ), and direction is expressed as Sθ(r). Wedge analysis is
performed by evaluating Sθ(r) for a fixed value of θ. It is the spectrum behavior along the
radial direction from an origin. In contrast, the ring analysis is performed by evaluating
Sr(θ) for a fixed value of r. It is the behavior of the entire range beside a concentric circle on
the origin. The summation of these discrete values gives the global interpretation:

Sθ = ∑π

θ=0 Sθ(r) (4)

Sr = ∑R0
θ=0 Sr(θ) (5)

where R0 is the radius of the concentric circle on the source. In the current texture model,
two features: Sr and Sθ are computed by determining the texture’s orientation.

(c) Keystroke Dynamics: It is a behavioral biometric; used to observe the keyboard
actions when the subject types a sentence through a keyboard. Through experiments, the
variation in the keystroke attributes for fatigued subjects can be distinguished from the
alert subjects. Keystroke dynamics measure the user’s typing pattern when an individual
subject types on the keyboard. The features from keystroke dynamics are listed in Table 3.

Table 3. List of features from keystroke dynamics.

S. No. Features Description

1 KSR Keystroke Rate

2 CRE Character Error

3 AVD ASCII Value Difference

4 TST Total String Time

A total of four features have been identified to measure keystroke dynamics. The
first feature is the keystroke rate. It is the total number of keypresses by an individual to
complete one string, as shown in Figure 4.

Different sentences of similar character length have been used in the experiment, i.e.,
around 48 to 54 characters, considering space keypress. The purpose of distinct sentences
is that the individual does not become habitual to typing one sentence every time. The
second feature is the difference in characters; this feature is measured by calculating the
total number of mismatches between the string displayed on the screen and the string
entered by the subject using a keyboard. Each character is compared one by one with
the preliminary assumption that the subject is prone to make mistakes if the subject is
exhausted. In contrast, the errors attempted by an active subject will be negligible. The
third feature is the ASCII difference; here, the preliminary assumption is that sometimes
the subject is alert, but characters’ sequence changes may occur while typing a sentence
in a hurry. There will be no difference in ASCII values of that particular sentence in such
cases. The fourth feature is the total time taken by an individual to enter a sentence or
string, i.e., whole string time, as shown in Figure 5. Let us take a string, “With the new day
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comes new strength and new thoughts”, as an example. This particular string consists of
52 characters, including the space keypress. If the subject is fatigued, he will take more
time within the keypress. Further, there are chances he will make some spelling mistakes.
Suppose the subject is alert and makes spelling mistakes, which can be detected by the
characters’ differences in the ASCII value. If the subject is alert, there will be no ASCII
difference. Further, the fatigued subject takes more time to complete all the keypresses than
the alert subjects.
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(d) Vocal Features: Five significant features are extracted from the subjects’ voice
samples to detect fatigue, as listed in Table 4. The first feature is the fundamental frequency
or pitch of auditory sensation produced by the speech. The second feature is the rate of
speech, also known as voiced, and unvoiced duration represents temporal speech rhythm
characteristics, such as pause patterns. The third feature is the sound pressure level,
which is the difference between the pressure of the sound wave produced and the ambient
pressure. The fourth feature is power spectral density; it is a limited average power of a
speech signal described by the average power spectral density.
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Table 4. List of vocal features.

S. No. Features Description

1 FFP Fundamental Frequency (Pitch)

2 RSH Rate of Speech

3 SPL Sound Pressure Level

4 PSD Power Spectral Density

5 SPD Speech Duration

Power spectral density is the area under its Fourier transform magnitude. The average
power of a signal s(t) is Pavg; computed as in Equation (6).

Pavg = lim
T→∞

1
2T

∫ T

−T
s(t)2dt (6)

Speech duration is the fifth feature, representing the time taken by a subject to complete
a sentence fragment. A sample voice spectrum for 10 s audio of the active subject and the
fatigued subject is shown in Figure 6.
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3.3.3. Proposed Multimodal Feature Fusion

Feature fusion is very effective when more than two domains are involved. In
this study, four different domains have been studied. The need for multimodal feature
fusion arises to obtain the optimum results. During the experiments, it has been ob-
served that accuracy could be enhanced by combining the features from multiple domains,
i.e., feature fusion. Thus, ten combinations have been evaluated to improve the results,
e.g., by combining features from two domains and then from three domains and assigning
different weights to each domain. The results obtained from feature fusion with various
combinations are shown in Table 5.

In this multimodal feature fusion approach, the critical part is predictive modeling
through inductive reasoning that involves past evidence to determine the outcome and
keeps on adding the dataset after every trial. This is achieved by developing adaptive
models trained on past data and making predictions on new data. We took 120 sam-
ples (60 alert + 60 fatigued) from two classes from both classes. Initially, we trained our
model with 80 samples (40 alert and 40 fatigued), tested on the remaining 40 samples
(20 alert + 20 fatigued), and performed cross-validation by using five different classifiers
for a baseline of performance. It is explicitly stated that the testing in each fold is done on
the data which is not exposed to the classifier during its training.
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Table 5. Detection accuracy matrix from the individual domains.

S. No. Domains Equal Empirical Weights Accuracy Optimized Empirical Weights Optimized Accuracy

1 Visual + Thermal 0.5 + 0.5 75% 0.4 + 0.6 77.5%

2 Visual + Keystroke 0.5 + 0.5 70% 0.65 + 0.35 75%

3 Visual + Voice 0.5 + 0.5 70% 0.62 + 0.38 72.5%

4 Thermal + Keystroke 0.5 + 0.5 72.5% 0.7 + 0.3 75%

5 Thermal + Voice 0.5 + 0.5 72.5% 0.55 + 0.45 77.5%

6 Keystroke + Voice 0.5 + 0.5 70% 0.31 + 0.69 72.5%

7 Visual + Thermal+ Keystroke 0.34 + 0.33 + 0.33 75% 0.36 + 0.38 + 0.26 77.5%

8 Visual + Thermal + Voice 0.34 + 0.33 + 0.33 82.5% 0.34 + 0.36 + 0.30 87.5%

9 Thermal+ Keystroke + Voice 0.34 + 0.33 + 0.33 80% 0.35 + 0.25 + 0.30 85%

10 Visual + Thermal + Keystroke + Voice 0.25 + 0.25 + 0.25 + 0.25 82.5% 0.29 + 0.37 + 0.16 + 0.18 92.5%

Furthermore, we decided to combine the features from all four domains to improve
detection accuracy. In the beginning, features from the four domains were combined, each
with 25% weight. After some iterations, we implemented the optimization technique to
assign the empirical weights (α, β, γ, and δ) to the respective domain with the goal of achiev-
ing maximum classification accuracy. After acquiring features from all domains, features
are fused through an adaptive framework for autonomous weighting. The proposed feature
fusion system allows the feature-level fusion of signals from multiple domains. Weights are
assigned automatically after optimization through the MATLAB optimization toolbox using
the multiobjective optimization goal attainment method. Here, S1 + S2 + . . . Sn represents
n number of subjects with weights respective to each domain, i.e., α for visual spectrum
images β for thermal images, γ for keystroke, and δ for vocal features. The cumulative
result was obtained as a summation of all the empirical weights of respective subjects, as
explained in Equation (7).

∑ (α1 + β1 + γ1 + δ1)S1 + (α2 + β2 + γ2 + δ2)S2 + · · ·+ (αn + βn + γn + δn)Sn (7)

Finally, the features from all four domains are fused to get optimized results, as shown
in Figure 7.

3.3.4. Classification

Empirical weights have been assigned to the features to improve the classifier’s
accuracy. Initially, we assigned 25% weight to all the domains. Afterward, we applied the
optimization technique to assign the weights to achieve maximum classification accuracy.
We assigned 29% for visual spectrum image analysis, 37% for thermal spectrum image
analysis, 16% for keystroke analysis, and 18% for speech analysis. For this proposed
multimodal feature fusion technique, a threshold value is taken as 0.5. It implies that if
the output of the proposed multimodal feature fusion technique is less than 0.5, then the
subject is alert; otherwise, the subject is classified as fatigued.

To optimize the classification through multimodal feature fusion, 80 samples were
taken for training (40 fatigued + 40 alert). These were executed through five different
classifiers to assess classification accuracy. The first classifier was k-nearest neighbors
(kNN); it provides an accuracy of 85% with 34 correctly classified instances out of 40. The
second classifier is random tree, in which an accuracy of 87.5% has been achieved with
35 correctly classified instances out of 40. In comparison, 35 cases are correctly classified
through random forest with an accuracy of 87.5%. Support vector machines (SVM) and
multilayer perceptron gave an accuracy of 90% by detecting 36 correctly classified out
of 40 as shown in Table 6. The highest accuracy of 92.5% was obtained by the proposed
method detecting 37 correctly classified subjects out of 40. This was subjected to three-fold
cross-validation giving an average accuracy of 93.33%.
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Table 6. Multimodal feature fusion classification accuracy.

S. No. Name of Classifier Accuracy % Correctly Classified Instances Incorrectly Classified Instances

1 kNN 85 34 6

2 Random Tree 87.5 35 5

3 Random Forest 87.5 35 5

4 SVM 90 36 4

5 Multilayer Perceptron 90 36 4

6 Proposed Method 92.5 37 3
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4. Results and Discussion

If we discuss individual domain-wise fatigue detection in the first domain, i.e., visual
spectra image analysis, fatigue detection accuracy is 67.5%. This is given in Table 7. In the
thermal domain, an upsurge is observed in the detection accuracy, i.e., thermal images,
with an accuracy of 75%. However, there is a decline in detection accuracy in the keystroke
domain, i.e., keystroke analysis, with an accuracy of 67.5%. An accuracy of 70% has been
observed through the vocal domain. Finally, an accuracy of 92.5% is achieved through the
multimodal feature fusion technique. This being the highest accuracy of all the techniques
tested, is subjected to three-fold cross-validation.

Table 7. Detection accuracy matrix from the individual and multimodal domains.

Domains Subject True False Accuracy

1. Visual spectra image
Positive 13 7

67.5%
Negative 6 14

2. Thermal spectra image
Positive 16 4

75%
Negative 6 14

3. Keystroke dynamics
Positive 14 6

67.5%
Negative 7 13

4. Vocal Analysis
Positive 14 6

70%
Negative 6 14

5. Proposed Multimodal feature
fusion technique

Positive 18 2
92.5%

Negative 1 19

5. Conclusions and Summary

There will be a detrimental effect on the individual’s physical performance and ca-
pabilities due to poor sleep. Fatigue induced by sleep deprivation is a significant cause
of accidents because fatigue affects awareness and worsens drivers’ and operators’ vig-
ilance [38]. Further, fatigue assessment is challenging since the clinical factors for the
quantification of drowsiness are not well defined. The proposed methodology for fatigue
detection is based on feature fusion techniques.

The experiment demonstrates that the performance is optimized after feature fusion
from all four domains. The empirical weights have been assigned during feature fusion
according to the detection accuracy for classifier optimization.

The confusion matrix for the proposed multimodal feature fusion technique is shown
in Table 8. Individually, the thermal domain has a maximum detection accuracy of 75%. The
second highest is the vocal analysis, with a detection accuracy of 70%. The visual spectra
and keystroke dynamics are on the third rank, with a detection accuracy of 67.5%. To
conclude, the proposed multimodal feature fusion technique exhibits the highest detection
average accuracy of 93.33% in three-fold cross-validation.

Table 8. Confusion matrix.

Domain Folds True False Accuracy

Multimodal Feature Fusion

1
Positive 19 1

92.5%
Negative 2 18

2
Positive 19 1

95%
Negative 1 19

3
Positive 18 2

92.5%
Negative 1 19

Average Accuracy 93.33%
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