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Abstract: The performance of near-field acoustic holography (NAH) with a sparse sampling rate
will be affected by spatial aliasing or inverse ill-posed equations. Through a 3D convolution neural
network (CNN) and stacked autoencoder framework (CSA), the data-driven CSA-NAH method
can solve this problem by utilizing the information from data in each dimension. In this paper, the
cylindrical translation window (CTW) is introduced to truncate and roll out the cylindrical image
to compensate for the loss of circumferential features at the truncation edge. Combined with the
CSA-NAH method, a cylindrical NAH method based on stacked 3D-CNN layers (CS3C) for sparse
sampling is proposed, and its feasibility is verified numerically. In addition, the planar NAH method
based on the Paulis–Gerchberg extrapolation interpolation algorithm (PGa) is introduced into the
cylindrical coordinate system, and compared with the proposed method. The results show that,
under the same conditions, the reconstruction error rate of the CS3C-NAH method is reduced by
nearly 50%, and the effect is significant.

Keywords: cylindrical near-field acoustic holography; sparse sampling; translation window; 3D-CNN
stacked auto encoder; PGa extrapolation interpolation

1. Introduction

Acoustic array technology can realize acoustic imaging through certain signal process-
ing methods after measuring acoustic signals through sensors. These technologies include
sound intensity, beamforming technology and near-field acoustic holography technology
(NAH). The sound intensity method measures the gradient of the sound pressure along the
normal direction, so that the radiation power and the direction of the sound intensity can be
obtained. The NAH method utilizes the information from surface evanescent waves and the
spatial phase to calculate near-field acoustical quantities accurately and efficiently through
the discrete spatial Fourier transform. The measurement distance of these two methods is
limited to the minimum half-wavelength region. For far-field and high-frequency issues,
beamforming technologies may be selected as an alternative. Among them, the NAH
method can visualize the sound field with a high level of precision and complete phase
information due to the supplementary utilization of the detailed information contained in
the evanescent wave components. Furthermore, it is not limited by the Rayleigh criterion,
accounting for improvement in the spatial resolution of the reconstructed quantities. The
highest spatial resolution of the reconstructed sound field can be one order of magnitude
lower than the sound wavelength. As an acoustic inverse imaging method for non-contact
measurement, NAH is widely used in the fields of mechanical fault diagnosis [1], noise
source diagnosis [2,3], aerospace [4,5] and to address issues concerned with vehicle noise,
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vibration and harshness (NVH) [6]. NAH theories have evolved; the theory initially pro-
posed is based on spatial Fourier transform (SFT-NAH). The core of it is that the spatial
Fourier transform is utilized to transform the complex sound pressure or particle vibration
velocity on the measurement surface from the space domain to the wave number domain,
which will be processed by appropriate transfer operator to generate the sound field data in
the wavenumber domain on the reconstruction surface, and finally use the spatial inverse
Fourier transform to convert it to the spatial domain [7]. Similarly, this method has also
been extended to the cylindrical coordinate system, forming the early cylindrical NAH
theory [8].

In practice, continuous sampling is unachievable and the measuring region tends
to be restricted. Therefore, for large-size measurement objects, the requirements for the
number of test microphone arrays will rise sharply to ensure the coverage region and
spatial sampling rate, thus increasing the test costs. To solve this problem, the patch NAH
method, which can reconstruct a wide range of sound fields through a relatively small
microphone array region, has emerged. Patch NAH can ensure the sampling rate of the
holography measurement within a small region, while meeting the global size, data and
volume requirements through interpolation and extrapolation of the measured data [9,10].
This method can realize high spatial resolution sound field reconstruction and effectively
reduce the measurement cost, and is suitable for practical engineering applications. Lee
and Bolton [11,12] applied the Patch NAH method to the cylindrical coordinate system,
and focused on the wavenumber cut-off and parameter selection of the band-limited
matrix. Based on the vanilla patch NAH method, a statistically optimal NAH (SONAH)
method [12,13] has been proposed through the interpolation function and the discrete wave
function value of the measurement point (small measurement region), to fit the sound field
in the space basis functions to calculate the acoustic quantities on target points. Similarly,
this method has also been applied to cylindrical objects [14].

On the other hand, the test costs can be reduced by measuring sparsely. There are
currently two mainstream series of methods, one of which is based on the compressed
sensing (CS) theory proposed by Chardon et al. [15], which can restrict the ill-posedness
of underdetermined inverse problems through sparse regularization. Therefore, it can be
used to solve the ill-conditioned problem of the system equation during inverse acoustical
reconstruction caused by an insufficient sampling rate. Fernandez-Grande et al. combined
this advantage with the equivalent source method based (ESM) NAH method [16] using
the equivalent source for wave superposition, and proposed the CESM-NAH method [17].
For the equivalent sources of the CESM-NAH method, higher sparsity can lead to more
accurate results. On this basis, they introduced the Laplacian operator to further enhance
the sparsity of the source [18]. Based on the CESM-NAH method, Bi et al. decomposed the
radiation impedance matrix into a sparse basis to enhance the accuracy of the results with
a sparse equivalent source [19]. For the solution algorithm under sparse regularization
constraints, Hald et al. [20] compared five algorithms and gave the corresponding selection
guidance for convex optimization.

In addition, research on ensuring reconstruction accuracy when reducing the sampling
rate focuses on the application of emerging deep learning (DL) theories which can be
concluded as data-driven NAH methods. The domains that are currently the main centers of
activity of these theories are computer vision (CV) and image processing; their application
in engineering relates primarily to fault diagnosis of mechanical systems. At the core of
it is the characterization of mechanical one-dimensional or processed two-dimensional
signals to be recognized and learned by neural networks. In terms of fault diagnosis, the
application of DL theories mainly relates to methods of autoencoder series (AE) [21], CNN
series [22], recurrent neural network (RNN) series [23] and deep belief network (DBN)
series [24].

The NAH also works as image processing (acoustical image) in a certain sense. For the
NAH method that uses sparse measuring, the relevant issue in CV is the super-resolution
of images or videos. Both the network frameworks capable of image super-resolution [25]
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built through deep CNN and those capable of video super-resolution [26] built through 3D-
CNN have achieved impressive results. At the same time, the framework of the generative
adversarial networks (GAN) stacked with CNN layers has achieved an effect close to that
achieved by supervised learning in terms of unsupervised image super-resolution and
denoising [27]. Therefore, these DL theories have the potential to be applied to sparsely
sampled NAH methods including NAH methods based on Bayesian learning [28] or
Bayesian inference [29,30], the method based on a generative model [31] to realize near-
field acoustic reconstruction for large sources, and a series of methods based on 2D-CNN.
These methods include the KHCNN-NAH method proposed by Olivieri [32,33] et al. based
on 2D-CNN, the Kirchhoff–Helmholtz integral formula and the vibration mode recognition
method based on 2D-CNN [34] proposed by Wu et al. They have a high level of accuracy
in restoring the shape of a single mode shape. The CSA-NAH [35] and its improved jointly
trained CSA-NAH [36] method based on 3D-CNN and the stacked autoencoder (SAE)
method proposed by Wang et al. process the acoustical image including the frequency
spectrum, which can make use of the frequency dimension information to a certain extent,
thus retaining the reconstructed spectral information.

For the relevant NAH methods that adopt CS theory, highly random sampling is
required [19] in the application process. At the same time, it is essential to select the appro-
priate base or dictionary for certain applied issues, otherwise the accuracy of the results
will be affected [37]. In addition, the solution algorithm for the 1-norm constraint problem
of sparse regularization is usually stable but slow [20], so there are some limitations in ap-
plication. For the CS-based NAH method, there is a comparison of reconstruction accuracy
in [35], which shows that the error of the 3D-CNN based method is lower. For common 2D-
CNN-based NAH methods, as a result of the lack of frequency information or each group
of graphs having been normalized separately, which accounts for the spectral information
lost, the frequency information is not effectively utilized either. This is illustrated in [36]
and in the accuracy comparison. For Bayesian-related methods, it is necessary to assume
an appropriate prior distribution. Therefore, we choose the 3D-CNN-based CSA-NAH
method over others.

In terms of the CSA-NAH method, the research object is the planar structure; the
3D-CNN layer can effectively act on the planar three-dimensional acoustical image. Based
on the chosen method, we introduce a feasible cylindrical truncation and extension scheme,
so that the 3D-CNN layer can convolute with cylindrical three-dimensional images, thus
realizing the cylindrical NAH under sparse sampling. The method is called CS3C-NAH,
and adopting this method can significantly reduce the measuring sampling rate while
ensuring sufficient reconstruction accuracy. This lowers the industrial application threshold
of the NAH method, improving stability, and reducing financial costs of implementation.
The main work of this paper is as follows:

• Briefly state the theory of cylindrical NAH, and give the reason for the error in the
results when the holographic sampling rate is reduced;

• Propose the CS3C-NAH model combining SAE, 3D-CNN and a feasible truncation
and padding method;

• The patch NAH method using the Papoulis–Gerchberg extrapolation interpolation al-
gorithm (PGa) is introduced into the cylindrical coordinate system to realize cylindrical
NAH;

• The CS3C-NAH method is numerically verified, and compared with the patch NAH
method based on cylindrical PGa to verify the feasibility of the proposed method.

2. Theory of the Spatial Fourier Transform-Based Cylindrical NAH and Aliasing
2.1. Theory of SFT-CNAH

The spatial distribution of the complex sound pressure in the cylindrical coordinate
system is shown in Figure 1. The source, holographic (or measurement surface) and
reconstructed surface, are all outside the sound source. This paper focuses on reconstructing
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the sound pressure on the reconstructed cylindrical surface based on sparsely measured
pressure.
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Figure 1. The spatial distribution of sound pressure in the cylindrical coordinate system.

Suppose the cylindrical holography and reconstruction surfaces surrounding the
analysis domain are labeled as Ch and Cc with the radius rh and rc, respectively. The
pressure distributions on them are p(rh, ϕ, z) and p(rc, ϕ, z). Traverse ϕ, z to perform 2D
spatial Fourier transform on p(r, ϕ, z). Due to the fact that the range of ϕ in cylindrical
coordinate system is 0~2π, it can be periodically extended. Thus, the spatial Fourier
transform of parameters ϕ in fact solves the Fourier series, and the helical wave spectrum
of the sound pressure Pn(r,kz) can be obtained:

Pn(rh, kz) ≡ FϕFz[p(rh, ϕ, z)] =
1

2π

∫ 2π

0
e−inϕdϕ

∫ ∞

−∞
p(rh, ϕ, z)e−ikzzdz (1)

The subscript n in Equation (1) is the circumferential component serial number of
the cylindrical wave, and FϕFz represents the Fourier series of the variable ϕ and z. For
the exterior acoustic problem, the cylindrical wave spectrum on Cc can be obtained by the
extrapolation of the helical wave spectrum on Ch:

Pn(rc, kz) =
H(1)

n (krrc)

H(1)
n (krrh)

Pn(rh, kz) (2)

where kr is radial wave number:{
kr =

√
k2 − k2

z, k2
z ≤ k2

kr = i
√

k2
z − k2, k2

z > k2 (3)

and where k denotes the wave number, k = ω/c. ω is the angular frequency and c is the
sound propagation velocity in the medium. H(1)

n refers to nth-order Hankel function of
category I and corresponds to the wave of outward divergence.

H(1)
n (krr) = Jn(krr) + iYn(krr) (4)

Jn and Yn represent category I and II Bessel function, respectively. Perform inverse
spatial Fourier transformation on Pn (rc, kz) to derive the sound pressure on Cc.

p(rc, ϕ, z) = F−1
ϕ F−1

z [Pn(rc, kz)] =
∞

∑
n=−∞

einϕ 1
2π

∫ ∞

−∞
Pn(rc, kz)eikzzdkz (5)

The implementation of SFT-based cylindrical NAH is derived from the combination
of Equations (2) and (5):

p(rc, ϕ, z) =
∞

∑
n=−∞

einϕ 1
2π

∫ ∞

−∞

H(1)
n (krr)

H(1)
n (krrh)

Pn(rh, kz)eikzzdkz (6)
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According to Equation (6), the principle of cylindrical NAH is shown in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 22 
 

 

According to Equation (6), the principle of cylindrical NAH is shown in Figure 2. 

 
Figure 2. Cylindrical wave near-field reconstruction and far-field prediction. 

2.2. Aliasing Caused by Sparse Sampling 
It is to be noted that SFT-CNAH cannot achieve continuous sampling during the ap-

plication process. Due to the periodicity of the circumferential sound field, the helical 
wave spectrum is discrete in the circumferential wave number, so aliasing in the z axial 
wave number must take place. 

The essence of limited region discrete sampling is to perform windowing and sam-
pling processing on a continuous spectrum as: 

𝑝(𝑟௖, 𝜑, 𝑧) = 𝐹௭ି ଵ ൝𝐻௡(ଵ)(𝑘௥𝑟௖)𝐻௡(ଵ)(𝑘௥𝑟௛) 𝐹௭ሾ𝑝(𝑟௛, 𝜑, 𝑧)ሿ ⋅ 𝛱 ⋅ 𝑆ൡ (7) 

The rectangular window function Π acts as a window effect, while sampling function 
S the spatial discreteness: 𝑆 ൬ 𝑧Δ௭൰ = |Δ௭| ෍ 𝛿(𝑧 − 𝑚Δ௭)௠  (8) 

Δz is the sampling interval. To facilitate the analysis of the aliasing, the window effect 
and wavenumber discreteness are ignored. Equation (7) can be simplified to: 

𝑝(𝑟௖, 𝜑, 𝑧) = 𝐹௭ି ଵ ൥𝐻௡(ଵ)(𝑘௥𝑟௖)𝐻௡(ଵ)(𝑘௥𝑟௛) ෍ 𝑃௡ ൬𝑟௛, 𝑘௭ − 2𝜋Δ𝑧/𝑚൰௠ ൩ (9) 

After the discrete sampling, the helical wave spectrum of the measured sound pres-
sure will be composed of the p(rh, φ, z) within the measurement aperture and the adjacent 
virtual images distributed by the periodic replication and extension. 

It can be seen from Equation (9) that, if the concerned upper limit of the band-limited 
wavenumber kz is kzm, then when the sampling interval Δz cannot satisfy Δz < 2πm/kzm, 
aliasing will occur at the boundary of the helical wave spectrum, and the severity of ali-
asing increases with the increase in sampling interval, resulting in poor performance in 
reconstruction. 

3. Methodology of the CS3C-NAH 
To reduce the impact on the accuracy of the reconstruction resulting from aliasing 

caused by discrete sampling, this paper proposes a method used for recovering the acous-
tical data from sparse to dense which is based on SAE and 3D-CNN and is commonly 
used in the fields of video classification and action recognition by extracting and learning 
the graphic and time-sequential information of the video. The frequency spectrum of cy-
lindrical sound pressure distribution p(r, φ, z, f) in CNAH is essentially 4D images. When 
the radius r is specified, and the cylindrical surface is truncated and unfolded into planar, 
the sound pressure distribution spectrum to be processed is transferred to 3D images, and 

Figure 2. Cylindrical wave near-field reconstruction and far-field prediction.

2.2. Aliasing Caused by Sparse Sampling

It is to be noted that SFT-CNAH cannot achieve continuous sampling during the
application process. Due to the periodicity of the circumferential sound field, the helical
wave spectrum is discrete in the circumferential wave number, so aliasing in the z axial
wave number must take place.

The essence of limited region discrete sampling is to perform windowing and sampling
processing on a continuous spectrum as:

p(rc, ϕ, z) = F−1
z

{
H(1)

n (krrc)

H(1)
n (krrh)

Fz[p(rh, ϕ, z)] ·Π · S
}

(7)

The rectangular window function Π acts as a window effect, while sampling function
S the spatial discreteness:

S
(

z
∆z

)
= |∆z|∑

m
δ(z−m∆z) (8)

∆z is the sampling interval. To facilitate the analysis of the aliasing, the window effect
and wavenumber discreteness are ignored. Equation (7) can be simplified to:

p(rc, ϕ, z) = F−1
z

[
H(1)

n (krrc)

H(1)
n (krrh)

∑
m

Pn

(
rh, kz −

2π

∆z/m

)]
(9)

After the discrete sampling, the helical wave spectrum of the measured sound pressure
will be composed of the p(rh, ϕ, z) within the measurement aperture and the adjacent virtual
images distributed by the periodic replication and extension.

It can be seen from Equation (9) that, if the concerned upper limit of the band-limited
wavenumber kz is kzm, then when the sampling interval ∆z cannot satisfy ∆z < 2πm/kzm,
aliasing will occur at the boundary of the helical wave spectrum, and the severity of
aliasing increases with the increase in sampling interval, resulting in poor performance in
reconstruction.

3. Methodology of the CS3C-NAH

To reduce the impact on the accuracy of the reconstruction resulting from aliasing
caused by discrete sampling, this paper proposes a method used for recovering the acous-
tical data from sparse to dense which is based on SAE and 3D-CNN and is commonly
used in the fields of video classification and action recognition by extracting and learning
the graphic and time-sequential information of the video. The frequency spectrum of
cylindrical sound pressure distribution p(r, ϕ, z, f ) in CNAH is essentially 4D images. When
the radius r is specified, and the cylindrical surface is truncated and unfolded into planar,
the sound pressure distribution spectrum to be processed is transferred to 3D images, and
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the spatial coordinates are (ϕ, z, f ). Unlike the traditional planar CNN, the cylindrical CNN
uses a cylindrical translation window (CTW) first, so that the original circumferential and
continuous characteristics at the truncated edge can be appropriately supplemented and ex-
tracted. Based on CTW, SAE and 3D-CNN, a new method named CS3C-NAH is proposed.
The specific implementation process of the CS3C-NAH method is shown in Figure 3.
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The method is mainly divided into three parts. First is the acquisition and processing
of data. Next, the near-field data are selected to train the SAE composed of an encoder and
a decoder to optimize the framework and hyperparameters. Finally, several 3D-CNN layers
are stacked for feature extraction and integrated into the front end of the optimized decoder
for final joint training. The well-trained network can reconstruct the dense near-field
acoustic quantities by inputting sparse holographic data into it.

3.1. Cylindrical 3D-CNN with CTW

The deep CNN model can integrate features within a large spatial range for the
original input images after translation, rotation or scaling operations, and has stable spatial
invariance facing with the small changes of the feature position by pooling layers. Although
the convolutional layer is not spatially invariant, it builds high-level features by combining
low-level features. After a deep hierarchy of the convolutional and pooling layers, the
CNN model can capture more complex features. Thus, the last pooling layer captures the
highest level of features, and has the strongest spatial invariance between the convolutional
and pooling layers.

Ignoring the frequency dimension, the 2D planar data p(ϕ, z) obtained from the
truncation of spatial cylindrical data p is the input data of CCNN. Figure 4a is the original
rolled out image, and Figure 4b–d are created by moving the original image by ∆px1,
∆px2 and ∆px3 pixels to the left edge. The red rectangle is the receptive field in input
image mapped by fixed pixels in a pooling layer. When the CNN structure is trained with
the images shown in Figure 4, it can capture and learn important features of the sound
pressure distribution because of the existence of images translated to a different location
(Figure 4a,b,d) on the basis of the translation invariance of the pooling layer. However,
when the new image (Figure 4c), which originates from moving the original image by ∆px2,
is taken as the input data, the CNN model may not identify the sound source because the
image feature is split up and the relative position is switched. To solve this problem, this
paper combines CWT and CNN to form cylindrical CNN. The operation mechanism of
CTW is shown in Figure 5.
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Figure 5. Operation mechanism of the cylindrical translation window. The green pixels in the
left-most column and red pixels in the right-most column are duplications from the opposite edges.

To avoid performing zero padding at the left and right boundaries of the image which
will be inputted to the CNN layer, units in the first column (column 0) on the left are
copied to the boundary on the right, and units in the last column (column 11) on the right
are copied to the boundary on the left. Zero padding continues to be applied to the top
and bottom boundaries. In this way, the truncated and rolled-out planar graph can be
transformed into an equivalent cylindrical graph. Convolve it with 3D-CNN to realize
feature extraction and perception. CTW horizontally expands the size of the receptive
field of the unit at the truncated boundary of the original input image while the frequency
dimension remains unchanged. By modifying the input images with CTW, the cylindrical
3D-CNN layers are formed together with 2D pooling layers and activation functions.

As shown in Figure 6, the original near-field sound pressure data that radiated from a
set of dipole source pairs is continuously distributing in the radian range 0~2π, in which
the truncation will be performed at a certain radian. The receptive field corresponding to
the boundary unit contains less information than that which corresponds to the center unit.
To ensure that each unit of convoluted maps maintains the same receptive field size as the
original image, the image boundary data are padded with switched units marked in red
and green, horizontally. The left column is padded with green units on the right side and
the other column is padded with green units on the left. It can be seen that the cylindrical
3D-CNN can process the input image with CTW to expand the boundary units’ receptive
field without adding new data. Although the receptive field of modified layer boundary
units still contains less information than that of central units, the information contained in
boundary units’ receptive field is supplemented to a certain extent.
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The processed 3D acoustic images are convolved with the kernels of 3D-CNN. The
convolution process is shown in Figure 7.
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Figure 7. The principle of the cylindrical 3D-CNN.

Several 3D convolution kernels are convoluted with the processed images in the
specified direction (z, ϕ, f ). The output of the convolution operation is as follows:

Nxyi = ϕ
(
Rk·Mxyi + b

)
(10)

where Rk denotes the tensor corresponding to the k-th convolution kernel, and Mxyi is the
3-order tensor of input data with the same size as Rk starting from (x, y, i) in z, ϕ and f
directions. Point multiplication ‘·’ represents the inner product of two tensors. b is the bias
parameter after the convolution operation. ϕ(*) is the activation function in Figure 7. The
common activation functions are: Sigmoid, ReLU, Tanh, Leaky ReLU, etc.

3.2. Cylindrical 3D-CNN SAE Module

A pooling layer is used to prioritize features and extract relatively important ones. The
2D pooling layer connected after the image extraction nodes can be used to compress the
data and capture its hierarchy information. The pooling operation first divides the input
images into several rectangular regions. The mean pooling layer is then used to average
the image pixels in the regions, or the max pooling layer is used to maximize the value. Of
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the obtained features, the former is more sensitive to the background information while the
latter texture has greater feature information. The up-sampling procedure is the inverse of
pooling, and is commonly based on an appropriate method of internal interpolation. In this
paper, max pooling and up-sampling based on bilinear interpolation are adopted. Firstly,
the compressed characteristics of the theoretical sound pressure data on the reconstructed
surface are obtained through 3D-CNN and max pooling. The images will then be restored
based on compressed features via 3D-CNN and up-sampling. This will constitute the SAE
structure as shown in Figure 8.
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n are the weight and bias parameters of the
n-th encoder and decoder, respectively (superscript T does not denote transposition).

The mean square error (MSE) of the theoretical and the decoded sound pressure data
is selected as the loss function during training of the SAE network. The data above are all
processed by CTW. As shown in Figure 8, the parameters will be determined by minimizing
the loss function L.

L =
1

W

∥∥∥p′cg
(
st, zx, ϕy, fi

)
− −pcg

(
st, zx, ϕy, fi

)∥∥∥
F

(11)

where ‖ ∗ ‖F denotes the Frobenius normalization, st is the serial number of the excitation,
and W is the number of data sets. The SAE used to handle theoretical sound pressure on
the reconstructed surface is shown in Figure 9. It should be noted that, to avoid repeated
descriptions in the following parts, the hyperparameters of the network structure given here
are the optimization results explored in the subsequent numerical calculation and validation
section, and can be referred to as default values. However, the specific hyperparameters
should be explored based on [36] to achieve better performance during practical application.
The encoder in the figure consists of two 3D-CNN layers (the kernel numbers are all 8) and
two max pooling layers for simulation of 1/4× 1/4 sparse sampling. The feature extraction
and compression of the data on the reconstructed surface is performed to realize the sparse
sampling of the sound pressure on the holography surface. The decoder in Figure 9 consists
of 3 3D-CNN layers (the kernel numbers of the first two are both 8, and the last one is 1)
and two up-sampling layers (the size of the output data is 4 × 4 times that of input). The
size of the hidden-layer data is magnified and recovered to the scale of the original sound
pressure on the reconstructed surface.
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represents theoretical sound pressure of the reconstructed surface after the CTW processing. The ‘conv’
represents the 3D convolution layer, the three dimensions correspond to the axial (z), circumferential
(ϕ) and the frequency dimension (f ), respectively. The two dimensions of max pooling and up-
sampling correspond to the axial (z) and circumferential dimension (ϕ), respectively. All convolutional
layers use ReLU (max (0, x)) as the activation function. The stride is 1 and ‘same padding’ is used.

The number of layers in the SAE can be increased or decreased in practice: multiple
stacks can perform further compression of the data, while producing more general and
beneficial features. The accuracy of the reconstructed image will be greatly affected if the
hyperparameters are selected poorly.

Gradient descent with error propagating backward is used to train the network by
minimizing the loss function of Equation (11). The weights and bias of all networks form
the parameter set β with the initial value β0. The gradients of the loss function L for all
parameters are solved in each iteration. On the basis of the gradient, the parameters set
β can be iterated as follows: βn+1 = βn − η∇L(βn). Until ∇L(βn) ≈ 0, the iteration is
terminated. η is the learning rate. In the case where the gradient fluctuates significantly, the
constant learning rate will lead to the failure in convergence. The optimizer entitled Nadam
(Nesterov-accelerated adaptive moment estimation), which has an adaptive learning rate, is
utilized here to update the parameter set. In order to improve the efficiency of training, the
data are divided into batches, and the batch size can be increased moderately to accelerate
the convergence under the limitation of computer capability. The samples are divided into
a training set and a test set to prevent overfitting in training. Train the network until the
validation loss converges.

The training of neural networks is a forceful attempt to find an optimal prediction
model through the training set. During parameter iteration and error convergence, the
weight and bias are determined. The trained model is then used for the prediction of the
same object. The pre-training process of the SAE structure can independently optimize the
hyperparameters of the decoder with the function of enlarging the data size, so that the
number of hyperparameter groups to be compared and optimized is greatly reduced from
the multiplier level to the addend level, thus reducing the workload for model adjustment
and optimization [36].

3.3. Combined CS3C Model

In order to reconstruct the dense sound pressure data on the reconstructed surface
using the sparse sound pressure data on the hologram surface, the model containing CTW,
SAE and 3D-CNN is established. The model is named CS3C and is shown in Figure 10.
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Firstly, the SAE is disassembled, and the parameter sets of well-trained decoders are fixed
to be untrainable in subsequent operations. Then the stacked 3D-CNN layers without
pooling and up-sampling are used to extract the features of sparse sound pressure data
on the hologram surface processed by CTW. Finally, the output feature maps will be put
into a fixed decoder. To summarize, the combined CS3C model is composed of stacked
3D-CNN layers for feature extraction and a decoder for data expansion. The loss function
is the MSE between the final output of the decoder and the theoretical sound pressure data
on the reconstructed surface instead of being the MSE between the output of the stacked
3D-CNN layers and the hidden layers of SAE. This reduces the influence of the inherent
error of the decoder.
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Figure 10. The flow of the CS3C-NAH model.p′qx and p′cg represent sound pressure data after CTW
processing on the reconstructed surface and the hologram surface, respectively. pcg represents sound
pressure rebuilt by the CS3C-NAH model. The loss function, activation function and the optimizer
are the same as the SAE in the previous section. The stride is 1 and ‘same padding‘ is used.

The flow of the CS3C-NAH model for reconstructing the dense sound pressure data
on the reconstructed surface based on the sparse sound pressure data on the hologram
surface is shown in Figure 10. The stacked layers for feature extraction are 5 3D-CNN
layers (the kernel number of the first one is 16, and the last four are all 8). The features of
sparse sound pressure data on the hologram surface are extracted to obtain the hidden
layer containing the compressed features. The decoder in Figure 10 is the same as that of
SAE. The hidden-layer data are expanded and recovered to the scale of the original sound
pressure on the reconstructed surface.

Finally, the trained CS3C-NAH model can retain enough information to reconstruct
the sound field after reducing the spatial sampling rate.

4. Numerical Example and Comparison
4.1. Acquisition of Data

A model of a series of dipole source pairs in an air medium are simulated using
COMSOL. The position range of point source 1 in cylindrical coordinates is (0~0.057 m,
0~2π rad, 0~0.160 m), while point source 2 is (0~0.057 m, 0~2π rad, 0.160~0.320 m). The
bottom surface is a rigid sound field boundary with z = 0. The details of the simulation are
as follows: radius of holographic cylindrical surface, rh = 0.1415 m; radius of reconstructed
cylindrical surface, r = 0.09 m; upper bound radius of source cylindrical surface radius
rs = 0.057 m; the sound of speed c = 343 m/s; and the air density ρ = 1.29 kg/m3.
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The absolute value of the complex sound pressure data on the hologram surface is
obtained from sparse sampling and named pqx. The absolute value of the theoretical sound
pressure data on the reconstructed surface named pcg is obtained from dense sampling.
pqx and pcg are both obtained through the joint simulation developed using COMSOL and
MATLAB.

There are 1000 dipole source pairs with different position and excitation value. The
excitation intensities of the two sources are both between 0 W and 0.0001 W. The simulation
is performed at 96 frequency points (100~2000 Hz; the interval is 20 Hz). The SNR in the
simulation is 25 dB.

For pcg, the measuring points are uniform distributed along circumferential and axial
directions with the sampling number Nϕ = 32 and Nz = 16. The microphone spacing in
the circumferential direction and the axial direction is ∆ϕ = 0.196 rad and ∆z = 0.02 m,
respectively. The size of the sampled data tensor is (none, 16, 32, 96). As for pqx, the
measuring points are uniform distributed along circumferential and axial directions with
the sampling number Nϕ = 8 and Nz = 4. The microphone spacing in the circumferential
direction and the axial direction is ∆ϕ = 0.785 rad and ∆z = 0.08 m, respectively. The size of
the sampled data tensor is (none, 4, 8, 96). Finally, apply CTW to pqx and pcg, respectively.
The pixel width of the former’s padding unit is 8, and that of the latter is 2. The sizes of p′qx
and p′cg used for network training are (none, 16, 48, 96) and (none, 4, 12, 96), respectively.

4.2. Normalization

The amplitude of the raw spectrum at the low frequencies far outweighs that observed
at high frequencies. At the same time, the source strength of the different dipole source pairs
in the spatial domain is also distinguished. The difference of sound pressure amplitude
among all frequencies and samples is too large, which will cause the loss function to assign
excessive weights to the low frequencies and samples with large source strength. The
domain points with a small amplitude will be directly ignored, so that the information
from all domain points cannot be considered globally, which would result in inconvergence
or poor performance of the networks. Meanwhile, the fluctuations of some signals are too
small to be sufficiently perceived by the convolution kernels of 3D-CNN.

To eliminate the impact of wide-ranging amplitude distribution in the frequency
and spatial domain on neural networks, a data normalization method for CS3C-NAH is
introduced as in [35]. While retaining the ability of feature extraction for the signal with
low frequencies and large source strength, more weight is allocated to the component at
medium and high frequencies and samples with small source strength. The core of the
normalization method is to traverse all data along space and sample dimensions, and
scale the value to (0,1) at each frequency point. This is because the sound pressure on
the reconstructed and the holography surface maintains a linear mapping relationship.
Therefore, the sound pressure data on the latter should also be normalized with the identical
scaling factors via the same method.

The theoretical sound pressure on the reconstructed surface and the sparse sound
pressure on the holographic surface should be normalized as described above before being
used to train the network. After the generalization of the CS3C-NAH model, the factors
of data normalization will be used to restore the reconstructed sound pressure on the
reconstructed surface reversely. Selection of a dipole point source pair is used to illustrate
the effect of normalization. One dipole point source’s excitation value is 8.2E-5 W at
(r = 0.0146 m, ϕ = 0.89 rad, z = 0.001 m). The other 4.3E-5 W at (r = 0.0556 m, ϕ = 2.74 rad,
z = 0.246 m). The compared results for the normalization effect are shown in Figure 11.
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100 Hz; (b) raw data at 2000 Hz; (c) processed data at 100 Hz; (d) processed data at 2000 Hz.

It can be seen from the comparison that the amplitude of the processed data is limited
to the range (0, 1), which greatly reduces the amplitude difference in the original data and
effectively enhances the convergence of the neural network.

4.3. Data Processing by CTW

CTW is used to process the normalized theoretical sound pressure of the reconstructed
surface and the sparse data of the measuring surface. The process is illustrated in Section 3.1.
For a certain sample and frequency point of data on the reconstruction surface, the pixel
width of the padding unit is 8. The size of reconstructed surface sound pressure data will
be padded from the size of 16 × 32 to 16 × 48 (p′qx), as shown in Figure 12.
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For a certain sample and frequency point of sparse data on the measuring surface, the
pixel width of the padding unit is 2. The size of holography surface sound pressure data
will be padded from the size of 4 × 8 to 4 × 12 (p′cg), as shown in Figure 13.
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Figure 13. The horizontal translation and padding of the left and right boundary of the sparse data
on the measuring surface (CTW).

4.4. Network Training and Results

All the programs used for calculation of neural networks are compiled based on
the available platforms: TensorFlow2.1.0, Keras 2.3.1 and Python 3.6. The hardware
environment used for compiling consists of the CPU (Intel Xeon E5 @ 2.60GHz), RAM
(256GB), GPU (NVIDIA Tesla K20c) and OS (Windows 10).

The sample size of data sets composed of the sound pressure data on the reconstructed
and holographic surface processed by CTW is 1000 in terms of different excitation points.
Thus, the sizes of data on reconstructed and holographic surfaces are (1000, 16, 48, 96)
and (1000, 4, 12, 96), respectively. The 1000 data samples will be divided into training and
test sets at a ratio of 8:2. The batch size for training is 16, and the training epoch size is
5000. After the SAE model has been trained sufficiently, the training and testing loss of the
CS3C-NAH model are shown in Figure 14.
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Figure 14. Training and testing loss of CS3C−NAH.

In Figure 14, the training loss is close to the testing loss, and the model converges with
slight fluctuation. Finally, the training loss is 1.04 × 10−4 and the testing loss is 1.24 × 10−4.
The reason why the testing loss fluctuates at the late stage of the iteration is that the batch
is small. The fluctuation can be reduced by enlarging batch size appropriately, but the
average testing loss will increase.

4.4.1. Reconstruction Error

The CS3C-NAH model is trained using the theoretical sound pressure data
(1000 × 16 × 48 × 96) and the sparse sound pressure data (1000 × 4 × 12 × 96) after
CTW treatment. Next, the reconstructed sound pressure is obtained on the reconstructed
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surface by generalization. To assess the error of reconstructed sound pressure data com-
pared to the theoretical at each frequency point, use the Equation (12) to calculate error.

e =

√
∑x,y

(
p′cg
(
zx, ϕy

)
−
(
zx, ϕy

))2

√
∑x,y p′cg

(
zx, ϕy

)2
(12)

A certain dipole source pair is chosen to explore the reconstruction error frequency
(100~2000 Hz) spectrum of the CS3C-NAH method. The intensity and position (r, ϕ, z)
of the source pair are 7.97 × 10−5 W, 1.94 × 10−5 W and (0.01253 m, 1.44 rad, 0.0335 m),
(0.0442 m, 3.85 rad, 0.182 m), respectively.

In Figure 15, the overall error is below 10%, except for at 100 Hz and 120 Hz, where
the errors are 16.63% and 10.1%, respectively. The average error is 6.14%. After excluding
points exceeding 10% at 100 Hz and 140 Hz, the maximum and average error are 9.69%
and 5.99%, respectively. In general, the CS3C-NAH method can achieve a high level of
accuracy in reconstructing acoustic quantities at high frequencies under the premise of
sparse sampling.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 22 
 

 

𝑒 = ට∑ ቀ𝑝௖௚ᇱ ൫𝑧௫, 𝜑௬൯— ൫𝑧௫, 𝜑௬൯ቁ௫,௬ ଶ
ට∑ 𝑝௖௚ᇱ ൫𝑧௫, 𝜑௬൯ଶ௫,௬  (12) 

A certain dipole source pair is chosen to explore the reconstruction error frequency 
(100~2000 Hz) spectrum of the CS3C-NAH method. The intensity and position (r, φ, z) of 
the source pair are 7.97 × 10−5 W, 1.94 × 10−5 W and (0.01253 m, 1.44 rad, 0.0335 m), (0.0442 
m, 3.85 rad, 0.182 m), respectively. 

In Figure 15, the overall error is below 10%, except for at 100 Hz and 120 Hz, where 
the errors are 16.63% and 10.1%, respectively. The average error is 6.14%. After excluding 
points exceeding 10% at 100 Hz and 140 Hz, the maximum and average error are 9.69% 
and 5.99%, respectively. In general, the CS3C-NAH method can achieve a high level of 
accuracy in reconstructing acoustic quantities at high frequencies under the premise of 
sparse sampling. 

 
Figure 15. The reconstruction error of the CS3C-NAH method. 

To verify the sound field’s reconstruction accuracy using the CS3C-NAH model for 
different dipole source pairs, 10 groups of dipole source pairs are selected and the perfor-
mance at 200 Hz is chosen for exploration. The position and excitation intensity of the 
dipole source pairs are listed in Table 1. 

Table 1. The position and excitation intensity of the 10 dipole source pairs. 

1 Position 1 (r, φ, z) 2 Intensity 1 1 Position 2 (r, φ, z) 2 Intensity 2 
(50.32, 4.27, 24.69) 3.43 (33.13, 2.59, 197.47) 2.86 
(29.18, 3.05, 153.89) 8.95 (4.02, 0.10, 316.61) 9.31 
(21.44, 0.22, 140.21) 5.04 (21.33, 4.72, 310.89) 8.00 
(50.37, 0.72, 78.23) 5.62 (1.91, 0.39, 316.97) 3.31 
(14.01, 0.48, 65.19) 7.89 (23.15, 2.71, 170.81) 7.37 
(9.35, 3.82, 20.34) 3.51 (37.50, 3.41, 191.32) 5.67 

(37.54, 1.47, 148.08) 2.20 (32.79, 3.83, 227.80) 1.62 
(14.57, 0.89, 0.99) 8.23 (55.63, 2.74, 245.98) 4.26 
(8.98, 3.33, 29.90) 7.60 (25.17, 0.51, 234.18) 2.94 

(15.77, 5.85, 51.92) 8.22 (44.34, 1.78, 260.18) 7.84 
Unit of value: 1 (10 × 10−3 m, rad, 10 × 10−3 m), 2 ×10−5 W. 

0 400 800 1200 1600 2000
2

4

6

8

10

12

14

16

18

Re
co

ns
tru

ct
io

n 
Er

ro
r(%

)

Frequency/Hz

Figure 15. The reconstruction error of the CS3C-NAH method.

To verify the sound field’s reconstruction accuracy using the CS3C-NAH model for
different dipole source pairs, 10 groups of dipole source pairs are selected and the perfor-
mance at 200 Hz is chosen for exploration. The position and excitation intensity of the
dipole source pairs are listed in Table 1.

Table 1. The position and excitation intensity of the 10 dipole source pairs.

1 Position 1 (r, ϕ, z) 2 Intensity 1 1 Position 2 (r, ϕ, z) 2 Intensity 2

(50.32, 4.27, 24.69) 3.43 (33.13, 2.59, 197.47) 2.86
(29.18, 3.05, 153.89) 8.95 (4.02, 0.10, 316.61) 9.31
(21.44, 0.22, 140.21) 5.04 (21.33, 4.72, 310.89) 8.00
(50.37, 0.72, 78.23) 5.62 (1.91, 0.39, 316.97) 3.31
(14.01, 0.48, 65.19) 7.89 (23.15, 2.71, 170.81) 7.37
(9.35, 3.82, 20.34) 3.51 (37.50, 3.41, 191.32) 5.67

(37.54, 1.47, 148.08) 2.20 (32.79, 3.83, 227.80) 1.62
(14.57, 0.89, 0.99) 8.23 (55.63, 2.74, 245.98) 4.26
(8.98, 3.33, 29.90) 7.60 (25.17, 0.51, 234.18) 2.94

(15.77, 5.85, 51.92) 8.22 (44.34, 1.78, 260.18) 7.84

Unit of value: 1 (10 × 10−3 m, rad, 10 × 10−3 m), 2 ×10−5 W.
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The sound pressure distributions excited by the dipole source pairs given above are
sparsely sampled on the hologram surface. Their amplitude distributions are shown in
Figure 16.
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(a–j) represent different dipole source pairs.

The comparisons of the theoretical and reconstructed sound pressure distributions
are shown in Figures 17 and 18. The errors of the former five source pairs calculated by
Equation (11) are shown in Table 2. The errors of the latter are shown in Table 3.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 22 
 

 

The sound pressure distributions excited by the dipole source pairs given above are 
sparsely sampled on the hologram surface. Their amplitude distributions are shown in 
Figure 16. 

 
Figure 16. Amplitude distribution of the sparse sound pressure on the hologram surface. (a–j) rep-
resent different dipole source pairs. 

The comparisons of the theoretical and reconstructed sound pressure distributions 
are shown in Figures 17 and 18. The errors of the former five source pairs calculated by 
Equation (11) are shown in Table 2. The errors of the latter are shown in Table 3. 

 
Figure 17. The comparisons of the theoretical and reconstructed sound pressure distributions on the 
reconstructed surface of the former five source pairs in Figure 16. (a–e) represent the theoretical 
sound pressure of the former five source pairs in Figure 16. (f–j) represent the corresponding recon-
structed sound pressure. 

Table 2. The reconstruction errors of the former five source pairs. 

Comparison Pairs (a) with (f) (b) with (g) (c) with (h) (d) with (i) (e) with (j) 
Reconstructed error 11.78% 7.62% 8.06% 11.05% 9.67% 

 
Figure 18. The comparisons of the theoretical and reconstructed sound pressure distributions on the 
reconstructed surface of the latter five source pairs in Figure 16. (a–e) represent the theoretical sound 
pressure. (f–j) represent the corresponding reconstructed sound pressure. 

Table 3. The reconstruction errors of the latter five source pairs. 

Comparison Pairs (a) with (f) (b) with (g) (c) with (h) (d) with (i) (e) with (j) 
Reconstructed error 7.23% 10.50% 12.28% 9.41% 8.41% 

According to Figures 17 and 18, the method can accurately locate the spatial position 
of the sound source from the perspective of standing waves. Meanwhile, it can be seen 
from the specific error in Tables 2 and 3 that the CS3C-NAH method can accurately re-
construct not only the shape of the relative distribution of sound pressure amplitude, but 

Figure 17. The comparisons of the theoretical and reconstructed sound pressure distributions on the
reconstructed surface of the former five source pairs in Figure 16. (a–e) represent the theoretical sound
pressure of the former five source pairs in Figure 16. (f–j) represent the corresponding reconstructed
sound pressure.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 22 
 

 

The sound pressure distributions excited by the dipole source pairs given above are 
sparsely sampled on the hologram surface. Their amplitude distributions are shown in 
Figure 16. 

 
Figure 16. Amplitude distribution of the sparse sound pressure on the hologram surface. (a–j) rep-
resent different dipole source pairs. 

The comparisons of the theoretical and reconstructed sound pressure distributions 
are shown in Figures 17 and 18. The errors of the former five source pairs calculated by 
Equation (11) are shown in Table 2. The errors of the latter are shown in Table 3. 

 
Figure 17. The comparisons of the theoretical and reconstructed sound pressure distributions on the 
reconstructed surface of the former five source pairs in Figure 16. (a–e) represent the theoretical 
sound pressure of the former five source pairs in Figure 16. (f–j) represent the corresponding recon-
structed sound pressure. 

Table 2. The reconstruction errors of the former five source pairs. 

Comparison Pairs (a) with (f) (b) with (g) (c) with (h) (d) with (i) (e) with (j) 
Reconstructed error 11.78% 7.62% 8.06% 11.05% 9.67% 

 
Figure 18. The comparisons of the theoretical and reconstructed sound pressure distributions on the 
reconstructed surface of the latter five source pairs in Figure 16. (a–e) represent the theoretical sound 
pressure. (f–j) represent the corresponding reconstructed sound pressure. 

Table 3. The reconstruction errors of the latter five source pairs. 

Comparison Pairs (a) with (f) (b) with (g) (c) with (h) (d) with (i) (e) with (j) 
Reconstructed error 7.23% 10.50% 12.28% 9.41% 8.41% 

According to Figures 17 and 18, the method can accurately locate the spatial position 
of the sound source from the perspective of standing waves. Meanwhile, it can be seen 
from the specific error in Tables 2 and 3 that the CS3C-NAH method can accurately re-
construct not only the shape of the relative distribution of sound pressure amplitude, but 

Figure 18. The comparisons of the theoretical and reconstructed sound pressure distributions on the
reconstructed surface of the latter five source pairs in Figure 16. (a–e) represent the theoretical sound
pressure. (f–j) represent the corresponding reconstructed sound pressure.

Table 2. The reconstruction errors of the former five source pairs.

Comparison Pairs (a) with (f) (b) with (g) (c) with (h) (d) with (i) (e) with (j)

Reconstructed error 11.78% 7.62% 8.06% 11.05% 9.67%

Table 3. The reconstruction errors of the latter five source pairs.

Comparison Pairs (a) with (f) (b) with (g) (c) with (h) (d) with (i) (e) with (j)

Reconstructed error 7.23% 10.50% 12.28% 9.41% 8.41%

According to Figures 17 and 18, the method can accurately locate the spatial position
of the sound source from the perspective of standing waves. Meanwhile, it can be seen from
the specific error in Tables 2 and 3 that the CS3C-NAH method can accurately reconstruct
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not only the shape of the relative distribution of sound pressure amplitude, but also the
absolute values at each point globally. The average reconstruction error of the 10 source
pairs at 200 Hz is only 9.6% lower than 10%.

4.4.2. Comparison of the Methods

It is desirable to verify whether the proposed method improves the sound field
reconstruction accuracy when compared to other methods for the same sampling number.
The PGa-based patch NAH method is selected to be compared under the same conditions
as the CS3C-NAH method.

The position and excitation intensity of the dipole source pairs for comparison are
listed in Table 4. Before the methods are applied, the data normalization is utilized for the
sound pressure data, and then CTW is performed. The pressure data pcg, pqx and p′cg, p′qx
after CTW processing are of the same size as those of the numerical example above. In the
axial dimension, the array covers from 0 to 0.320 m, and the SNR for sparse pressure on the
measuring surface is 20 dB.

Table 4. The position and excitation intensity of the dipole source pairs for comparison.

1 Position 1 (r, ϕ, z) 2 Intensity 1 1 Position 2 (r, ϕ, z) 2 Intensity 2

(0.34, 4.33, 23.21) 8.55 (1.20, 4.59, 286.71) 6.90
(45.60, 3.34, 10.90) 6.99 (48.45, 3.13, 213.17) 9.27
(35.73, 1.53, 6.77) 7.24 (27.86, 4.32, 232.68) 8.95
(7.98, 0.19, 93.97) 6.84 (11.67, 3.18, 274.21) 2.49

(0.53, 1.06, 150.39) 1.14 (6.15, 0.61, 269.91) 7.88

Unit of value: 1 (10 × 10−3 m, rad, 10 × 10−3 m), 2 ×10−5 W.

The theoretical sound pressure data on the holographic and reconstructed surface
for the dipole source pairs shown in Table 4 are calculated, and the former is 1/4 × 1/4
sparse sampled to obtain the data pcg, pqx respectively for comparison. Finally, all the data
are applied to the CS3C-NAH method and the PGa-based Patch NAH method, and the
reconstructed sound pressure data of the two methods, respectively, are obtained. The
error between the reconstructed and theoretical sound pressure is derived by Equation (12).
The relative amplitude distributions of the reconstructed sound pressure for comparison
(200 Hz) are shown in Figure 19.
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Figure 19. The relative amplitude distributions of sound pressure distribution on the hologram
and reconstructed surface. (a–e) correspond to five dipole source pairs. PGa and CS3C are the
abbreviations of the PGa-based Patch NAH and CS3C-NAH methods, respectively.
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In Figure 19, both the PGa-based Patch NAH and CS3C-NAH method can present
the spatial r and z direction positions of the dipole source pairs from the peak and trough
of the distributions. However, the relative distributions of sound pressure amplitude
reconstructed by the CS3C-NAH method is more accurate than the previous method, and
the specific reconstruction errors are shown in Table 5.

Table 5. The comparison of reconstruction errors between different methods.

Dipole
Source Pairs (a) (b) (c) (d) (e)

PGa error 13.05% 25.91% 18.06% 13.52% 20.26%
CS3C error 7.11% 13.47% 9.75% 8.58% 8.71%

It can be seen from Table 5 that the average and maximum of the reconstruction errors
of the PGa method are 18.16% and 25.91%, respectively, while those of the CS3C-NAH are
9.52% and 13.47%, which represents a reduction of nearly 50% compared to the PGa method.
This may prove that the method is significantly effective. The spatial 3D distributions of
the sound pressure data are utilized to illustrate the differences between the PGa-based
Patch NAH and the proposed method in detail. These sound distributions are shown in
Figures 20–22.
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Figure 20. The near-field sound pressure excited by dipole source pair 1: (a) represents the sparsely
sampled sound pressure on the hologram surface; (b) represents the theoretical sound pressure on
the reconstructed surface; (c) represents the sound pressure reconstructed by the PGa-based Patch
NAH method; (d) represents the sound pressure reconstructed by the CS3C-NAH method.
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Figure 21. The near-field sound pressure excited by dipole source pair 3: (a) represents the sparsely 
sampled sound pressure on the hologram surface; (b) represents the theoretical sound pressure on 
the reconstructed surface; (c) represents the sound pressure reconstructed by the PGa-based Patch 
NAH method; (d) represents the sound pressure reconstructed by the CS3C-NAH method. 
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Figure 21. The near-field sound pressure excited by dipole source pair 3: (a) represents the sparsely
sampled sound pressure on the hologram surface; (b) represents the theoretical sound pressure on
the reconstructed surface; (c) represents the sound pressure reconstructed by the PGa-based Patch
NAH method; (d) represents the sound pressure reconstructed by the CS3C-NAH method.
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Figure 22. The near-field sound pressure excited by dipole source pair 5: (a) represents the sparsely
sampled sound pressure on the hologram surface; (b) represents the theoretical sound pressure on
the reconstructed surface; (c) represents the sound pressure reconstructed by the PGa-based Patch
NAH method; (d) represents the sound pressure reconstructed by the CS3C-NAH method.
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It can be seen from Figures 20–22 that the PGa-based Patch NAH and the CS3C-NAH
method can both accurately locate the sound source position. However, the reconstruc-
tion accuracy of CS3C-NAH method is significantly higher, as shown in Figure 19. The
quantitative errors for the comparison groups are shown in Table 5. From Figures 20–22,
the errors of the CS3C-NAH method are 7.11%, 9.75% and 8.71%, while the PGa-based
patch NAH has errors of 13.05%, 18.06%, and 20.26%, respectively. At the same time, the
CS3C-NAH model can also accurately reconstruct the sound field distributed away from
the center of the source. The main reason for which the detail reconstruction accuracy of
the PGa-based Patch NAH is inferior to that of the CS3C-NAH is that the spatial Fourier
transform and band limit filtering are repeatedly applied to the sound pressure data of the
former. Since the sound pressure data on the hologram surface is not a kind of band limit
signal in the strict mathematical sense, its spectrum decays by an exponential rule at the
bandwidth rather than being cut off directly. Therefore, there will be convergence errors
in strict accordance with the processing method for band limit signal. At the same time,
due to the influence of noise, the band limit characteristic of the signal is reduced. All of
these factors contribute to the errors of the PGa-based Patch NAH algorithm, resulting in
the superiority of the proposed CS3C-NAH method.

5. Conclusions

From the contradiction between the high resolution of near-field acoustic holography
reconstruction and the low sampling rate of measuring, this paper proposed a theoretical
method of cylindrical NAH based on deep learning methods to achieve 3D acoustical
image super-resolution for sparse holographic sampling. The method is composed of the
SAE structure based on 3D-CNN layers and the truncated padding method of CTW, and
can use a small quantity of measured data to restore the near-field sound pressure data as
accurately as when a high sampling rate is used. It is named CS3C-NAH. The feasibility of
the method is verified by numerical example. At the same time, the patch NAH method
based on the PGa algorithm in the planar NAH method is introduced into the cylindrical
coordinate system and compared with the proposed method. The results show that, for
the task of near-field sound pressure reconstruction under the excitation of five random
groups of different dipole sound sources pairs, the average and maximum error of the
CS3C-NAH method are reduced from 18.16% and 25.91% to 9.52% and 13.47%, respectively,
compared with the method based on the PGa theory. This verifies the superiority of the
proposed method.

Author Contributions: Conceptualization, J.W. and W.Z.; methodology, J.W. and Y.H.; software, Z.Z.
and W.Z.; validation, J.W. and Z.Z.; data curation, W.Z.; writing—original draft preparation, W.Z.;
writing—review and editing, J.W. and Z.Z.; supervision, Z.Z.; project administration, Y.H.; funding
acquisition, Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Liuzhou Science and Technology Planning Project under
grant number. 2020GAAA0403 and Hubei Provincial Central Leading Local Science and Technology
Development Special Project, grant number 2022BGE180. The authors gratefully acknowledge this
support.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, W.; Jiang, W.; Wu, H.; Hou, J. A fault diagnosis scheme of rolling element bearing based on near-field acoustic holography

and gray level co-occurrence matrix. J. Sound Vib. 2012, 331, 3663–3674. [CrossRef]
2. Hu, B.; Yang, D.; Shi, S.; Sun, Y. Underwater moving noise source identification based on hybrid near-field acoustical holography.

Sci. China Phys. Mech. Astron. 2011, 54, 1570. [CrossRef]
3. Ueha, S.; Fujinami, M.; Umezawa, K.; Tsujiuchi, J. Mapping of noiselike sound sources with acoustical holography. Appl. Opt.

1975, 14, 1478–1479. [CrossRef]

https://doi.org/10.1016/j.jsv.2012.03.008
https://doi.org/10.1007/s11433-011-4421-y
https://doi.org/10.1364/AO.14.001478


Sensors 2023, 23, 4146 21 of 22

4. Kwon, H.-S.; Niu, Y.; Kim, Y.-J. Planar nearfield acoustical holography in moving fluid medium at subsonic and uniform velocity.
J. Acoust. Soc. Am. 2010, 128, 1823–1832. [CrossRef] [PubMed]

5. Caillet, J.; Marrot, F.; Unia, Y.; Aubourg, P.-A. Comprehensive approach for noise reduction in helicopter cabins. Aerosp. Sci.
Technol. 2012, 23, 17–25. [CrossRef]

6. Guozhi, B.; Guangsheng, S.; Zhaowang, X.; Jianghua, D. Identification and contribution analysis of vehicle interior noise based on
acoustic array technology. Adv. Mech. Eng. 2017, 9, 1687814017730031. [CrossRef]

7. Williams, E.G.; Maynard, J.D.; Skudrzyk, E. Sound source reconstructions using a microphone array. J. Acoust. Soc. Am. 1980, 68,
340–344. [CrossRef]

8. Williams, E.G.; Dardy, H.D.; Washburn, K.B. Generalized nearfield acoustical holography for cylindrical geometry: Theory and
experiment. J. Acoust. Soc. Am. 1987, 81, 389–407. [CrossRef]

9. Williams, E.G.; Houston, B.H.; Herdic, P.C. Fast Fourier transform and singular value decomposition formulations for patch
nearfield acoustical holography. J. Acoust. Soc. Am. 2003, 114, 1322–1333. [CrossRef]

10. Williams, E.G. Patch nearfield acoustical holography. J. Acoust. Soc. Am. 2002, 112, 2352. [CrossRef]
11. Lee, M.; Bolton, J.S. Patch near-field acoustical holography in cylindrical geometry. J. Acoust. Soc. Am. 2005, 118, 3721–3732.

[CrossRef]
12. Lee, M.; Bolton, J.S. A one-step patch near-field acoustical holography procedure. J. Acoust. Soc. Am. 2007, 122, 1662–1670.

[CrossRef] [PubMed]
13. Hald, J. Scaling of plane-wave functions in statistically optimized near-field acoustic holography. J. Acoust. Soc. Am. 2014, 136,

2687–2696. [CrossRef] [PubMed]
14. Cho, Y.T.; Bolton, J.S.; Hald, J. Source visualization by using statistically optimized near-field acoustical holography in cylindrical

coordinates. J. Acoust. Soc. Am. 2005, 118, 2355–2364. [CrossRef]
15. Chardon, G.; Daudet, L.; Peillot, A.; Ollivier, F.; Bertin, N.; Gribonval, R. Nearfield Acoustic Holography using sparsity and

compressive sampling principles. J. Acoust. Soc. Am. 2012, 132, 1521–1534. [CrossRef]
16. Koopmann, G.H.; Song, L.; Fahnline, J.B. A method for computing acoustic fields based on the principle of wave superposition. J.

Acoust. Soc. Am. 1989, 86, 2433–2438. [CrossRef]
17. Fernandez-Grande, E.; Xenaki, A.; Gerstoft, P. A sparse equivalent source method for near-field acoustic holography. J. Acoust.

Soc. Am. 2017, 141, 532–542. [CrossRef]
18. Fernandez-Grande, E.; Daudet, L. Compressive acoustic holography with block-sparse regularization. J. Acoust. Soc. Am. 2018,

143, 3737–3746. [CrossRef]
19. Bi, C.-X.; Liu, Y.; Xu, L.; Zhang, Y.-B. Sound field reconstruction using compressed modal equivalent point source method. J.

Acoust. Soc. Am. 2017, 141, 73–79. [CrossRef]
20. Hald, J. A comparison of iterative sparse equivalent source methods for near-field acoustical holography. J. Acoust. Soc. Am. 2018,

143, 3758–3769. [CrossRef] [PubMed]
21. Shao, H.; Jiang, H.; Zhao, H.; Wang, F. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis.

Mech. Syst. Signal Process. 2017, 95, 187–204. [CrossRef]
22. Jing, L.; Zhao, M.; Li, P.; Xu, X. A convolutional neural network based feature learning and fault diagnosis method for the

condition monitoring of gearbox. Measurement 2017, 111, 1–10. [CrossRef]
23. Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.

Sensors 2017, 17, 273. [CrossRef]
24. Han, D.; Zhao, N.; Shi, P. A new fault diagnosis method based on deep belief network and support vector machine with

Teager–Kaiser energy operator for bearings. Adv. Mech. Eng. 2017, 9, 168781401774311. [CrossRef]
25. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July
2017; pp. 1132–1140.

26. Tao, X.; Gao, H.; Liao, R.; Wang, J.; Jia, J. Detail-Revealing Deep Video Super-Resolution. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4482–4490.

27. Zhang, Y.; Liu, S.; Dong, C.; Zhang, X.; Yuan, Y. Multiple Cycle-in-Cycle Generative Adversarial Networks for Unsupervised
Image Super-Resolution. IEEE Trans. Image Process. 2020, 29, 1101–1112. [CrossRef]

28. Ping, G.; Fernandez-Grande, E.; Gerstoft, P.; Chu, Z. Three-dimensional source localization using sparse Bayesian learning on a
spherical microphone array. J. Acoust. Soc. Am. 2020, 147, 3895–3904. [CrossRef]

29. Antoni, J. A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing. J. Acoust. Soc. Am.
2012, 131, 2873–2890. [CrossRef]

30. Antoni, J.; Le Magueresse, T.; Leclère, Q.; Simard, P. Sparse acoustical holography from iterated Bayesian focusing. J. Sound Vib.
2019, 446, 289–325. [CrossRef]

31. Fan, B.; Das, S. Synthetic Aperture Acoustic Imaging with Deep Generative Model Based Source Distribution Prior. In Proceedings
of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON,
Canada, 6–11 June 2021; pp. 1420–1424.

https://doi.org/10.1121/1.3478771
https://www.ncbi.nlm.nih.gov/pubmed/20968355
https://doi.org/10.1016/j.ast.2012.03.004
https://doi.org/10.1177/1687814017730031
https://doi.org/10.1121/1.384602
https://doi.org/10.1121/1.394904
https://doi.org/10.1121/1.1603767
https://doi.org/10.1121/1.4779525
https://doi.org/10.1121/1.2047267
https://doi.org/10.1121/1.2756799
https://www.ncbi.nlm.nih.gov/pubmed/17927426
https://doi.org/10.1121/1.4897399
https://www.ncbi.nlm.nih.gov/pubmed/25373969
https://doi.org/10.1121/1.2036252
https://doi.org/10.1121/1.4740476
https://doi.org/10.1121/1.398450
https://doi.org/10.1121/1.4974047
https://doi.org/10.1121/1.5042412
https://doi.org/10.1121/1.4973567
https://doi.org/10.1121/1.5042223
https://www.ncbi.nlm.nih.gov/pubmed/29960495
https://doi.org/10.1016/j.ymssp.2017.03.034
https://doi.org/10.1016/j.measurement.2017.07.017
https://doi.org/10.3390/s17020273
https://doi.org/10.1177/1687814017743113
https://doi.org/10.1109/TIP.2019.2938347
https://doi.org/10.1121/10.0001383
https://doi.org/10.1121/1.3685484
https://doi.org/10.1016/j.jsv.2019.01.001


Sensors 2023, 23, 4146 22 of 22

32. Olivieri, M.; Pezzoli, M.; Antonacci, F.; Sarti, A. Near field Acoustic Holography on arbitrary shapes using Convolutional Neural
Network. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August
2021; pp. 121–125.

33. Olivieri, M.; Pezzoli, M.; Antonacci, F.; Sarti, A. A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography.
Sensors 2021, 21, 7834. [CrossRef]

34. Wu, H.; Wei, X.; Zha, Y.; Jiang, W. Acoustic spatial patterns recognition based on convolutional neural network and acoustic
visualization. J. Acoust. Soc. Am. 2020, 147, 459–468. [CrossRef] [PubMed]

35. Wang, J.; Zhang, Z.; Huang, Y.; Li, Z.; Huang, Q. A 3D convolutional neural network based near-field acoustical holography
method with sparse sampling rate on measuring surface. Measurement 2021, 177, 109297. [CrossRef]

36. Wang, J.; Zhang, Z.; Li, Z.; Huang, Q. Research on joint training strategy for 3D convolutional neural network based near-field
acoustical holography with optimized hyperparameters. Measurement 2022, 202, 111790. [CrossRef]

37. He, Y.; Chen, L.; Xu, Z.; Zhang, Z. A Compressed Equivalent Source Method Based on Equivalent Redundant Dictionary for
Sound Field Reconstruction. Appl. Sci. 2019, 9, 808. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s21237834
https://doi.org/10.1121/10.0000618
https://www.ncbi.nlm.nih.gov/pubmed/32007010
https://doi.org/10.1016/j.measurement.2021.109297
https://doi.org/10.1016/j.measurement.2022.111790
https://doi.org/10.3390/app9040808

	Introduction 
	Theory of the Spatial Fourier Transform-Based Cylindrical NAH and Aliasing 
	Theory of SFT-CNAH 
	Aliasing Caused by Sparse Sampling 

	Methodology of the CS3C-NAH 
	Cylindrical 3D-CNN with CTW 
	Cylindrical 3D-CNN SAE Module 
	Combined CS3C Model 

	Numerical Example and Comparison 
	Acquisition of Data 
	Normalization 
	Data Processing by CTW 
	Network Training and Results 
	Reconstruction Error 
	Comparison of the Methods 


	Conclusions 
	References

