Optimization Analysis of Thermodynamic Characteristics of Serrated Plate-Fin Heat Exchanger
Abstract
:1. Introduction
2. Numerical Calculation
2.1. Physical Model
2.2. Heat Transfer
2.3. Mathematical Models
2.4. Grid Generations and Boundary Condition
2.5. Entropy Generation Analysis
2.6. Analysis of Simulation Results
2.6.1. Comparative Analysis
2.6.2. Nephogram Analysis
3. Optimization Method
4. Results and Discussion
4.1. The Effect of Fin Configuration Parameters
4.1.1. The Effect of the Fin Height and Fin Spacing
4.1.2. The Effect of the Fin Height and Fin Thickness
4.2. Optimization Results and Analysis
5. Conclusions
- (1)
- In the low Reynolds number region on the air side, the simulation results are more consistent with Kays’s experimental correlation. The experimental correlations of Kim have high reliability in calculating the factor f on water side.
- (2)
- Through multi-objective genetic algorithm (MOGA), a group of optimal solutions meeting the requirements is obtained, where the maximum j factor increases by 3.7%, the maximum f factor decreases by 7.8%, and the maximum entropy generation number Ns decreases by 31%. The parameters of the original data are the structure size with excellent performance after actual test, so the j factor and the f factor of the optimization results are not significantly exceeded. However, the change in entropy production numbers is very obvious, which shows that it is very effective to analyze the thermal performance of heat exchanger with entropy production numbers as an index to optimize its structural parameters.
- (3)
- The influence of four structural parameters on the j factor, the f factor and the entropy generation number Ns are investigated based on the single objective genetic algorithm. The results show that the fin length l has the greatest influence on the j factor, the fin thickness t has the greatest influence on the f factor, and the fin length l has the greatest influence on entropy yield, which are 21.7%, 67.7% and 62.1%. respectively. This shows that the research method of entropy generation minimization combined with CFD simulation and genetic algorithm can effectively optimize the key structural parameters of heat exchanger, could determine an important entry point and provide a basis for the design of heat exchanger.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description | Symbol | Description |
A | total heat transfer area, m2 | Re | Reynolds number |
A2 | the secondary heat transfer surface area in fin channel, m2 | s | space of serrated fin, m |
Ac | Cross-sectional area of fin channel, m2 | S | entropy |
Ain | inlet area of extension | t | thickness of serrated fin, m |
Aw, cp | the wall area of the covered plate, m2 | Δtm | logarithmic mean temperature, K |
b | clipboard thickness, m | T | temperature, K |
cp | specific heat, J kg−1 K−1 | Tin | inlet temperature, K |
Cmin,Cmax | Heat capacity rate | Tout | outlet temperature, K |
Dh | hydraulic diameter of fin channel, m | Tw | wall temperature, K |
f | friction factor | u | velocity, m·s−1 |
h | height of serrated fin, m | uc | velocity in fin channel, m s−1 |
hc | mean heat transfer coefficient, W m2 K−1 | uin | inlet velocity, m s−1 |
j | Colburn factor | x | parameters |
l | interrupted length of serrated fin, m | X | design variables |
L | length of heat exchanger, m | η0 | surface efficiency of fin channel |
K | heat transmittance coefficient, W m−2 K−1 | ηf,id | ideal one-dimensional fin efficiency |
m | mass flow rate, kg s−1 | λ | thermal conductivity, W m−1 K−1 |
Nu | Nusselt number | λs | thermal conductivity of solid, W m−1 K−1 |
Ns | entropy generation number | λf | thermal conductivity of fluid, W m−1 K−1 |
Pr | Prandtl number | ν | kinetic viscosity, m2 s−1 |
p | Pressure at any point in flow field, Pa | μ | dynamic viscosity of fluid, Pa s |
Δp | differential pressure, Pa | ρf | density of fluid kg m−3 |
Q | total rate of heat transfer, W | ε | efficiency of the heat exchanger |
References
- Zhong, H.L.; Xu, T.; Yang, J.L.; Sun, M.; Gao, F. Optimization Design of Automotive Body Stiffness Using a Boundary Hybrid Genetic Algorithm. Machines 2022, 10, 1171. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, M.; Ma, T.; Du, X.; Yang, J. Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Appl. Energy 2014, 135, 748–777. [Google Scholar] [CrossRef]
- Li, J.; Peng, H.; Ling, X. Numerical study and experimental verification of transverse direction type serrated fins and field synergy principle analysis. Appl. Therm. Eng. 2013, 54, 328–335. [Google Scholar] [CrossRef]
- Martins, T.; Spengler, A.W.; Oliveira, J.L.; de Paiva, K.V.; Seman, L.O. Active Control System to Prevent Malfunctioning Caused by the Pressure Difference in Gasket Plate Heat Exchangers Applied in the Oil and Gas Industry. Sensors 2022, 22, 4422. [Google Scholar] [CrossRef] [PubMed]
- Aláiz-Moretón, H.; Castejón-Limas, M.; Casteleiro-Roca, J.L.; Jove, E.; Fernández Robles, L.; Calvo-Rolle, J.L. A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent Techniques. Sensors 2019, 19, 2740. [Google Scholar] [CrossRef]
- Shah, R.K.; Webb, R.L. Compact and Enhanced Heat Exchangers. Int. Cent. Heat Mass Transf. 1983, 14, 425–468. [Google Scholar]
- Kays, W.M.; London, L. Compact Heat Exchangers; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar]
- Saysroy, A.; Eiamsa-ard, S. Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. Int. J. Thermal Sci. 2017, 121, 55–74. [Google Scholar] [CrossRef]
- Joshi, H.M.; Webb, R.L. Heat-transfer and friction in the offset strip fin heat exchanger. Int. J. Heat Mass Transf. 1987, 30, 69–84. [Google Scholar] [CrossRef]
- Zade, N.M.; Akar, S.; Rashidi, S.; Esfahani, J.A. Thermo-hydraulic analysis for a novel eccentric helical screw tape insert in a three dimensional tube. Appl. Therm. Eng. 2017, 124, 413–421. [Google Scholar] [CrossRef]
- Tinaut, F.V.; Meglar, A.; Ali, A. Correlations for heat-transfer and flow friction characteristics of compact plate-type heat-exchanger. Int. J. Heat Mass Transf. 1992, 35, 1659–1665. [Google Scholar] [CrossRef]
- Hu, S.; Herold, K.E. Prandtl number effect on offset fin heat-exchanger performance-experimental results. Int. J. Heat Mass Transf. 1995, 38, 1053–1061. [Google Scholar] [CrossRef]
- Muzychka, Y.S.; Yovanovich, M.M. Modeling the f and j characteristics for transverse flow through an offset strip fin at low Reynolds number. Enhanc. Heat Transf. 2001, 8, 243–259. [Google Scholar] [CrossRef]
- Manson, S.V. Correlations of Heat Transfer Data and of Friction Data for Interrupted Plane Fins Staggered in Successive Rows; NACA Tech. Note 2237; National Advisory Committee for Aeronautics: Washington, DC, USA, 1950. [Google Scholar]
- Webb, R.L.; Joshi, H.M. A friction factor correlation for the offset fin matrix. Heat Transf. Hemisph. 1982, 6, 257–262. [Google Scholar]
- Yang, Y.J.; Li, Y.Z. General prediction of the thermal hydraulic performance for plate-fin heat exchanger with offset strip fins. Int. J. Heat Mass Transf. 2014, 78, 860–870. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, J.; Yook, S.J.; Lee, K.S. Correlations and optimization of a heat exchanger with offset-strip fins. Int. J. Heat Mass Transf. 2011, 54, 2073–2079. [Google Scholar] [CrossRef]
- Calisir, T.; Yazar, H.O.; Baskaya, S. Thermal performance of PCCP panel radiators for different convector dimensions—An experimental and numerical study. Int. J. Therm. Sci. 2019, 137, 375–387. [Google Scholar] [CrossRef]
- Romano, L.F.R.; Ribeiro, G.B. Parametric evaluation of a heat pipe-radiator assembly for nuclear space power systems. Therm. Sci. Eng. Prog. 2019, 13, 100368. [Google Scholar] [CrossRef]
- Cui, H.; Chen, G.; Guan, Y.; Zhao, H. Numerical Simulation and Analysis of Turbulent Characteristics near Wake Area of Vacuum Tube EMU. Sensors 2023, 23, 2461. [Google Scholar] [CrossRef]
- Guan, Y.; Cui, H.; Fei, J. Study on Optimization of Copper to Aluminum for Locomotive Finned Tube Radiator. Energies 2023, 16, 2130. [Google Scholar] [CrossRef]
- Guan, Y.; Li, M.; Cui, H. Numerical Simulation and Field Synergy Analysis of IGBT Air-Cooled Heat Exchanger for EMUs. Int. J. Heat Technol. 2020, 38, 650–658. [Google Scholar] [CrossRef]
- Peng, L.; Liu, D.; Cheng, H. Design and fabrication of the ultrathin metallic filmbased infrared selective radiator. Sol. Energy Mater. Sol. Cells 2019, 193, 7–12. [Google Scholar] [CrossRef]
- Guan, Y.; Su, X.; Cui, H.; Fei, J. CFD Simulation Study on the Air Side of a CO2 Evaporator in a Motor Train Unit Air Conditioning System. Energies 2023, 16, 1037. [Google Scholar] [CrossRef]
- Said, Z.; El Haj Assad, M.; Hachicha, A.A.; Bellos, E.; Abdelkareem, M.A.; Alazaizeh, D.Z.; Yousef, B.A.A. Enhancing the performance of automotive radiators usingnanofluids. Renew. Sustain. Energy Rev. 2019, 112, 183–194. [Google Scholar] [CrossRef]
- Yang, H.; Wen, J.; Wang, S.; Li, Y. Thermal design and optimization of plate-fin heat exchangers based global sensitivity analysis and NSGA-II. Appl. Therm. Eng. 2018, 136, 444–453. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization; CRC Press: New York, NY, USA, 1996. [Google Scholar]
- De Vasconcelos Segundo, E.H.; Amoroso, A.L.; Mariani, V.C.; dos Santos Coelho, L. Thermodynamic optimization design for plate-fin heat exchangers by Tsallis JADE. Int. J. Therm. Sci. 2017, 113, 136–144. [Google Scholar] [CrossRef]
- London, A.L. Economics and second law: An engineering view and methodology. Int. J. Heat Mass Transf. 1982, 25, 743–751. [Google Scholar] [CrossRef]
- Rao, R.V.; Patel, V.K. Thermodynamic optimization of cross-flow plate-fin heat exchanger using particle swarm optimization. Int. J. Therm. Sci. 2010, 49, 1712–1721. [Google Scholar] [CrossRef]
- Xu, S.; Yu, R.; Shen, L.; Wang, Y.; Xie, J. The experimental study of a novel metal foam heat pipe radiator. Sci. Direct Energy Procedia 2019, 158, 5439–5444. [Google Scholar]
- Xiahou, G.; Zhang, J.; Ma, R.; Liu, Y. Novel heat pipe radiator for vertical CPU cooling and its experimental study. Int. J. Heat Mass Transf. 2019, 130, 912–922. [Google Scholar] [CrossRef]
- Tran, N.; Wang, C.-C. Optimization of the airside thermal performance of mini-channel-flat-tube radiators by using composite straight-and-louvered fins. Int. J. Heat Mass Transf. 2020, 160, 120163. [Google Scholar] [CrossRef]
- Wieting, A.R. Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers. Heat Transf. 1975, 30, 69–84. [Google Scholar] [CrossRef]
- Mochizuki, S.; Yagi, Y.; Yang, W.J. Transport phenomena in stacks of interrupted parallel-plate surfaces. Exp. Heat Transf. 1987, 1, 127–140. [Google Scholar] [CrossRef]
- Manglik, R.M.; Bergles, A.E. Heat transfer and pressure drop correlations for the rectangular offset strip fifin compact heat exchanger. Exp. Fluid Sci. 1995, 10, 171–180. [Google Scholar] [CrossRef]
- Yang, H.Z.; Li, Y.Y.; Yang, Y.; Zhu, Y.G.; Wen, J. Effect of surface efficiency on the thermal design of plate-fin heat exchangers with passages stack arrangement. Int. J. Heat Mass Transf. 2019, 143, 494–504. [Google Scholar] [CrossRef]
- Yousefi, M.; Enayatifar, R.; Darus, A.N.; Abdullah, A.H. Optimization of plate-fin heat exchangers by an improved harmony search algorithm. Appl. Therm. Eng. 2013, 50, 877–885. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Li, Y.Z. Three-Dimensional Numerical Simulation on the Laminar Flow and Heat Transfer in Four Basic Fins of Plate-Fin Heat Exchangers. J. Heat Transf. 2008, 130, 1617–1620. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 10th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Li, K.; Wen, J.; Wang, S.M.; Li, Y.Z. Multi-parameter optimization of serrated fins in plate-fin heat exchanger based on fluid-structure interaction. Appl. Therm. Eng. 2020, 176, 115357. [Google Scholar] [CrossRef]
- Abid, R. Evaluation of two-equation turbulence models for predicting transitional flows. Int. J. Eng. Sci. 1993, 31, 831–840. [Google Scholar] [CrossRef]
- Tao, W. Numerical Heat Transfer; Xi’an Jiaotong University Press: Beijing, China, 2002; pp. 353–362. [Google Scholar]
- Ihmoudah, A.; Abugharara, A.; Rahman, M.A.; Butt, S. Experimental and Numerical Analysis of the Effect of Rheological Models on Measurements of Shear-Thinning Fluid Flow in Smooth Pipes. Energies 2023, 16, 3478. [Google Scholar] [CrossRef]
- Braga, V.M.; Deschamps, C.J. Parametric Analysis of Gas Leakage in the Piston–Cylinder Clearance of Reciprocating Compressors. Machines 2023, 11, 42. [Google Scholar] [CrossRef]
- Bejan, A.; Rocha LA, O.; Lorents, S. Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. Int. J. Therm. Sci. 2000, 39, 940–960. [Google Scholar] [CrossRef]
Fin Structure Parameters | Fin Height h (mm) | Fin Spacing s (mm) | Fin Tooth Length l (mm) | Fin Thickness t (mm) |
---|---|---|---|---|
Model size | 6.248 | 1.525 | 3.175 | 0.102 |
Parameters | Hot Fluid (Water) | Cold Fluid (Air) |
---|---|---|
Inlet temperature T1 (°C) | 62.6 | 40 |
Outlet temperature T2 (°C) | 55.5 | 55.8 |
Mass flow m (kg/s) | 3.28 | 6.15 |
Density ρ (kg/m3) | 983.2 | 1.128 |
Specific heat cp (J/kg·K) | 4179 | 1005 |
Dynamic viscosity μ (kg/m·s) | 469.9 × 10−6 | 19.1 × 10−6 |
Inlet pressure P (MPa) | -- | 0.11 |
Thermal conductivity λ (W/m·K) | 56.94 × 10−2 | 2.496 × 10−2 |
Structural Parameters (mm) | Objective Function 1 * | Objective Function 2 * | Objective Function 3 * | ||||
---|---|---|---|---|---|---|---|
Design variable | h | l | s | t | jmax | fmin | Nsmin |
Original data | 6.248 | 3.175 | 1.525 | 0.102 | 0.0239 | 0.1197 | 0.05430 |
Optimization results1 | 6.808 | 3.05 | 1.502 | 0.102 | 0.0243 | 0.1192 | 0.05213 |
Optimization results2 | 2.805 | 2.18 | 1.530 | 0.1 | 0.0241 | 0.1157 | 0.04646 |
Optimization results3 | 7.550 | 2.80 | 1.02 | 0.1 | 0.0245 | 0.1103 | 0.03732 |
Maximum value compared to original data | 3.7% | 7.8% | 31% |
GA | PSO | BA | JADE | TJADE | Results 3 * of This Paper | |
---|---|---|---|---|---|---|
h (mm) | 9.53 | 9.8 | 9.99 | 9.99 | 9.99 | 7.55 |
l (mm) | 6.3 | 9.8 | 9.998 | 8.10 | 8.82 | 2.8 |
s (mm) | 1.87 | 2.26 | 2.46 | 1.0 | 1.0 | 1.02 |
t (mm) | 0.146 | 0.1 | 0.167 | 0.101 | 0.1 | 0.1 |
Ns | 0.063332 | 0.053028 | 0.052886 | 0.047919 | 0.046688 | 0.03732 |
Serial Number | Fin Height h (mm) | Fin Spacing s (mm) | Fin Tooth Length l (mm) | Fin Thickness t (mm) |
---|---|---|---|---|
1 | 3.0 | 1.5 | 3.175 | 0.102 |
2 | 4.5 | 2.62 | 4.5 | 0.2 |
3 | 5.5 | 3.5 | 6.5 | 0.3 |
4 | 7.0 | 4.5 | 7.5 | 0.4 |
5 | 9.0 | 5.0 | 9.0 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Wang, L.; Cui, H. Optimization Analysis of Thermodynamic Characteristics of Serrated Plate-Fin Heat Exchanger. Sensors 2023, 23, 4158. https://doi.org/10.3390/s23084158
Guan Y, Wang L, Cui H. Optimization Analysis of Thermodynamic Characteristics of Serrated Plate-Fin Heat Exchanger. Sensors. 2023; 23(8):4158. https://doi.org/10.3390/s23084158
Chicago/Turabian StyleGuan, Ying, Liquan Wang, and Hongjiang Cui. 2023. "Optimization Analysis of Thermodynamic Characteristics of Serrated Plate-Fin Heat Exchanger" Sensors 23, no. 8: 4158. https://doi.org/10.3390/s23084158
APA StyleGuan, Y., Wang, L., & Cui, H. (2023). Optimization Analysis of Thermodynamic Characteristics of Serrated Plate-Fin Heat Exchanger. Sensors, 23(8), 4158. https://doi.org/10.3390/s23084158