Heterogeneous Fusion of Camera and mmWave Radar Sensor of Optimizing Convolutional Neural Networks for Parking Meter System
Abstract
:1. Introduction
2. mmWave Radar Technology
3. CNN Network Comparisons
4. The Proposed Heterogeneous Fusion Algorithm
5. Experimental Results
5.1. Parking Meter System
5.2. Data Augmentation
- Windows 10 64-bit
- Intel Core i5-7500 3.6 GHz and DDR IV 32 GB
- Nvidia GTX 1080ti 11 GB
- CUDA Version 11
- TensorFlow Version 2.4.1
- OpenCV 4.5.1
5.3. Comparison Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitchell, T. Machine Learning; McGraw Hill: New Delhi, India, 1997. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2012. [Google Scholar]
- John, P. Review Paper on Object Detection using Deep Learning–Understanding Different Algorithms and Models to Design Effective Object Detection Network. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 1684–1689. [Google Scholar] [CrossRef]
- Sun, C.C.; Lin, H.E.; Lin, C.J.; Xie, Y.Z. A New Floor Region Estimation Algorithm Based on Deep Learning Networks with Improved Fuzzy Integrals for UGV Robots. J. Imaging Sci. Technol. 2019, 63, 30408-1–30408-10. [Google Scholar] [CrossRef]
- Jiménez, F.; Naranjo, J.E.; Anaya, J.J.; Garca, F.; Ponz, A.; Armingol, J.M. Advanced Driver Assistance System for Road Environments to Improve Safety and Efficiency. Transp. Res. Procedia 2016, 14, 2245–2254. [Google Scholar] [CrossRef]
- Abril, S.; Suárez, J.; Botía, G. Study and design of a parking meter system. J. Phys. Conf. Ser. 2019, 1329, 012009. [Google Scholar] [CrossRef]
- Chien, C.F.; Chen, H.T.; Lin, C.Y. A Low-Cost On-Street Parking Management System Based on Bluetooth Beacons. Sensors 2020, 20, 4559. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kim, J.; Lyndon, D.; Fulham, M.; Feng, D. An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification. IEEE J. Biomed. Health Inform. 2017, 21, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Sevo, I.; Avramovic, A. Convolutional Neural Network Based Automatic Object Detection on Aerial Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 740–744. [Google Scholar] [CrossRef]
- Ponce, J.M.; Aquino, A.; Andjar, J.M. Olive-Fruit Variety Classification by Means of Image Processing and Convolutional Neural Networks. IEEE Access 2019, 7, 147629–147641. [Google Scholar] [CrossRef]
- Hou, J.; Wang, S.; Lai, Y.; Tsao, Y.; Chang, H.; Wang, H. Audio-Visual Speech Enhancement Using Multimodal Deep Convolutional Neural Networks. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 117–128. [Google Scholar] [CrossRef]
- Ding, C.; Tao, D. Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1002–1014. [Google Scholar] [CrossRef]
- Levi, G.; Hassncer, T. Age and gender classification using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; pp. 34–42. [Google Scholar]
- Rasti, P.; Uiboupin, T.; Escalera, S.; Anbarjafari, G. Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring. In Proceedings of the Articulated Motion and Deformable Objects, Palma de Mallorca, Spain, 13–15 July 2016; pp. 175–184. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Jankiraman, M. FMCW Radar Design; Artech House: Norwood, MA, USA, 2018. [Google Scholar]
- Sengupta, A.; Jin, F.; Cao, S. A DNN-LSTM Based Target Tracking Approach Using mmWave Radar and Camera Sensor Fusion. In Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 15–19 July 2019; pp. 688–693. [Google Scholar]
- Sun, Y.; Hang, R.; Li, Z.; Jin, M.; Xu, K. Privacy-Preserving Fall Detection with Deep Learning on mmWave Radar Signal. In Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, NSW, Australia, 1–4 December 2019; pp. 1–4. [Google Scholar]
- Thalagala, S.; Walgampaya, C. Application of AlexNet convolutional neural network architecture-based transfer learning for automated recognition of casting surface defects. In Proceedings of the 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE), Colombo, Sri Lanka, 16 September 2021; pp. 129–136. [Google Scholar]
- Rani, S.; Ghai, D.; Kumar, S.; Kantipudi, M.P.; Alharbi, A.H.; Ullah, M.A. Efficient 3D AlexNet Architecture for Object Recognition Using Syntactic Patterns from Medical Images. Comput. Intell. Neurosci. 2022, 2022, 7882924. [Google Scholar] [CrossRef] [PubMed]
- Infineon. Infineon DEMO 24 GHz RADAR Evaluation Board for DEMOSENSE2GOL; Technical Report; Infineon: Neubiberg, Germany, 2018. [Google Scholar]
- OmniPreSense. OPS241-B Short-Range Radar; Technical Report; OmniPreSense: San Jose, CA, USA, 2020. [Google Scholar]
- Texas Instruments. IWR6843 Intelligent mmWave Sensor Antenna-On-Package (AoP) Evaluation Module; Technical Report; Texas Instruments: Dallas, TX, USA, 2020. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
Module | SENSE2GOL [29] | OPS241-B [30] | IWR6843 [31] |
---|---|---|---|
Manufacture | Infineon | OmniPreSense | Texas Instrument |
Method | Doppler | FMCW | FMCW |
Range | 25 m | 30 m | 120 m |
Horizontal | 29 | 78 | 130 |
Elevation | 809 | N/A | 130 |
Frequency | 24 GHz | 24 GHz | 60 GHz |
Muddle Size | 45 × 36 mm | 53 × 59 mm | 39 × 16 mm |
Price | 160 usd | 170 usd | 120 usd |
Model | Layer | Parameters | Feature |
---|---|---|---|
AlexNet [17] | 8 Layers | 74,294,020 | Dropout, ReLU. |
VGGNet [19] | 16/19 Layers | 138,357,544 | VGG16 and VGG19, Deep Network. |
GoogLeNet [20] | 22 Layers | 6,258,500 | Inception Module, Improve network resources. |
ResNet50 [21] | 50 Layers | 25,636,712 | Bottleneck Block, Identity mapping. |
MobileNet [23] | 28 Layers | 4,253,864 | Depthwise Separable Convolution, Reduction of Parameters. |
AlexNet | MobileNet | |||
---|---|---|---|---|
Weight | Accuracy | Loss | Accuracy | Loss |
2:8 | 98.67% | 0.0434 | 97.33% | 0.0592 |
3:7 | 98.67% | 0.0200 | 99.33% | 0.0297 |
4:6 | 96.00% | 0.0774 | 98.00% | 0.0580 |
5:5 | 99.33% | 0.0277 | 98.67% | 0.0326 |
6:4 | 98.00% | 0.0448 | 99.33% | 0.0348 |
7:3 | 99.33% | 0.0148 | 97.33% | 0.0854 |
8:2 | 96.67% | 0.1332 | 97.33% | 0.0799 |
AlexNet | ||||
---|---|---|---|---|
Weight | Normal | Twilight | Dark | Rain |
2:8 | 98.67% | 93.75% | 96.25% | 99.00% |
3:7 | 98.67% | 90.00% | 93.75% | 100.0% |
4:6 | 96.00% | 92.50% | 92.50% | 98.00% |
5:5 | 99.33% | 96.25% | 91.25% | 94.00% |
6:4 | 98.00% | 96.25% | 88.75% | 94.00% |
7:3 | 99.33% | 93.75% | 95.00% | 95.00% |
8:2 | 96.67% | 87.50% | 95.00% | 87.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.-C.; Lin, Y.-Y.; Hong, W.-J.; Jan, G.-E. Heterogeneous Fusion of Camera and mmWave Radar Sensor of Optimizing Convolutional Neural Networks for Parking Meter System. Sensors 2023, 23, 4159. https://doi.org/10.3390/s23084159
Sun C-C, Lin Y-Y, Hong W-J, Jan G-E. Heterogeneous Fusion of Camera and mmWave Radar Sensor of Optimizing Convolutional Neural Networks for Parking Meter System. Sensors. 2023; 23(8):4159. https://doi.org/10.3390/s23084159
Chicago/Turabian StyleSun, Chi-Chia, Yong-Ye Lin, Wei-Jia Hong, and Gene-Eu Jan. 2023. "Heterogeneous Fusion of Camera and mmWave Radar Sensor of Optimizing Convolutional Neural Networks for Parking Meter System" Sensors 23, no. 8: 4159. https://doi.org/10.3390/s23084159
APA StyleSun, C. -C., Lin, Y. -Y., Hong, W. -J., & Jan, G. -E. (2023). Heterogeneous Fusion of Camera and mmWave Radar Sensor of Optimizing Convolutional Neural Networks for Parking Meter System. Sensors, 23(8), 4159. https://doi.org/10.3390/s23084159