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Abstract: This study aims to achieve accurate three-dimensional (3D) localization of multiple objects
in a complicated scene using passive imaging. It is challenging, as it requires accurate localization of
the objects in all three dimensions given recorded 2D images. An integral imaging system captures
the scene from multiple angles and is able to computationally produce blur-based depth information
about the objects in the scene. We propose a method to detect and segment objects in a 3D space using
integral-imaging data obtained by a video camera array. Using objects’ two-dimensional regions
detected via deep learning, we employ local computational integral imaging in detected objects’
depth tubes to estimate the depth positions of the objects along the viewing axis. This method
analyzes object-based blurring characteristics in the 3D environment efficiently. Our camera array
produces an array of multiple-view videos of the scene, called elemental videos. Thus, the proposed
3D object detection applied to the video frames allows for 3D tracking of the objects with knowledge
of their depth positions along the video. Results show successful 3D object detection with depth
localization in a real-life scene based on passive integral imaging. Such outcomes have not been
obtained in previous studies using integral imaging; mainly, the proposed method outperforms
them in its ability to detect the depth locations of objects that are in close proximity to each other,
regardless of the object size. This study may contribute when robust 3D object localization is desired
with passive imaging, but it requires a camera or lens array imaging apparatus.

Keywords: computational integral imaging; 3D objects detection; instance segmentation; 3D imaging;
depth estimation

1. Introduction

3D object detection and segmentation can be useful in various fields, such as au-
tonomous vehicles [1], robotic navigation [2], medicine [3], and surveillance [4]. In these
cases, the motivation is to enable 3D tracking of objects in the scene. The advantage of
3D with regard to traditional two-dimensional (2D) imaging techniques is its capability to
capture depth information of different objects that are in a scene. In recent studies, it was
sown that depth-based object isolation may improve prosthetic vision [5,6].

Integral-Imaging [7,8] is a 3D passive imaging technique, which can be realized using
a multi-channel camera array, where each camera records a 2D image from a slightly
different angular perspective of the scene. These images are referred to as Elemental Images
(EIs). 3D data can be digitally reconstructed from these multiple-perspective images using
Computational Integral Imaging (CII) [8–16]. While Integral-Imaging can produce rich 3D
data of the scene, it does not require the use of sources of illumination, as in time-of-flight
cameras [17] or structured light imaging [18]. Compared to conventional stereo imaging, it
does not require complex measurements as may be needed for disparity calculations [19],
and it is more robust in very noisy imaging conditions [20] compared to conventional
stereo-vision. A recent study showed that passive integral imaging provides better image
reconstruction compared to long-wave infrared (LWIR) cameras and LiDAR (time of flight)
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imaging systems using Azure Kinect RGBD cameras in degraded environments such as fog
and partial occlusion [21].

In this study, we performed 3D object localization by producing the depth locations
of the objects in a 2D image detected via deep learning, using integral-imaging data. We
exploit depth-based blurriness characteristics of such data, which can enable accurate depth
localization. Such an approach does not require the use of scene illumination as in active
imaging, while, on the other hand, it efficiently uses CII depth-based properties that may
be more robust than depth cues in a single image or in stereo imaging, as stated above.

The rest of this paper is organized as follows. The next two sub-sections present
previous related works on 3D object detection using integral imaging and the proposed
contribution. Section 2 gives an overview of the previously-developed technique of CII for
3D data formation using integral imaging and our previous approach (that we partly use
here) for locating depths regions where large objects may exist, using the CII data. Section 3
describes the proposed method for 3D of object detection. Section 4 presents results for a
realistic 3D scene, and Section 5 concludes.

1.1. Previous Related Works

Earlier methods based on integral imaging [22–24] automatically find only the object
depth location and use the elemental image (EI) as a reference image. In [22], the depth
is estimated by correlating the reconstructed images to the EI at each pixel location. This
method is computationally heavy and may have false detections in smooth regions. Another
method [23] makes a comparison between the reconstructed images and the EI and looks
for the minimum standard deviation in order to find the 3D object’s depth position. This
method would not be effective in cases that include objects at multiple depth planes and non-
uniform backgrounds. In [24], block-matching is used for finding the minimum standard
deviation inside a block instead of the whole EI. While this method can fit the case of
objects at multiple depth planes, the size of the block is chosen manually, and the results are
sensitive to this size. In [25], depth estimation is found according to the focus characteristic
by evaluating the Laplacian in the refocused image, in addition to the comparison to the EI.
It is simple but computationally heavy. These methods perform depth estimation but not
3D object detection and isolation. Ref. [26] performs a 3D object isolation process that is
based on the minimum variance between the reconstructed images and the EI. This method
may perform well in regular illumination conditions, but it would be less effective under
very noisy conditions, and similar-depth objects cannot be isolated separately.

In [27,28], a method for 3D object localization and isolation using computational
integral imaging was proposed. The main idea was to capture the 3D scene from multiple
view perspectives obtained by shifting a camera in fixed intervals and recording an image
at each step to form an array of elemental images. Then, reconstructed depth planes were
calculated using computational integral imaging (detailed in Section 2). Since an object at
a certain depth will be sharp only at the reconstructed plane of the same depth. Thus, by
calculating the average gradient magnitude of each reconstructed plane, the depth locations
of objects can be obtained according to the depths where the peak values in the average
magnitude appear. This method used a threshold to isolate the objects in the reconstructed
image gradient. However, it is difficult to obtain the appropriate threshold since it may
change for different cases due to illumination, the complexity of the scene etc. Moreover,
with a threshold alone, adjacent objects may not be isolated as separate objects. In addition,
small objects or objects located in adjacent planes of larger objects may not be detected
by the average gradient magnitude of their reconstructed plane since they have a small
amount of gradient energy relative to the larger objects in adjacent planes.

In a recent study [29], a deep learning integral imaging system was proposed that can
reconstruct a 3D object without dealing with the out-of-focus (blurred) areas that occur in
the Integral-Imaging computationally reconstructed depth planes. Targets in the scene are
first detected and segmented in the 2D elemental images using a pre-trained Mask R-CNN.
Then, the depth-plane reconstruction is performed only at the segmented object regions,
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while blurred regions are removed (have zero value). However, the depth locations of the
objects are not found automatically in this process, and prior information on them should
be obtained when performing the imaging.

1.2. The Proposed Contribution

Unlike the previous works, here we achieve passive 3D object detection by exploiting
both scene 2D content recognition via machine learning and physical blur-sharpness depth-
based properties inherent to CII. Differently from the method in [25,26], the proposed
method does not rely on a threshold parameter for object depth recognition and performs
much better with small objects and the same or similar-depth objects. Unlike the method
in [27], which calculates reconstructed depth planes only at the regions of the detected
objects using computational integral imaging for known depths of the detected objects.
Our method finds the depth locations of the detected objects automatically without prior
knowledge of the depth positions. The method first applies 2D detection and segmentation
of objects in the scene using deep learning instance segmentation and classification over a
recorded elemental image. We used, for that, a pre-trained Mask R-CNN algorithm. Depth
locations of the objects are then detected using CII blur-based analysis at each object’s
depth tube. In this approach, the object depth localization operation would likely not be
influenced by nearby objects, and it will be considerably more robust than examining the
whole reconstructed plane to localize objects, as done previously [28,30].

Furthermore, we used in this study a new integral-imaging camera-array device
developed recently by our group [31]. This camera array can simultaneously capture an
array of videos, a property that enables us to perform dynamic object tracking in a 3D space
with continuous tracking of the objects’ depths.

2. Computational Integral Imaging (CII) Analysis for Depth Data Formation

In integral imaging, 3-D object reconstruction can be performed either optically or
computationally. Computational reconstruction typically mimics optical reconstruction;
however, it has the additional flexibility of digitally manipulating the data to extract better
visual information [7]. The reconstructed depth plane of the integral imaging system at z0
depth for an array of EIs is [8,32]:

f RP(x, y, z0) =
1

KL

K−1

∑
k=0

L−1

∑
l=0

gk,l

(
x +

(
1

Mz0

)
Sxk, y +

(
1

Mz0

)
Syl

)
(1)

where gk,l is an elemental image with k and l indices, K × L are the number of EIs in
the array, and M is the magnification factor that the ratio between the distance from the
camera to the reconstructed plane and the camera’s focal distance. Sx and Sy are the
distances between the cameras in the x and y directions (x and y define the camera’s plane),
respectively, and f RP(x, y, z0) is the 2D reconstructed plane at a distance z0 from the camera.
Figure 1 presents an illustration of the optical path, which demonstrates single-camera
imaging. Figure 2 illustrates the CII process according to Equation (1). The upper part
of the figure shows an illustration of 6 EIs that present a scene from slightly different
angular perspectives, while the lower part illustrates reconstructed planes (Equation (1))
at the depths of the tree, zb (lower left, where the tree is sharp), and the person, za (lower
right, where the person is sharp). It can be seen that, at the depth of the tree, multiple
shifted images of the person (from different EIs) are summed and create blurriness in the
reconstructed frame. The same is demonstrated in the reconstructed plane at the depth of
the person. As the number of EIs increases, the appearance of multiple objects becomes
more blurry, and this may affect the ability to distinguish sharp from blurred regions [30].
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Figure 2. An illustration of the CII process (Equation (1)) and its parameters. Six EIs (upper part) are
summed according to Equation (1) onto two virtual depth planes, one at the depth of the tree, zb,
where the tree is imaged sharply (lower-left), and the other at the depth of the person, za, where the
person is imaged sharply (lower-right). Objects at other depths become blurry.

The quality of the synthesized image using computational reconstruction is better
than that of the images reconstructed optically [8]. The computational reconstruction itself
is free of diffraction and device limitations, however, each camera in the array has physical
device limitations, and misalignment between cameras may occur. These inaccuracies can
be accounted for computationally [31].

The ability of the computational integral imaging system to separate between two
adjacent depth planes is limited. This limitation is called depth resolution or longitude
resolution, and it defines the minimum step between reconstructed planes that produces a
shift of one pixel in the camera sensor [32].

Locating Depths Where Large Objects Exist in the Reconstructed Planes

As stated briefly in Section 1.1, the previous works section above, the depth locations
of objects were found by comparing the average gradient magnitude of each reconstructed
plane [27,28]. Since objects which are originally located at the reconstructed plane depth
are reconstructed properly and in focus (sharp) while other objects become blurred, the
average gradient at this depth will likely have a higher value because sharp regions have
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higher gradient magnitudes. The Average Gradient Magnitude of a Reconstructed plane
(AGMR) at depth z is:

AGMR(z) =
1

Nx Ny
∑
y

∑
x

∣∣∣∇(
f RP(x, y, z)

)∣∣∣, (2)

where Nx and Ny are the numbers of pixels along the x and y directions, respectively, and
∇ is the gradient magnitude operator. Plotting the average gradient magnitude values
against the depth locations on a graph will produce local maxima in depths that include
large focused regions, which may belong to relatively large objects at these depths.

The separation between blurred areas and the objects that appear sharp in the recon-
structed depth plane was performed by a threshold over the gradient magnitude of the
reconstructed plane at the depth found by the peak of the AGMR [28]. However, this
approach, in this form, struggles to perform well in cases of small objects or when objects
are adjacent to each other at near-depth planes. Another difficulty is the setting of the
threshold value.

3. Proposed Method for 3D Object Detection and Segmentation

An overall description of the proposed method is schematized in Figure 3. In short, a
camera array creates an array of images or videos, termed Elemental Videos (EVs), where
each image or video observes a slightly different angular perspective of the scene. At
each time instance, the array of frames of these videos constitutes the current Elemental
Images (EIs), which can also be termed Elemental Frames. Object detection using deep-
learning-based instance segmentation is applied to a central elemental image in the video,
producing regions (bounding boxes) and masks of the detected objects in the 2D image of
the 3D scene. Each of the 2D detected objects at the current video frame goes through a
local computational integral imaging at its bounding box region, forming a reconstructed
depth tube constructed of local depth planes. All of the detected local objects’ tubes go
through local AGMR computations that give the depth locations of the 2D detected objects,
producing 3D object detections. Below is a detailed description of the method.
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3.1. Capturing Elementals Videos (EVs) with a Camera Array

To capture the elemental videos, we used a new system developed by our group [31].
The imaging system consists of 21 simple small cameras arranged in the form of a matrix of
3 rows by 7 columns (Figure 4). The small cameras employed were the SQ11 mini-HD [33].
Each camera has a digital resolution of 4032× 3024 for image capture and 1280× 720 pixels
or 1920 × 1080 pixels for video capture, a frame rate of 15 or 30 frames per second, and a
viewing angle of 140◦. The camera’s focal distance, which was used for the calculation of
the magnification, as shown in Figure 1, is 10 mm. The horizontal and vertical distances
between each camera are 21.1 mm. The system is controlled by computer software and
allows both still and video photography simultaneously by all the array cameras.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19 
 

 

in which the blue car is static, and the red track is moving away from the camera (a link 
to the video is provided below the figure). 

 
Figure 4. The array imaging system with 7 × 3 mini cameras used for computational integral imaging 
[31]. 

 
Figure 5. An example of a camera array output video frame-array (elemental frames). The video 
includes a static blue toy car 30 cm away from the imaging system and a red track moving away 
from the system, starting at 20 cm from the system. The elemental videos can be seen at 
https://www.youtube.com/watch?v=LYWr04gMUCY (accessed on 20th 4 2023). 

The vertical field of view of the cameras is large, while the objects in the scene were 
small enough to fit within the small horizontal field of view imposed by the camera setup. 
The scene shown in these figures was intentionally kept simple, without a complicated 
background, for the purpose of visually demonstrating step-by-step the process of the 
proposed method. 

  

Figure 4. The array imaging system with 7 × 3 mini cameras used for computational integral
imaging [31].

Since we used for the camera array prototype, low-cost cameras and not sufficiently
accurate array construction needed for the computational integral imaging operation, we
applied a process of aligning and calibrating the cameras in both axes, horizontal and
vertical [31]. In the first stage, at which we calibrated each of the array cameras, we used
well-known camera calibration tools [34,35] to find the intrinsic and extrinsic parameters of
the cameras and to remove the lens radial distortion. For this goal, we used a chessboard
as our calibration target by knowing the exact square size of the board. Next, we found
the transformation matrix between the array output images, relative to a reference middle
camera output image by finding the matching features between each of the cameras relative
to the reference, and relative to them, estimate the 2D affine geometric transformation
between the array cameras and the center camera to compare scale, translation, rotation,
and shearing. Then, to perform alignment validation in each of the cameras, a robust and
flexible visual fiducial marker called AprilTag, which uses a 2D bar code style “tag,” was
detected [34]. The AprilTag allows a full 6 degrees of freedom localization of features from a
single image. In the last step, each elemental video shifted in a precise way according to the
physical shift between the cameras in the camera array, using the image cropping method
and a calculated digital offset. Following this procedure, the output of the calibrated camera
array is a matrix of 2D-aligned elemental images or videos, each capturing the scene from a
slightly different angular perspective. An example of a camera array output for a simple
scene of 2 toy vehicles is shown in Figure 5. This is a video scene in which the blue car is
static, and the red track is moving away from the camera (a link to the video is provided
below the figure).
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Figure 5. An example of a camera array output video frame-array (elemental frames). The video
includes a static blue toy car 30 cm away from the imaging system and a red track moving away
from the system, starting at 20 cm from the system. The elemental videos can be seen at https:
//www.youtube.com/watch?v=LYWr04gMUCY (accessed on 20 February 2023).

The vertical field of view of the cameras is large, while the objects in the scene were
small enough to fit within the small horizontal field of view imposed by the camera setup.
The scene shown in these figures was intentionally kept simple, without a complicated
background, for the purpose of visually demonstrating step-by-step the process of the
proposed method.

3.2. 2D Object Detection via Instance Segmentation

2D object detection is applied to locate objects in the scene. This process produces
bounding boxes of the detected objects and also masks that are the pixel locations of the
objects. We applied a pre-trained Mask R-CNN [36] trained with a public dataset set
(MS Coco dataset [37]) that has 81 classes for 2D object detection and segmentation. The
Mask R-CNN algorithm produces the region of interest (ROI) and the pixel mask for each
detected object. The Mask-RCNN method was chosen due to its known high accuracy in
object detection and segmentation and its ability to efficiently process images in a scene.
This makes it a suitable choice for the proposed algorithm and provides more accurate and
reliable results. However, other methods such as the YOLACT [38], SOLOv2 [39] or other
instance segmentation methods [40] can be applied as well, as initial 2D object detectors
for the depth localization process since they also generate ROIs and pixel masks for all the
detected objects. When using a pre-trained network, the possible detected objects will be
those that belong to categories that the network was trained upon. If more object categories
are required, network training should be done in accordance. Figure 6 presents an example
of 2 frames of an EV, frame 30 and frame 120, after instance segmentation by the Mask
R-CNN. In the image at the left side, the red truck is closer to the camera relative to the blue
car, while in the right image the truck is further than the car. As can be seen in Figure 6, the

https://www.youtube.com/watch?v=LYWr04gMUCY
https://www.youtube.com/watch?v=LYWr04gMUCY
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segmentation produces a bounding box for each of the detected objects and also a mask
covering the detected object’s region.
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The detected bounding box object regions are used in the next stage to reveal their
depth locations.

3.3. Finding Objects’ Depth Locations via CII Analysis in Objects’ Tubes

As explained in Section 2, The CII process produces a series of reconstructed depth
planes of the 3D scene. An object at a certain depth location will appear sharp at the
depth plane associated with its true depth and will get blurrier at other depth planes while
moving away from that plane. As stated above, in a previous study, we showed that depth
planes with a large number of sharp regions could be found based on a measure of the
average gradient (AGMR) over the whole depth plane (Equation (2)). The problem with this
is that a small object may not cause a sufficiently strong AGMR over the whole depth plane
where it is present, particularly if a larger object exists somewhere not far at a different
depth. This also means that same-depth objects cannot be distinguished, and the number
of objects that can be detected at different depths is limited as they should be far enough
from each other. Here we solve these problems by performing a local AGMR analysis only
at object tubes (instead of the entire depth plane). In other words, for each 2D detected
object, we have a tube of reconstructed regional depth planes (at the object’s bounding box,
along depth), as demonstrated in Figure 7. Figure 7b shows several local reconstructed
planes at the depth tube of the detected truck shown in Figure 7a. The sharpest local depth
plane (numbered 3) is at the depth location of the truck.
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Figure 7. (a) An elemental image (one of the images of Figure 2) with the bounding box of a detected
truck object. (b) A depth ROI tube of the truck consists of locally reconstructed local depth planes.
The sharpest local depth plane (numbered 3) is at the depth location of the truck. Values in the graph
are calculated in cations of all detected objects regardless of their proximity to each .

For each object depth tube, the average gradient magnitudes of the local depth planes
are calculated (Equation (3)). The depth at which the average gradient of the reconstructed
regional depth plane is maximum is the depth location of the object (Equation (4)). With
this approach, the calculation for each object is robust, also for small objects, and it is not
affected by nearby objects or backgrounds. Additionally, objects at the same depth will
be detected separately. Note that in a dynamic scene with moving objects or cameras, the
tubes’ locations and sizes can change according to the changing locations and sizes of
the objects along the video frames. Thus, the AGMR that was presented in Equation (2)
for representing the average gradient magnitude of a whole reconstructed depth plane is
modified here for representing the average gradient magnitude of the reconstructed plane
f RP
k only at a local object ROI (tube) of each detected object in a video frame k:

AGMROi
k (z) =

1
Nx Ny

∑
y∈ROIi

∑
x∈ROIi

∣∣∣∇(
f RP
k (x, y, z)

)∣∣∣, (3)

where z is the depth index (distance from the camera) of the reconstructed planes f RP
k in

the object’s tube (4 local planes are demonstrated in Figure 7b), Oi represents the object, i,
in the frame, and Nx and Ny are the numbers of pixels along the x and y directions of the
detected bounding box ROIi of the object Oi.

The object depth location, zOi
k , is then the depth, z, of the sharpest reconstructed plane

of object Oi in frame k. This plane has the maximum gradient magnitude across the local
depth planes in the object’s tube:

zOi
k = argmax

(
AGMROi

k (z)
)

(4)

Figure 8 presents the AGMR graph (Equation (3)) for the detected truck object. The
maximum in the graph is the depth location of the object, zOi

k (Equation (4)), associated with
the sharpest local reconstructed depth plane (numbered 3 in the bottom part of the figure).
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Figure 8. ROI tube AGMR of the detected truck object, plotted against depth, z. The values in the
graph are calculated in Equation (3). The highest peak is obtained for the most focused local recon-
struct depth plane, where the object is located (Equation (4)). Below are four locally reconstructed
depth planes, where the third is the sharpest, indicated by the highest peak.

The output of the method for a video frame includes the bounding boxes and masks
of all the detected objects, their classes and prediction accuracy, and their depth locations
according to the peaks of their own tube AGMR graphs. Figure 9 demonstrates AGMR
graphs of the tubes of the detected car and truck objects in frame 30. The peaks indicate
the objects’ depth locations. Figure 10 presents the output of the method for this frame.
Figures 11 and 12 present the same as Figures 9 and 10, but for video frame 120, at which
the truck is further than the car.
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Figure 10. The reconstructed isolated region for each detected object in frame 30. The spatial location
is according to Mask R-CNN, and the depth location is according to the peak in the object’s ROI tube
AGMR (Figure 9).

Sensors 2023, 23, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 11. The AGMR in objects’ tubes (Equation (3)) for frame 120. The car is in the same depth 
while the truck moves backward, as expected. 

 
Figure 12. Same as Figure 10, but for frame 120. Here each depth location is according to the peak 
in the object’s ROI tube AGMR in Figure 11. 

It can be seen that the static toy car was detected at the same depth in both frames, 
while the moving toy truck was detected at depth according to its current 3D location in 
each frame. In all cases, a sharp peak in the local tube AGMR indicates the object’s depth. 
In addition, it can be seen that even though there is a partial occlusion of the car, meaning 
that in several cameras, the car is partially visible (Figure 5), the algorithm managed to 
computationally reconstruct the object and produce the depth location.  

4. Experimental Results 
This section presents the results of the implementation of the proposed method for a 

real-life scenario. The method is evaluated by its ability to find the depth locations of all 
the objects detected in a 2D elemental image of the scene.  

An example of a scene with real size daily objects and with non-uniform background 
is presented here. The scene is indoor and includes a person that starts moving at about 
5m away from the camera array approaching a laptop computer located at a fixed distance 

Figure 11. The AGMR in objects’ tubes (Equation (3)) for frame 120. The car is in the same depth
while the truck moves backward, as expected.

It can be seen that the static toy car was detected at the same depth in both frames,
while the moving toy truck was detected at depth according to its current 3D location in
each frame. In all cases, a sharp peak in the local tube AGMR indicates the object’s depth.
In addition, it can be seen that even though there is a partial occlusion of the car, meaning
that in several cameras, the car is partially visible (Figure 5), the algorithm managed to
computationally reconstruct the object and produce the depth location.
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4. Experimental Results

This section presents the results of the implementation of the proposed method for a
real-life scenario. The method is evaluated by its ability to find the depth locations of all
the objects detected in a 2D elemental image of the scene.

An example of a scene with real size daily objects and with non-uniform background
is presented here. The scene is indoor and includes a person that starts moving at about
5 m away from the camera array approaching a laptop computer located at a fixed distance
of about 1.3 m from the system and then moves back. The duration of the video is 5 s (three
sample frames are shown in Figure 13).
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Figure 13. Three elemental frames from a real-life video, at which a person moves toward the camera
array approaching a laptop computer located at a fixed distance of about 1.3 m, and then moves
away. In (a–c), the moving person is at distances of about 4.7 m, 3.2 m and 1.6 m from the camera,
respectively. [https://www.youtube.com/watch?v=maBp7F_8QwE (accessed on 20 February 2023)].
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First, objects were detected by the Mask R-CNN in the frames of a single central
elemental video. In these frames, the detected categories by the Mask R-CNN were a
person, a keyboard and a TV screen (a false classification of a laptop screen). Figure 14
presents the AGMR graphs for the first of the three frames (Figure 13a), calculated at the
tubes of the three detected objects (Equation (3)), with peaks that indicate their depth
locations (Equation (4)). Figure 15 presents results for this frame, which include the
reconstructed isolated object for each detected object (that is, the local depth plane at the
peak of its graph), with its depth location and predicted category written above. According
to Figure 14, the first depth location of the person in Figure 13 is 4666 mm from the camera
array system, the keyboard is located at 1228 mm, and the computer screen that is classified
as a TV is located at 1320 mm.
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Figure 14. Tube AGMR graphs for the first video frame (Figure 13a) calculated at the three detected
objects’ tubes (Equation (3)). The horizontal axis is the distance from the camera. The three objects
detected in this frame by the Mask R-CNN are a person, a keyboard and a TV. The peaks in the
graphs indicate their assessed depth locations.
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objects for the second video frame example (Figure 13b). The same is shown in Figures 18 
and 19 for the third video frame example (Figure 13c). A video output of the method 
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Figure 16. Same as Figure 14, but for the second sample video frame (Figure 13b). Note that based 
on the locations of the peaks, the moving person here is closer to the camera, while the locations of 
the static objects are the same. 

Figure 15. The reconstructed isolated depth plane for each object in the first sampled frame
(Figure 13a). The spatial location, the class (with recognition probability) and the brown mask
are according to the Mask R-CNN, while the depth location, z, is according to the ROI tube AGMR
peak (Figure 14).

Figures 16 and 17 present the tube AGMR graphs and the corresponding 3D de-
tected objects for the second video frame example (Figure 13b). The same is shown
in Figures 18 and 19 for the third video frame example (Figure 13c). A video output of
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the method (AGMR graph and the object detection) for the moving person can be seen at
https://www.youtube.com/watch?v=maBp7F_8QwE (accessed on 20 February 2023).
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Figure 19. Same as Figure 15, but for the third sampled frame (Figure 13c). Here the detected objects’
depth locations are according to Figure 19. Note that the locations found for the static objects in this
frame are about 5 cm different from their correct depths found in the previous frames.

From the results obtained (Figures 14–19), the algorithm detects the movement of the
person toward the computer, and for each frame, the depth locations of all the objects are
obtained. In addition, even though some of the category predictions obtained by the Mask
R-CNN are false (i.e., a computer screen classified as a TV), the 3D object detections, which
are the goal of this study, are performed well.

Comparison with the Previous Method

As explained in Section 1.1, in a previous study, we applied an AGMR to the whole
reconstructed plane, i.e., not at detected object tubes and without the use of a preliminary
2D object detection. Thus, a single AGMR graph is produced for each recorded image array
(unlike multiple graphs according to the number of detected objects). Therefore, instead of
a single pick at the depth of the object, the single AGMR graph may have several picks at
several different objects’ depths. Objects were extracted based only on the blur-sharpness
properties in the reconstructed depth planes. A peak in the AGMR indicates a reconstructed
plane of depth with significant sharp regions, which means an existing object at that depth.
Examples of applying this method to two of the recorded video frames (Figure 13b,c) are
shown in Figures 20 and 21. The difference between the cases is the depth distance between
the person and the laptop objects (about 90 and 22 cm, respectively). We can see that in
both cases, the method in [28] produced only one peak in the AGMR graph. This means
that only a single object was detected in the frame. The reconstructed planes at that peak
depths are shown in Figures 20b and 21b. In both cases, the sharp person is the detected
object, while the laptop could not create its own peak. In Figure 21b, the laptop is only
mildly blurred as its depth location is close to the person. Compared to these results, the
proposed method in Figures 16 and 18 clearly found the depth locations of all the detected
objects. In this case, each object produces its own AGMR graph, and the method is not
sensitive to the object size or to the number of objects in the scene.
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(a) (b) 

Figure 20. Applying the method in [28] to the video frame example in Figure 13b. (a) An AGMR
graph at which each point is the average gradient magnitude of the whole reconstructed plane at each
distance from the camera (Equation (1)). The peak indicates the depth location of the larger (person)
object, while other objects, such as the laptop, are not detected (compared to Figure 16, where depths
were found for all the objects detected by the Mask R-CNN). (b) The reconstructed plane at the peak
of the AGMR shows a sharp image of a person.
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and segmentation methods using deep learning, such as Mask R-CNN, have very high 
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Future work will include depth-based tracking of objects in a 3D space and compu-
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Figure 21. Same as Figure 19 but for Figure 13c. Here the person is very close to the laptop (about
22 cm), and the method in [28] obtained a single sharp peak that represents all objects around the
same distance. At the same time, the proposed method found the depth locations of all detected
objects regardless of their proximity to each other, as can be seen in Figure 18.
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5. Conclusions

In this paper, we proposed a novel method for detecting objects in a 3D space via
integral imaging, where depth locations of the detected objects in the scene are found with
high accuracy and without using active imaging.

We used a newly developed camera array of 7 × 3 mini cameras that simultaneously
record an array of images or videos, where each image or video observes a slightly different
angular perspective of the scene. We applied 2D detection and segmentation of objects
in the scene using a pre-trained Mask R-CNN. Depth locations of the detected objects are
found using CII blur-based analysis at the detected objects’ depth tubes.

In this approach, the object depth localization operation would likely not be influenced
by nearby objects, and it does not require sufficiently large objects and a sufficient depth
distance between objects; thus, it is considerably more robust than examining the whole
reconstructed plane to localize objects as done previously [28,30]. These characteristics,
together with the use of a camera array, advance applicability in real-life scenes, as shown
in the results.

A disadvantage of the method is that its first algorithmic stage relies on the 2D object
detection capabilities of the instance segmentation. However, recent 2D object detection
and segmentation methods using deep learning, such as Mask R-CNN, have very high
accuracy performances, and are widely studied [40,41].

Future work will include depth-based tracking of objects in a 3D space and computa-
tional load improvement for real-time implementation. Furthermore, it is planned to create
an integral-imaging image array database and combine machine learning-based 3D object
detection methodology with the accurate object depth cues that our approach can produce
for examining the accurate segmentation of objects in 3D space.
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