Characterization of Inclination Analysis for Predicting Onset of Heart Failure from Primary Care Electronic Medical Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Inclination Analysis
2.2.1. General Principles
2.2.2. Application of Inclination Analysis to Clinical Data
- If I > 1 + δ (condition Pc− > P−), the predicted final state was collapse;
- If I < 1 − δ (condition Pc− < P−), the predicted final state was survival;
- If 1 − δ ≤ I ≤ 1 + δ (condition Pc−~P−), no clear inclination was defined. In this case, to predict the final state, the percentage of − and + states in the first and second half of the series was computed, and the predicted final state of the system was set as collapse if the percentage of − in the second half of the series was higher than that in the first one, and it was set as survival otherwise.
2.3. Classification Using Machine Learning
3. Results
3.1. Characterization of the Study Sample
3.2. Characterization of Inclination Analysis
3.3. Classification Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure. Circulation 2013, 128, e240–e327. [Google Scholar] [CrossRef] [PubMed]
- Dahlström, U. Frequent Non-Cardiac Comorbidities in Patients with Chronic Heart Failure. Eur. J. Heart Fail. 2005, 7, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Goonesekera, S.; Rudnicka-Noulin, D.; Isherwood, A. The Burden of Heart Failure in North America and Western Europe. Future Cardiol. 2021, 17, 637–646. [Google Scholar] [CrossRef]
- Angermann, C.E. Comorbidities in Heart Failure: A Key Issue. Eur. J. Heart Fail. Suppl. 2009, 8, i5–i10. [Google Scholar] [CrossRef]
- Olsen, C.R.; Mentz, R.J.; Anstrom, K.J.; Page, D.; Patel, P.A. Clinical Applications of Machine Learning in the Diagnosis, Classification, and Prediction of Heart Failure. Am. Heart J. 2020, 229, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C.; Tu, J.V.; Ho, J.E.; Levy, D.; Lee, D.S. Using Methods from the Data Mining and Machine-Learning Literature for Disease Classification and Prediction: A Case Study Examining Classification of Heart Failure Subtypes. J. Clin. Epidemiol. 2013, 66, 398–407. [Google Scholar] [CrossRef]
- Desai, R.J.; Wang, S.V.; Vaduganathan, M.; Evers, T.; Schneeweiss, S. Comparison of Machine Learning Methods with Traditional Models for Use of Administrative Claims with Electronic Medical Records to Predict Heart Failure Outcomes. JAMA Netw. Open 2020, 3, e1918962. [Google Scholar] [CrossRef]
- Rasmy, L.; Wu, Y.; Wang, N.; Geng, X.; Zheng, W.J.; Wang, F.; Wu, H.; Xu, H.; Zhi, D. A Study of Generalizability of Recurrent Neural Network-Based Predictive Models for Heart Failure Onset Risk Using a Large and Heterogeneous EHR Data Set. J. Biomed. Inform. 2018, 84, 11–16. [Google Scholar] [CrossRef]
- Chen, R.; Stewart, W.F.; Sun, J.; Ng, K.; Yan, X. Recurrent Neural Networks for Early Detection of Heart Failure from Longitudinal Electronic Health Record Data. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005114. [Google Scholar] [CrossRef]
- Ng, K.; Steinhubl, S.R.; de Filippi, C.; Dey, S.; Stewart, W.F. Early Detection of Heart Failure Using Electronic Health Records. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 649–658. [Google Scholar] [CrossRef]
- Wang, Y.; Ng, K.; Byrd, R.J.; Hu, J.; Ebadollahi, S.; Daar, Z.; de Filippi, C.; Steinhubl, S.R.; Stewart, W.F. Early Detection of Heart Failure with Varying Prediction Windows by Structured and Unstructured Data in Electronic Health Records. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar] [CrossRef]
- Kryazhimskii, A.V.; Beck, M.B. Identifying the Inclination of a System Towards a Terminal State from Current Observations. In Environmental Foresight and Models; Beck, M.B., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2002; Volume 22, pp. 425–451. [Google Scholar]
- Hosseinizadeh, P.; Guergachi, A.; Magness, V. Predicting System Collapse: Two Theoretical Models. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009. [Google Scholar] [CrossRef]
- Canadian Primary Care Sentinel Surveillance Network (CPCSSN). Available online: https://cpcssn.ca/ (accessed on 8 February 2023).
- Understanding Blood Pressure Readings. Available online: https://www.heart.org/en/health-topics/high-blood-pressure/understanding-blood-pressure-readings (accessed on 8 February 2023).
- Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can. J. Diabetes 2018, 42, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Tests and Procedures—Tests and Procedures, Mayo Clinic. Available online: https://www.mayoclinic.org/tests-procedures (accessed on 8 February 2023).
- Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.F.; Benjamin, E.J.; Larson, M.G.; Kannel, W.B.; Vasan, R.S. Obesity and the Risk of Heart Failure. N. Engl. J. Med. 2002, 347, 305–313. [Google Scholar] [CrossRef]
- Health Fact Sheets. Overweight and Obese Adults, 2018, Statistics Canada. Available online: https://www150.statcan.gc.ca/n1/pub/82-625-x/2019001/article/00005-eng.htm (accessed on 8 February 2023).
- Garies, S.; Hao, S.; McBrien, K.; Williamson, T.; Peng, M.; Khan, N.A.; Padwal, R.S.; Quan, H.; Leung, A.A. Prevalence of Hypertension, Treatment, and Blood Pressure Targets in Canada Associated With the 2017 American College of Cardiology and American Heart Association Blood Pressure Guidelines. JAMA Netw. Open 2019, 2, e190406. [Google Scholar] [CrossRef] [PubMed]
- Health Reports. Blood Pressure and Hypertension, Statistics Canada. Available online: https://www150.statcan.gc.ca/n1/pub/82-003-x/2019002/article/00002-eng.htm (accessed on 8 February 2023).
- eBlanc, A.G.; Gao, Y.J.; McRae, L.; Pelletier, C. At-a-Glance—Twenty Years of Diabetes Surveillance Using the Canadian Chronic Disease Surveillance System. Health Promot. Chronic Dis. Prev. Can. 2019, 39, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Oh, G.C.; Cho, H.-J. Blood Pressure and Heart Failure. Clin. Hypertens. 2020, 26, 1. [Google Scholar] [CrossRef]
- Messerli, F.H.; Rimoldi, S.F.; Bangalore, S. The Transition from Hypertension to Heart Failure. JACC Heart Fail. 2017, 5, 543–551. [Google Scholar] [CrossRef]
- Tocci, G.; Sciarretta, S.; Volpe, M. Development of Heart Failure in Recent Hypertension Trials. J. Hypertens. 2008, 26, 1477–1486. [Google Scholar] [CrossRef]
- Lee, M.M.Y.; Sattar, N.; McMurray, J.J.V.; Packard, C.J. Statins in the Prevention and Treatment of Heart Failure: A Review of the Evidence. Curr. Atheroscler. Rep. 2019, 21, 41. [Google Scholar] [CrossRef]
- Savarese, G.; Stolfo, D.; Sinagra, G.; Lund, L.H. Heart Failure with Mid-Range or Mildly Reduced Ejection Fraction. Nat. Rev. Cardiol. 2021, 19, 100–116. [Google Scholar] [CrossRef]
- Shapley, L.S. A Value for n-Person Games. Contributions to the Theory of Games (AM-28); Princeton University Press: Princeton, NJ, USA, 1953; Volume II, pp. 307–318. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Muselli, M.; Ferrari, E. Coupling Logical Analysis of Data and Shadow Clustering for Partially Defined Positive Boolean Function Reconstruction. IEEE Trans. Knowl. Data Eng. 2011, 23, 37–50. [Google Scholar] [CrossRef]
- Lenatti, M.; Moreno-Sánchez, P.A.; Polo, E.M.; Mollura, M.; Barbieri, R.; Paglialonga, A. Evaluation of Machine Learning Algorithms and Explainability Techniques to Detect Hearing Loss from a Speech-in-Noise Screening Test. Am. J. Audiol. 2022, 31, 961–979. [Google Scholar] [CrossRef] [PubMed]
- Carlevaro, A.; Lenatti, M.; Paglialonga, A.; Mongelli, M. Counterfactual Building and Evaluation via eXplainable Support Vector Data Description. IEEE Access 2022, 10, 60849–60861. [Google Scholar] [CrossRef]
- Lenatti, M.; Carlevaro, A.; Keshavjee, K.; Guergachi, A.; Paglialonga, A.; Mongelli, M. Characterization of Type 2 Diabetes Using Counterfactuals and Explainable AI. Stud. Health Technol. Inform. 2022, 294, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Lenatti, M.; Carlevaro, A.; Guergachi, A.; Keshavjee, K.; Mongelli, M.; Paglialonga, A. A Novel Method to Derive Personalized Minimum Viable Recommendations for Type 2 Diabetes Prevention Based on Counterfactual Explanations. PLoS ONE 2022, 17, e0272825. [Google Scholar] [CrossRef] [PubMed]
- Carlevaro, A.; Lenatti, M.; Paglialonga, A.; Mongelli, M. Multi-Class Counterfactual Explanations using Support Vector Data Description. Inst. Electr. Electron. Eng. IEEE 2023. [Google Scholar] [CrossRef]
# | m | Δi Definition | Wi Definition |
---|---|---|---|
0 | 3 | difference | 1 |
1 | 3 | integral-ratio | 1 |
2 | 3 | difference | 1 or 2 (norm thr) |
3 | 3 | slope | 1 or 2 (norm thr) |
4 | 3 | slope | Range 1–2 (min/max) |
5 | 3 | +/−1 | Range 1–2 (min/max) |
6 | 4 | +/−1 | Range 1–2 (min/max) |
7 | 3 | +/−1 | Range 1–2 (low/high thr) |
Biomarker | Unit of Measure | Low Thr | Normality Thr | High Thr | Min | Max |
---|---|---|---|---|---|---|
BMI | Kg/m2 | 15 | 25 | 35 | 10 | 60 |
dBP | mmHg | 60 | 80 | 100 | 20 | 192 |
sBP | mmHg | 70 | 120 | 160 | 50 | 266 |
Fasting Glucose | mmol/L | 3.2 | 5.6 | 9 | 1.3 | 23 |
HbA1c | % | 3.3 | 5.7 | 8 | 0.05 | 18.5 |
HDL | mmol/L | 1 | 1.5 | 2 | 0.6 | 3 |
LDL | mmol/L | 1.5 | 3.4 | 5.2 | 0.7 | 8 |
Total cholesterol | mmol/L | 4.2 | 5.2 | 6.2 | 2 | 13 |
Triglycerides | mmol/L | 0.5 | 1.7 | 3.5 | 0.1 | 20 |
HF | No HF | ||||||||
---|---|---|---|---|---|---|---|---|---|
Biomarker | Unit of Measure | Mean | SD | Min | Max | Mean | SD | Min | Max |
BMI * | Kg/m2 | 32.5 | 6.64 | 16.8 | 57.9 | 30.2 | 6.54 | 17.2 | 56.5 |
dBP * | mmHg | 73.3 | 6.89 | 56.9 | 92.5 | 75.7 | 7.35 | 57.6 | 105 |
sBP * | mmHg | 132.8 | 11.35 | 102.9 | 166.7 | 129.5 | 10.68 | 91.0 | 161.8 |
Fasting Glucose * | mmol/L | 7.6 | 1.82 | 4.5 | 19.5 | 6.7 | 1.47 | 4.0 | 13.0 |
HbA1c * | % | 7.1 | 1.16 | 5.3 | 12.7 | 6.6 | 0.99 | 3.8 | 11.6 |
HDL * | mmol/L | 1.2 | 0.32 | 0.7 | 2.3 | 1.3 | 0.34 | 0.7 | 2.7 |
LDL * | mmol/L | 2.2 | 0.68 | 0.9 | 5.0 | 2.5 | 0.75 | 0.9 | 4.4 |
Total cholesterol * | mmol/L | 4.2 | 0.84 | 2.5 | 8.0 | 4.5 | 0.91 | 2.6 | 7.2 |
Triglycerides | mmol/L | 1.7 | 0.78 | 0.5 | 6.4 | 1.6 | 0.74 | 0.5 | 4.4 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
Accuracy | 0.56 | 0.56 | 0.73 | 0.71 | 0.63 | 0.85 | 0.58 | 0.89 |
Sensitivity | 0.62 | 0.61 | 0.70 | 0.66 | 0.57 | 0.85 | 0.56 | 0.89 |
Specificity | 0.45 | 0.53 | 0.76 | 0.72 | 0.64 | 0.89 | 0.60 | 0.90 |
PPV | 0.53 | 0.56 | 0.65 | 0.64 | 0.60 | 0.78 | 0.57 | 0.83 |
HF | No HF | |
---|---|---|
BMI * | 0.79 | 0.71 |
dBP | 0.37 | 0.44 |
sBP * | 0.86 | 0.78 |
Fasting Glucose * | 0.82 | 0.69 |
HbA1c * | 0.94 | 0.82 |
HDL * | 0.81 | 0.69 |
LDL * | 0.12 | 0.20 |
Total cholesterol * | 0.12 | 0.23 |
Triglycerides | 0.37 | 0.37 |
Predicted States Mean (s.d.) | Average Values Mean (s.d.) | |
---|---|---|
Accuracy | 0.58 (0.028) | 0.57 (0.036) |
Recall * | 0.69 (0.058) | 0.53 (0.11) |
Specificity * | 0.47 (0.068) | 0.61 (0.115) |
PPV | 0.57 (0.038) | 0.59 (0.055) |
NPV * | 0.60 (0.046) | 0.55 (0.054) |
AUC | 0.58 (0.028) | 0.57 (0.034) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guida, F.; Lenatti, M.; Keshavjee, K.; Khatami, A.; Guergachi, A.; Paglialonga, A. Characterization of Inclination Analysis for Predicting Onset of Heart Failure from Primary Care Electronic Medical Records. Sensors 2023, 23, 4228. https://doi.org/10.3390/s23094228
Guida F, Lenatti M, Keshavjee K, Khatami A, Guergachi A, Paglialonga A. Characterization of Inclination Analysis for Predicting Onset of Heart Failure from Primary Care Electronic Medical Records. Sensors. 2023; 23(9):4228. https://doi.org/10.3390/s23094228
Chicago/Turabian StyleGuida, Federica, Marta Lenatti, Karim Keshavjee, Alireza Khatami, Aziz Guergachi, and Alessia Paglialonga. 2023. "Characterization of Inclination Analysis for Predicting Onset of Heart Failure from Primary Care Electronic Medical Records" Sensors 23, no. 9: 4228. https://doi.org/10.3390/s23094228
APA StyleGuida, F., Lenatti, M., Keshavjee, K., Khatami, A., Guergachi, A., & Paglialonga, A. (2023). Characterization of Inclination Analysis for Predicting Onset of Heart Failure from Primary Care Electronic Medical Records. Sensors, 23(9), 4228. https://doi.org/10.3390/s23094228