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Abstract: Transforming the task of information extraction into a machine reading comprehension
(MRC) framework has shown promising results. The MRC model takes the context and query as
the inputs to the encoder, and the decoder extracts one or more text spans as answers (entities
and relationships) from the text. Existing approaches typically use multi-layer encoders, such
as Transformers, to generate hidden features of the source sequence. However, increasing the
number of encoder layers can lead to the granularity of the representation becoming coarser and
the hidden features of different words becoming more similar, potentially leading to the model’s
misjudgment. To address this issue, a new method called the multi-granularity attention multi-scale
self-learning network (MAML-NET) is proposed, which enhances the model’s understanding ability
by utilizing different granularity representations of the source sequence. Additionally, MAML-NET
can independently learn task-related information from both global and local dimensions based
on the learned multi-granularity features through the proposed multi-scale self-learning attention
mechanism. The experimental results on two information extraction tasks, named entity recognition
and entity relationship extraction, demonstrated that the method was superior to the method based
on machine reading comprehension and achieved the best performance on the five benchmark tests.

Keywords: nested named entity identification; entity relationship extraction; machine reading
comprehension; multi-grained attention mechanism; multi-scale self-learning mechanism

1. Introduction

The information extraction task is a critical component of natural language process-
ing, aimed at extracting structured knowledge from unstructured text [1–5]. Recently,
pre-trained language models (PLMs) [6–14] have led to significant advancements in two
classic information extraction tasks: named entity recognition (NER) and relation extraction
(RE). In their work, Li et al. [15,16] described these tasks as requiring an understanding of
context information and the ability to answer questions (queries). First, the corresponding
queries are constructed based on entity or relationship types. Next, queries and context
are connected and representations are learned using PLMs. Finally, the labels of each
token are predicted, resulting in good performance on NER and RE tasks. Figure 1 illus-
trates the process of the model based on machine reading comprehension in identifying
named entities.

Although joint encoding of query and context can capture inter-dependencies across
the entire sequence, in a deep learning setting, the hidden features of words become
increasingly similar with the increase of the encoder layers. This means that the hidden
features no longer represent individual word information and become a fuzzy concept [17],
as illustrated in Figure 2. Additionally, generating queries through crowdsourcing incurs
significant human and time costs and has poor portability. Therefore, many researchers
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have transformed query generation into a template-filling problem. Examples of generating
queries for different entity types are shown in Table 1, and examples of generating queries
for different relationship types and entity types are shown in Table 2. When the query is
long, connecting the query and context will cause the proportion of the context to relatively
decrease. Therefore, as the query length increases, the information of individual words in
the context will be diluted by the information of other words, resulting in the loss of some
original information.

Find all geographical entities in the context.

Some people said that they were discriminated against in Texas. Texas spokesman 
David denied this.

NER Model

Find all organization entities in the context.

Some people said that they were discriminated against in Texas. Texas spokesman 
David denied this.

Figure 1. The process of recognizing entities by the named entity recognition model based on machine
reading comprehension framework.

Input Word

geo political

Afghanistan

US

British

Iraq

Context：Canberra sent troops to fight in the war on terror in Afghanistan and
alongside US and British forces in Iraq .

Query： find all geo political entities in the context that have a physical
relationship with person entity troops.

Answer: Afghanistan

Coarse-Grained

A region

A country

A country

A country

A country

Fine-Grained

geo political

Afghanistan

US

British

Iraq

Afghanistan Afghanistan

US US

British British

Iraq Iraq

A region

A country

A country

A country

A country

…

…
…
…

…
… …

…
…

…
…

…

US

Figure 2. The information expressed by the hidden features of words has changed from fine-grained
representation to coarse-grained representation.

Table 1. Examples of generating queries based on program templates for different entity types.
The blue font is the entity type to be filled.

Entity Type Query

Facility (FAC) find all facility entities in the context.
Geopolitical (GPE) find all geopolitical entities in the context.
Location (LOC) find all location entities in the context.
Organization (ORG) find all organization entities in the context.
Person (PER) find all person entities in the context.
Vehicle (VEH) find all vehicle entities in the context.
Weapon (WEA) find all weapon entities in the context.
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Table 2. Examples of generating question queries based on program templates for different relation-
ship types, where ehead represents the header entity obtained through the entity extraction phase.
The header entity is not necessarily a real subject.

Relation Type Head Type Tail Type Query

ART GPE FAC
find all facility entities in the context that
have an artifact relationship with geopolitical
entity ehead.

ART GPE WEH
find all vehicle entities in the context that
have an artifact relationship with geopolitical
entity ehead.

PHYS FAC FAC
find all facility entities in the context that
have a physical relationship with facility
entity ehead.

PART–WHOLE GPE GPE
find all geopolitical entities in the context that
have a part–whole relationship with geopolitical
entity ehead.

PART–WHOLE GPE LOC
find all location entities in the context that
have a part–whole relationship with geopolitical
entity ehead.

To address the issues discussed earlier, we propose a multi-granularity attention
network. Our approach involves first independently encoding the query and context
using dual encoders. Next, we employed a bidirectional attention network to capture
word-level interactions between the query words and context words from two dimensions.
We then used long-term-memory-gated attention to filter the original text information,
preserving the source text representation of words relevant to the task. Even if the same
phenomenon occurs due to the excessive number of encoding layers and the loss of original
text information due to the query length, our model can still learn fine-grained features of
individual words and retain the original text representation through long-term-memory-
gated attention, thus enhancing its ability to read and understand text information. Finally,
we combined the aforementioned components with the bidirectional attention vectors to
construct a multi-granularity attention network. To the best of our knowledge, there is
currently no work that uses dual encoders to solve the NER and RE tasks.

In order to better help the model understand text and extract information for down-
stream tasks, a representation method that can describe and highlight the characteristics of
a sequence can be relatively more effective. To this end, inspired by the human reader’s
reasoning process of revisiting specific paragraphs or questions after single-round com-
prehension, we propose a self-learning mechanism that, with the guidance of the learning
mechanism, focuses on different parts of the document each time from the perspectives of
overall meaning and finer details and effectively collects evidence from the entire article to
match the answer. As shown in Figure 3, MAML-NET can extract relationship triplets (its,
ART, parks), (firm, GEN–AFF, New York), and (empire, PART–WHOLE, its) through the
learning mechanism, by simulating the reasoning process of human readers. Specifically, we
established a fusion module for interactive features and deep contextual semantic features,
combining multi-head self-attention with depthwise separable convolution. At the same
time, from both global and local perspectives, we used interactive information and deep
contextual information to dynamically refine feature representations that match themselves.
For global self-learning, we used self-attention to capture it; for local self-learning, we used
deep separable multi-scale convolution, which is computed in parallel with self-attention.
Overall, our proposed self-learning mechanism can effectively highlight key features in the
text and help the model better understand and extract information for downstream tasks.
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ART

PART-WHOLE

GEN-AFF

The Times said Vivendi Universal was negotiating to sell its

flagship theme parks to New York investment firm Blackstone Group

as a the first step toward dismantling its entertainment empire.

Figure 3. Generation of a candidate relationship triple. Under the action of the multi-scale self-
learning mechanism, MAML-NET can extract not only the triples connected by yellow lines, but also
the triples connected by two green lines. Without the effect of the multi-scale self-learning mechanism,
only triples of yellow lines can be extracted.

In summary, our contribution is as follows:
• A new information extraction method based on a reading comprehension model is

proposed, which explores and utilizes the multi-granularity representation of the source
sequence, encourages the model to fully utilize the interaction information and original
information between the text and query, and enhances the expression ability of reading
comprehension, thereby improving the information extraction capability.

• In order to dynamically collect evidence for candidate answers from multi-granularity
text representations, a multi-scale self-learning network is proposed to refine semantic
representations from global and local perspectives.

2. Related Work
2.1. Entity and Relation Extraction

Entity extraction, also known as named entity recognition, was initially approached
using rule-based methods, which were expensive to build [18]. In recent years, deep
learning has gained attention in various fields, and various neural network models have
been proposed for this task. For example, Straková et al. [19] treated the nested NER as
a sequence-to-sequence problem. Luan et al. [20] proposed a general information extrac-
tion method using dynamically constructed span graphs that share span representations.
Li et al. [15] transformed the NER task into a machine reading comprehension task, where
each entity type’s feature is a natural language query and entities are extracted by an-
swering these queries (extracting two different categories of overlapping entities requires
answering two separate questions).

Traditional entity relation extraction systems use a pipeline approach [21]. First, an en-
tity extraction model identifies entities in the text. Then, a relation extraction model predicts
the relations between the identified entities. Although this separate learning method makes
processing the two sub-tasks more flexible, it ignores their inherent interaction and is
severely affected by error propagation. To mitigate this problem, later work proposed
joint learning methods. Early joint learning methods were based on crowdsourcing to
build features, which was expensive. In subsequent research, several neural-network-based
methods were proposed.

For example, Miwa et al. [22] proposed an end-to-end method that uses a tree-shaped
LSTM model with parameter sharing to extract entities and relations. To better model the
semantic relationship between entities, Katiyar et al. [23] improved upon this method using
an attention mechanism to address the error propagation problem caused by the use of
dependency trees. Zhang et al. [24] developed an end-to-end relation extraction model
based on global optimization and used new LSTM features to better represent context. They
also proposed a new method to integrate syntax information to facilitate global information
learning. Sun et al. [25] proposed a graph convolutional network that operates on the
entity relation bipartite graph. By introducing binary relation classification tasks, the bipar-
tite graph structure of entity relations can be more interpretable and effectively utilized.
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At the same time, they pointed out that existing joint learning methods can predict entity
spans correctly, but perform poorly when predicting entity types. Fu et al. [26] proposed a
GraphRel end-to-end relation extraction model that uses graph convolutional networks
(GCNs) to jointly learn named entities and entity relations. Zhang et al. [24] proposed a soft
pruning model that can automatically learn how to select relevant substructures to focus
on for relation extraction tasks. Shen et al. [27] proposed a triggered memory flow frame-
work to enhance the interactive capabilities of entity recognition and relation extraction.
Li et al. [16] viewed the relation extraction task as a multi-turn QA task. Zhao et al. [28]
addressed the issue of a single query not being able to fully describe the meaning of entities
and relations due to semantic diversity in multi-turn QA tasks. They designed a model
that introduces diversity QA mechanisms and two answer selection strategies to integrate
different answers.

2.2. NLP Tasks Based on the MRC Approach

Recently, there has been a trend of converting non-reading comprehension tasks
in NLP into machine reading comprehension tasks. For example, Levy et al. [29] first
converted the relation extraction task into the form of reading comprehension, which could
adapt to zero-shot scenario problems. Mccann et al. [30] proposed a universal framework
based on MRC, formalizing ten tasks such as question answering, sentiment analysis,
and machine translation into question-answering tasks. Li et al. [15] proposed a unified
MRC framework and applied it to the named entity recognition task. Yang et al. [31]
proposed a label-aware enhanced language representation based on MRC and applied it to
the named entity recognition task and time detection task. Du et al. [32] converted the event
extraction task into a question task. Recent work has proposed a method of converting
entity and relation extraction tasks into question-answering tasks. Although inspired by
Li et al. [16], our work has the following characteristics: firstly, unlike the former using
joint encoding to encode the query and context, MAML-NET independently encodes
them through two pre-trained language model encoders. Secondly, MAML-NET uses
bidirectional attention to establish the word-level interaction between the query and context
and uses the original long-term memory gate attention to retain the important original
information. Finally, through the original multi-scale self-learning network, it further
understands deeper semantic information between the query and context. With the help of
these features, MAML-NET’s performance was significantly improved.

3. Methodology
3.1. Overview

The multi-granularity attention and multi-scale self-learning network, as shown in
Figure 4, consists of three main parts: (1) transforming the dataset of a specific task into a
reading-comprehension-style dataset; (2) independently encoding the query and context
using a Transformer-based encoder and establishing a multi-granularity representation of
the source sequence; (3) passing the multi-granularity feature representation of the source
sequence through the multi-scale self-learning network to further enhance the potential for
reading comprehension at both the global and local levels.
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[CLS] Q1 - Qm [SEP]

BERT

[CLS] C1 - Cn [SEP]

Query Context

BERT

m+2

n+2

Alignment Matrix

GA

Gated Attention

Query2Context Context2Query Gated self-attention

Pointwise Conv Attention

Multi-scale Self-Matching Attention

MLP & SoftMaxSubject Extractor

Relation & Object Extractor

Figure 4. Overview of multi-granularity attention multi−scale self−learning network.

3.2. Formalization of Tasks

Given a context sequence xi = (w1, w2, ..., wn) from the training set D, our task was to
predict the relation between entities based on the information in each xi, where each entity
is assigned a label ye ∈ Ye and each relation is assigned a label yr ∈ Yr. Ye is a set of entity
types (e.g., ORG, GPE, etc.), and Yr is a set of relation types (e.g., ORG–AFF, PER–SOC,
etc.). For the RE task, there may be multiple relations for a subject/object pair or the same
entity may be shared between the subject and object, and we constructed a relation–object
query for each subject.

3.2.1. Named Entity Recognition

Given an input sequence xi, identify all candidate spans Ei = (wi, wj) ∈ xi, and assign
a labelye ∈ Ye to each candidate span. Our goal was to maximize the likelihood of the
training set D:

|D|

∏
i=1

∏
(wi,wj)∈Ei

p
((

wi, wj
)
| xi, q

)

=
|D|

∏
i=1

 ∏
wi∈Ei

pstart (wi | xi, qs) ∏
wj∈Ei

pend
(
wj | xi, qs

) (1)

where pstart(wi|xi, qs) and pend(wj|xi, qs) represent the probabilities of the start and end
span positions for any ye ∈ Ye category corresponding to xi.
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3.2.2. Entity Relation Extraction

The goal was to maximize the data likelihood of the training set D for a given input
sequence xi and a set of potential relationship triplets Ti = (s, r, o):

|D|

∏
i=1

∏
(s,r,o)∈Ti

p((s, r, o) | xi, q)

=
|D|

∏
i=1

∏
s∈Ti

ps(s | xi, qs) ∏
(r,o)∈Ti |s

po((r, o) | s, xi, qo)


=
|D|

∏
i=1

∏
s∈Ti

ps(s | xi, qs) ∏
o∈Ti ||s,r)

po(o | s, r, xi, qo)


(2)

where s, r, o, qs, and qo, respectively, represent the subject, relation, object, and queries
constructed based on the types of subjects and objects. Ti|s denotes the set of relation
triplets guided by subjects. Ti|(s, r) denotes the object set guided by (subject, object) pairs.
Firstly, a subject classifier ps(s|xi, qs) is learned, which is used to identify all head entities
in xi. It is important to note that this head entity may not necessarily have a corresponding
object and relation, i.e., the head entity may not be the subject. For each relation r, an object
classifier po(o|(s, r, xi, qo)) is learned, which is used to identify the object corresponding
to a specific relation for a given subject. Thus, the relation extraction task is formalized
as a classification problem of identifying the subject and the object corresponding to a
specific relation.

3.3. Input Layer

Given a query and context, we used Xq ∈ Rm and Xc ∈ Rn to represent the tokenized
input of the query and context, respectively. They are independently mapped to a standard
pre-trained bidirectional Transformer [33] for learning, resulting in the preliminary feature
representations of the query and context: Oq

BERT ∈ R(m+2)×d and Oc
BERT ∈ R(n+2)×d.

The specific operations are shown in Formulas (3) and (4).

Oq
BERT = BERTq(Xq) (3)

Oc
BERT = BERTc(Xc) (4)

where m and n represent the lengths of the query and context sequences, respectively, and d
represents the dimensionality of the BERT output.

3.4. Multi-Scale Attention
3.4.1. Interactive Attention

To connect and integrate information from the context and query words, we em-
ployed a bidirectional attention flow network (BiDAF) [34]. This mechanism was designed
to capture word-level interactions, where the interaction attention estimates the impact
relationship between each query and context word.

The attention is calculated in two dimensions, from context to query and from query
to context. Both attentions originate from the shared correlation matrix U ∈ R(n+2)×(m+2),
which is between the context Oc

BERT and query Oq
BERT . Uij represents the correlation

between the i-th context word and the j-th query word. The correlation matrix is calculated
as follows:

Uij = Wij[Oc
BERTi

; Oq
BERTj

; Oc
BERTi

·Oq
BERTj

] (5)

where Wij ∈ R3d is a trainable weight matrix, · represents matrix multiplication, and ; rep-
resents matrix concatenation. We used U to compute attention vectors on both dimensions.
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Query-to-context attention: The query-to-context (C2Q) attention mechanism mea-
sures the relevance between each context word and each query word, which is crucial for
identifying entities. This attention mechanism simulates the process in which humans
search for answers in text based on questions, enabling the model to selectively read the
text based on the query. The specific structure is shown on the left side of Figure 5.

𝑂𝐵𝐸𝑅𝑇1
𝑐 𝑂𝐵𝐸𝑅𝑇(𝑛+2)

𝑐𝑂𝐵𝐸𝑅𝑇2
𝑐

S
o
f
t
m
a
x

Context to Query

𝑂𝐵𝐸𝑅𝑇(𝑚+2)

𝑞

𝑂𝐵𝐸𝑅𝑇2
𝑞

𝑂𝐵𝐸𝑅𝑇1
𝑞

𝑂𝐵𝐸𝑅𝑇1
𝑐 𝑂𝐵𝐸𝑅𝑇(𝑛+2)

𝑐𝑂𝐵𝐸𝑅𝑇2
𝑐

M
ax

𝑆𝑜𝑓𝑡𝑚𝑎𝑥

Query to Context

𝑂𝐵𝐸𝑅𝑇(𝑚+2)

𝑞

𝑂𝐵𝐸𝑅𝑇2
𝑞

𝑂𝐵𝐸𝑅𝑇1
𝑞

Figure 5. Diagram of interactive attention.

We calculated the attention score sqc
i for each context word associated with the query.

The specific operation is shown in Formula (6).

sqc
i = softmax(max(Ui,:)) (6)

where max(Ui,:) represents the maximum value across the i-th row of the shared relevance
matrix U. We then calculated the query aware context representing r. The specific operation
is shown in Formula (7).

Oq2c =
n+2

∑
i=1

sqc
i ·O

c
BERT (7)

Context-to-query attention The context-to-query (C2Q) attention represents the corre-
lation between each query word and all words in the context. This attention mechanism
aims to simulate the process of human beings reviewing questions after reading the text,
thereby enabling the model to better understand the query: what the question is about.
The specific structural system is shown on the right of Figure 5.

The attention score s
cq
i ∈ Rm+2 represents the relevance of each context word to the

query words, as shown in Formula (8).

s
cq
i = softmaxUi,: (8)

Then, we generated the context-aware query representation Oc2q ∈ R(n+2)×d, as shown
in Formula (9).

Oc2q =
m+2

∑
i=1

s
cq
i ·O

q
BERT (9)

Finally, we concatenated the attention vectors from both dimensions and used this as
the final interaction attention representation OIA ∈ R(n+2)×d, as shown in Formula (10).

OIA = [Oc2q; Oq2c] (10)
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3.4.2. Long-Term-Memory-Gated Attention

As deep neural networks are prone to homogeneity and the loss of the original
information, we decided to incorporate the original information into the output results
to reduce the information loss and achieve long-term memory. Therefore, we designed a
long-term-memory-gated attention mechanism to allow the model to remember the original
information of the context while controlling the flow of the context original information,
capturing the source sequence features relevant to the task. The specific architecture is
shown in Figure 6.

LinearConcat
Attenti

on

h

𝑂𝐵𝐸𝑅𝑇
𝑐

𝑄

𝐾

𝑉
σ

Linear

Linear

Linear

Scaled 
Dot-

Product 
Attention

Concat

Concat

Linear×

Figure 6. A description of long-term-memory-gated attention.

Long-term-memory-gated attention (OLTMGA ∈ R(n+2)×d) is calculated as Formu-
las (11)–(15).

OLTMGA = OS �OC (11)

OC = σ(W f
s [OC

BERT ; SMHSA]) (12)

SMHSA = softmax(
Q · KT
√

dk
) ·V (13)

Q, K, V = f (Oc
BERT) (14)

f (Oc
BERT)


Q = Wq ·Oc

BERT + bq
K = Wk ·Oc

BERT + bk
V = Wv ·Oc

BERT + bv

(15)

where Q, K, and V are abstract matrices projected from the initial embedding matrix Oc
BERT

of the context. sMHSA is based on multiple scale-dot attention with 12 attention heads.
W f

s ∈ Rd×2d represents trainable parameters. σ is an elementwise sigmoid function used to
control the flow of information. � denotes elementwise multiplication.

Finally, the long-term-memory-gated attention flow OLTGA is aggregated with the
interaction attention representation OIA, and the result is normalized through layer normal-
ization, resulting in the multi-granularity representation OMGA ∈ R(n+2)×3d. The process
is shown in Formulas (16) and (17).

OIAlinear = Linear(OIA) (16)

OMGA = LN(OIAlinear ⊕OLTGA) (17)

where Linear denotes a linear transformation and⊕ denotes vector addition. LN represents
layer normalization.

3.5. Multi-Scale Self-Learning Layer

Although using the multi-granularity representation OMGA can enhance the represen-
tation of the source sequence by incorporating different levels of views, the enhanced source
representation is still limited in understanding the information in the context, as a candi-
date answer typically contains information from multiple windows. In the constructed
reading-comprehension-style relation extraction dataset, we enabled the model to learn
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from itself using the multi-granularity representation OMGA, based on the multi-granularity
information contained in OMGA, to understand the overall idea of the context and impor-
tant details related to the task. To achieve this, we designed two strategies to enable the
model to self-learn at different scales.

3.5.1. Global-Information-Gated Attention

Although query-to-context can allow the model to selectively read text with a question
in mind and context-to-query can allow the model to read text more broadly and deepen
its understanding of the query, this is clearly not enough because just reading selectively
and broadly will make it difficult to understand the true meaning of the text. Therefore, we
hope to use this strategy to let the model review the entire text again and clarify the main
idea of the text. For a given OMGA, it is first mapped to three representations, and then,
the final representation Gatt ∈ R(n+2)×d is obtained. The specific operation is shown in
Formulas (18) and (19).

LMGS(OGMA) = softmax(
Q · KT
√

dk
) ·V1 (18)

V1 = WvV1 (19)

where Q, K, V1 = Linear1(OGMA), Linear2(OGMA), Linear3(OGMA), and WV is the projec-
tion parameter.

3.5.2. Local-Features-Focused Attention

In order to simulate human reading habits, after full-text scanning, question-based
reading, and overall in-depth reading, we hope that the model can learn the key information
related to the query in the text through its own understanding, rather than just relying
on the query. To achieve this, we used convolutional operations to capture more refined
local features, so that the model can grasp the details related to the task. We chose a deep
convolution with pointwise projection and context transformation characteristics for the
convolutional operations. We chose one variant of deep convolution, dynamic convolution,
for the operation. Each convolutional submodule in the dynamic convolution contains
convolutional kernels of different sizes, and it is called multi-scale dynamic convolution
because of the different scales of the convolutional kernels. The convolutional kernel size k
is calculated as shown in Formulas (20) and (21).

Convk(OGMA) = Wout MSConvk(V2) (20)

V2 = WvOGMA (21)

where WV and Wout are learnable hyperparameters and WV is a pointwise projecting trans-
formation matrix. The projection operation performed on the input of multi-scale dynamic
convolution V2 is the same as V1, and MSConv represents the multi-scale dynamic convo-
lution. The local self-learning sequence (LS) in the output of OGMA through multi-scale
dynamic convolution is LS ∈ R(n+2)×d. The specific operation is shown in Formulas (22)
and (23).

LSi,c = MSConvk(OGMA) (22)

MSConvk(OGMA) =
k

∑
j=1

(softmax(
d

∑
c=1

WQ
j,cOGMAi,c) ·OGMA

i+j−d k+2
2 e,c

) (23)

where d is the hidden layer size.
Shared projection: To represent the context sequence in the same hidden space, we

shared the projections V1 = WVV1 and V2 = WVOGMA. By sharing the projections,
the global and local self-attention representations are mapped to the same hidden space.
If two different projection matrices W1 and W2 are used, it is referred to as independent
projection, i.e., V1 = WV1 V1.
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Dynamically selected convolutional kernels: In order to dynamically and
autonomously select the weights of the convolutional kernels of different scales, a gating
mechanism was used. The specific operation is shown in Formula (24).

Conv(OGMA) =
n

∑
i=1

exp(ai)

∑n
j=1 exp

(
aj
) Convki (OGMA) (24)

Then, we fused the global and local self-learned features to obtain the final label
prediction vector OT ∈ R(n+2)×d, which was achieved through the following operation.

After the fusion of the global self-learning feature and the local self-learning represen-
tation, the final label prediction vector OT ∈ R(n+2)×d is obtained. The specific operation is
shown in Formula (25):

OT = LS⊕ GS (25)

where ⊕ represents matrix addition operation.

3.6. Decoding Layer

In the relation extraction task, we formalized the task as a query-based labeling prob-
lem. The softmax layer takes the label prediction vector OT through a multilayer perceptron
and calculates the normalized probabilities of the BIOES entity labels, thus transforming
the binary task of predicting the start and end indices into a five-classification task.

During training, we jointly trained the two stages of the objective function: the multiple
answer task for subject extraction and the single-answer task for joint relation and object
extraction. The two tasks are cascaded using a parameter-sharing strategy. The objective
function is calculated as shown in Formulas (26)–(28).

Lre = λLsubject + (1− λ)L(relation,object) (26)

Lsubject = − ∑
s∈Ti

log ps(s|xi, qs) (27)

Lrelation,object = − ∑
o∈Ti |(s,r)

log po(o|s, r, xi, qo) (28)

where ∈ [0, 1] is a hyperparameter that controls the weighting between the two objective
functions. The experimental results showed that an α of 0.25 achieved a good balance and
led to a good performance.

In the nested named entity recognition task, we used two n-class classifiers to predict
the start and end indices. The objective function was calculated as shown in Formulas
(29)–(32).

Lner = Lstart + Lend + αLmatch (29)

Lmatch = − ∑
wi ,wj∈Ei

Pmatch(pstart, Pend) (30)

Lstart = − ∑
wi∈Ei

pstart(wi|xi, qs) (31)

Lend = − ∑
wj∈Ei

pend(wj|xi, qs) (32)

where Lmatch, Lstart, and Lend represent the losses for start–end matching, start prediction,
and end prediction, respectively. α ∈ [0, 1].

4. Experimental Section
4.1. Datasets

For the NER task, we conducted experiments on the ACE2004, ACE2005, and GENIA
datasets. To ensure fairness, we followed the same data splitting as Yang et al. [35] and
Chen et al. [36] for the ACE2004 and ACE2005 datasets, and followed Katiyar et al. [37] for
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the the GENIA dataset, which split the training, development, and test sets into a ratio of
8.1:0.9:1.0.

For the entity relation extraction task, we conducted experiments on the ACE2004 and
ACE2005 relation datasets, which were collected from various domains such as news agen-
cies and online forums by the Linguistic Data Consortium. To ensure fairness, we followed
the same data splitting as Luan et al. [20], who split the ACE2005 dataset into training,
development, and test sets and performed 5-fold cross-validation on the ACE2004 dataset.

4.2. Experimental Setups

We developed MAML-NET using Python and PyTorch. Two independent BERT-base-
uncased [6] were used to encode the query and context. During training, AdamW [38]
was used as the optimizer, with a learning rate of 2× 10−5, 20 epochs, and a batch size
of 30. To regularize the model, different dropout rates were applied to different layers of
MAML-NET, with the best setting ranging from 0.2 to 0.4. In addition, MAML-NET uses an
early stopping strategy based on the validation loss. If the validation loss does not improve
over the last 5 epochs, training will be terminated early. It should be noted that, on the
GENIA dataset, biobert-base-cased-v1.2 [39] was used for encoding.

4.3. Named Entity Recognition
4.3.1. Baseline Models for Named Entity Recognition

(1) Straková et al. [23] viewed nested NER as a sequence-to-sequence problem, where
each token in the input sequence is assigned to its corresponding entity and a recursive
neural network is used to capture the nested entity structure. (2) Luan et al. [20] proposed
a general method for information extraction using dynamically constructed span graphs
to share span representations. By representing all possible entities as a dynamically con-
structed graph, entity representations can be shared and relationships between entities can
be captured. (3) Li et al. [15] transformed the NER task into a QA task by treating named
entities as questions and using the context as answers. By training the model with QA
data during training, NER can be performed without labeled entities. (4) Yu et al. [40]
used the idea of dependency tree parsing of graphs to score the beginning and ending
tokens of entities in a sentence and used these scores to determine the boundaries of entities.
(5) Hou et al. [41] injected semantic type word embeddings into entity embeddings to
reduce differences in contextuality. This can help the model better distinguish entities and
improve the performance of NER.

4.3.2. Experimental Results of Named Entity Recognition

The Table 3 shows the performance of MAML-NET on the ACE04, ACE05, and GENIA
datasets relative to the previous state-of-the-art methods. Compared with the baseline
model, MAML-NET improved the F1-score by 0.12%, 0.18%, and 0.32%, respectively. We
speculate that this is because MAML-NET fully utilizes context and query information, not
only to learn prior knowledge of named entities through the query, but also to exploit the
interaction between the query and context, i.e., selectively reading the context based on the
query and deepening the understanding of the query through reading the text. In addition,
the model can alleviate the problem of information loss in the original sequence through
the long-term-memory-gated attention mechanism. Finally, by repeatedly comprehensively
grasping and studying the details of the text, the model achieved excellent results. However,
Li et al. [15] only transformed the NER task into an MRC task and then processed the
problem through a general deep neural network, which can only obtain prior knowledge
of entities, and it is difficult to analyze the details and interaction between the text and
questions. Yu et al. [40] and Straková et al. [23] did not use the query to transform the
NER task into the MRC task, but learned the text information through RNNs, and then,
the decoder recognized the entities based on this deep text information. We believe that,
although their methods can avoid the problem of losing the original text information due
to long queries, they also cut off the possibility of the model learning prior knowledge of
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entities in the query. However, MAML-NET can not only learn the deep text information,
but also effectively alleviate the problem of similar word hidden features through the
long-term-memory-gated network. Although Yu et al. [40] fused fine-grained semantic
information into entity embedding to reduce uniqueness, we believe that this fusion
strategy is not necessarily better than the text–query interaction strategy adopted in this
paper. The results showed that our multi-scale attention mechanism and multi-scale self-
learning mechanism were effective for named entity recognition tasks.

Table 3. Comparison of the performance of ACE2004, ACE2005, and GENIA. † indicates the results
we achieved through their code. Bold numbers indicate the best results.

ACE2004

Model P R F1

Straková et al. [19] - - 84.40
Luan et al. [20] - - 84.70
Yu et al. [40] † 85.42 85.92 85.67
Li et al. [15] † 86.38 85.07 85.72

MAML-NET 86.82 84.88 85.84

ACE2005

Model P R F1

Straková et al. [19] - - 84.33
Li et al. [15] † 85.48 84.36 84.92
Yu et al. [40] † 84.50 84.72 84.61
Hou et al. [41] 83.95 85.39 84.66

MAML-NET 85.26 84.95 85.10

GENIA

Model P R F1

Straková et al. [19] - - 76.44
Li et al. [15] † 79.62 76.8 78.19
Yu et al. [40] † 79.43 78.32 78.87
Hou et al. [41] 79.45 78.94 79.19

MAML-NET (ours) 79.65 79.37 79.51

4.4. Baseline Models for Relation Extraction

We compared our approach with the following baselines: (1) Zhang et al. [24] trans-
formed the relation extraction task into a table-filling problem. (2) Miwa et al. [22] proposed
the first joint entity relation extraction method and used tree-based LSTMs to capture
dependency information. (3) Straková et al. [23] replaced the tree-based structure with
attentional LSTMs. (4) Sun et al. [25] used graph convolutional networks to address the
problem of exploring entity relations. (5) Li et al. [16] proposed an MRC-based method.
(6) Zhao et al. [28] extended Li et al.’s [16] method by constructing multiple queries for each
context. (7) Shen et al. [27] memorized the entity and relationship category information
learned in the task through the constructed memory module.

Experimental Results of Relation Extraction

Table 4 shows the performance of MAML-NET compared to state-of-the-art methods
on the ACE2004 and ACE2005 datasets. It can be observed that MAML-NET outperformed
all baseline models in terms of entity and relation extraction performance on both datasets.
Specifically, MAML-NET improved the F1-scores of entity and relation extraction by 4.3%
and 9.8%, respectively, on the ACE2004 dataset and by 2.0% and 0.9%, respectively, on the
ACE2005 dataset. This indicated that MAML-NET performed better on the RE task com-
pared to the NER task. We speculated that this is because MAML-NET can learn both the
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prior knowledge of named entities and entity relations in RE task. Furthermore, due to the
presence of error propagation, the advantage obtained in the entity recognition stage was
not simply transmitted to the relation extraction task, but continued to expand. Addition-
ally, the MRC framework with multiple queries performed better than the single-query
framework. We believe that this was because the multi-query framework allowed the model
to more finely divide the RE task, rather than simply being a vague task such as “Find all
relation”. However, neither the single-query framework nor the multi-query framework
for RE models achieved the same level of performance as MAML-NET. We speculated
that, on the one hand, although MAML-NET is based on a single-query framework; due
to the different query design strategies, the performance of MAML-NET’s single-query
framework was not inferior to the multi-query framework. On the other hand, unlike other
models that only use BERT to learn the interaction information between query and context,
MAML-NET has a dedicated interaction module, which can better utilize the implicit
association information in the query and context.

Table 4. Performance comparison of ACE2004 and ACE2005. † and †† represent baselines based on
the MRC framework, and †† represent baselines with multiple queries for the context. Bold numbers
indicate the best results.

Dataset Model Entity Relation
P R F P R F

ACE2004

Miwa et al. [22] 80.8 82.9 81.8 48.7 48.1 48.4
Straková et al. [23] 81.2 78.1 79.6 46.4 45.3 45.7
Li et al. [16] † 84.4 82.9 83.6 50.1 48.7 49.4
MAML-NET 87.9 88.8 87.9 57.9 60.2 59.2

ACE2005

Miwa et al. [22] 82.9 83.9 83.4 57.2 54.0 55.6
Straková et al. [23] 84.0 81.3 82.6 55.5 51.8 53.6
Zhang et al. [24] - - 83.5 - - 57.5
Sun et al. [25] 83.9 83.2 83.6 64.9 55.1 59.6
Li et al. [16] † 84.7 84.9 84.8 64.8 56.2 60.2
Zhao et al. [28] † 85.1 84.2 84.6 57.8 61.9 59.8
Zhao et al. [28] †† 85.9 85.2 85.5 62.0 62.2 62.1
Shen et al. [27] 86.7 87.5 87.6 62.2 63.4 62.8
MAML-NET 89.5 88.9 89.6 69.4 58.8 63.7

4.5. Ablation Study

In order to investigate which aspects improved the performance of our model, we
conducted an ablation study on the ACE2005 relation extraction dataset to understand the
impact of each module on the model. We can observe the following results from Table 5.

Table 5. Ablation trials on ACE2005. Bold numbers indicate the best results.

Dataset Model Entity Relation
P R F P R F

ACE2005

MAML-NET 89.5 89.8 89.6 69.4 58.8 63.7
-MSL 89.0 88.1 88.5 66.2 57.7 61.7
-LTMGA 88.9 89.1 89.0 66.0 58.6 62.0
-MSM&LTMGA 87.4 88.6 88.0 64.9 57.2 60.8
-IA&MSM&LTMGA 84.7 84.9 84.8 64.8 56.2 60.2

Multi-scale attention (MSM): When the multi-scale self-learning network (MSM) is re-
moved, compared to MAML-NET, the F1-score for entity and relation extraction decreased
by 1.1% and 2%, respectively. We believe this is because the multi-scale self-learning layer
can not only help the model understand the text as a whole, but also enable the model
to discover important details relevant to the task, ultimately allowing the model to dy-
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namically collect evidence from the entire paragraph to answer the question, resulting in
improved performance in entity and relation extraction.

Long-term-memory-gated attention (LTMGA): When the long-term-memory-gated
attention flow (LTMGA) was removed, compared to MAML-NET, the F1-score for entity
and relation extraction decreased by 0.6% and 1.7%, respectively. This is reasonable be-
cause, although the interaction between the query and context can provide complementary
information to each other, it also causes some loss of the original context information. The in-
troduction of our long-term-memory-gated attention flow can alleviate this phenomenon,
resulting in improved performance in both entity and relation extraction.

Interactive attention (IA): When using interactive attention, compared to MAML-NET,
the F1-score for entity and relation extraction decreased by 1.6% and 2.9%, respectively.
Compared to the joint encoding method (-IA-MSM-LTMGA), the F1-score for entity and
relation extraction decreased by 4.8% and 3.5%, respectively. We believe this is because
interactive attention can selectively collect relevant representations of other words in the
source sequence during the word-encoding process based on the similarity between words
in the text and the question. This not only alleviates the problem of encoding information
similarity between different words, but also increases the distinguishability of encoding
information between dissimilar words.

4.6. Case Study

To demonstrate the effectiveness of the MAML-NET model in improving entity and re-
lation extraction by enhancing the reading comprehension ability, we present the examples
shown in Table 6.

Table 6. Comparing the MAML-NET model with multi-QA [16]. The triples in red represent the
results extracted by MAML-NET.

Sentence 1
. . . US officials say some intelligence indicates a red line may have been
drawn around the capital with republican guard units ordered to use
chemical weapons once US and allied troops cross it. . . .

Multi-QA ((PER, units), ART, (WEA, weapons));
((PER, troops), ORG–AFF, (GPE, US)).

MAML-NET

((PER, units), ART, (WEA, weapons));
((PER, troops), ORG–AFF, (GPE, US));
((PER, units), ORG–AFF, (ORG, republican guard));
((PER, units), PHYS, (GPE, capital)).

Sentence 2
. . . The deadlock, and subsequent lack of any films, has been threatening
to de-rail the debut of easy Cinema s first outlet in Milton Keynes, just
north of London, which is due to open its doors on May 23. . . .

Multi-QA ((GPE, Milton Keynes), PHYS, (GPE, London)).

MAML-NET
((GPE, Milton Keynes), PHYS, (GPE, London));
((ORG, outlet), GEN–AFF, (GPE, Milton Keynes);
((ORG, outlet), PART–WHOLE, (ORG, easy)).

Sentence 3 . . . And as part of that effort, US special forces today raided the home
of the Iraqi microbiologist known as Dr. Germ. . . .

Multi-QA ((PER, forces), ORG–AFF, (GPE, US));
((PER, microbiologist), GEN–AFF, (GPE, Iraqi)).

MAML-NET

((PER, forces), ORG–AFF, (GPE, US));
((PER, microbiologist), GEN–AFF, (GPE, Iraqi));
((PER, forces), PHYS, (FAC, home));
((PER, microbiologist), ART, (FAC, home)).

Table 6 compares the output of our MAML-NET with the previous state-of-the-art
reading-comprehension-based relation extraction model (Multi-QA). In the first example,
Multi-QA was unable to determine the triplets (units, ORG–AFF, republican guard) and
(units, PHYS, capital). In the second example, Multi-QA was unable to determine the
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triplets (outlet, GEN–AFF, Milton Keynes) and (outlet, PART–WHOLE, easy). In the third
example, Multi-QA was unable to determine the triplets (forces, PHYS, home) and (micro-
biologist, ART, home). From these examples, we observed that MAML-NET performed
much better than Multi-QA when the subject or object participates in multiple relationship
triplets at the same time. We speculated that, on the one hand, in NER tasks, the existence
of nested named entities may cause some named entities to be unidentifiable if the model
cannot understand the text from both the global and local perspectives. On the other hand,
for RE tasks, if the model ignores certain key details, some relationships between entities
will not be identified. This also demonstrates that MAML-NET has a good ability to process
global information and local features.

5. Conclusions

This article proposed a multi-scale self-learning network based on multi-granularity
attention to address the issue of homogeneity that arises with the increasing number
of network layers in RE tasks, as well as the problem of the loss of the text’s original
information in MRC tasks. Firstly, to effectively utilize the unique query information in
MRC tasks, we proposed a multi-granularity attention mechanism, which allowed the
model to learn the interaction information between the context and query in the source
sequence through bidirectional attention and retained the task-related original context
information through long-term-memory-gated attention flow. Then, to enable the model
to consider both the global information and local features of the text, we proposed a self-
learning mechanism to further improve the model’s understanding of the context. Finally,
we optimized the model through joint learning. The experiment showed that our model
was effective in entity relation extraction tasks.

Future research can be conducted in the following directions. First, although the intro-
duced query can provide prior knowledge helpful for the task, the knowledge provided
was still limited. Therefore, knowledge graphs or other knowledge can be used as prior
knowledge for data augmentation. Second, the model still lacks entity recognition and
relation extraction in long sentences. Therefore, multi-hop reading comprehension methods
can be used to address entity recognition and relation extraction tasks in long sentences.
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