Wearable Motion Capture Devices for the Prevention of Work-Related Musculoskeletal Disorders in Ergonomics—An Overview of Current Applications, Challenges, and Future Opportunities
Abstract
:1. Introduction
1.1. Musculoskeletal Disorders and Risk Factors
1.2. Obligations for the Management of Musculoskeletal Disorders at Work
1.3. Wearable Technology
1.4. Aim
2. Materials and Methods
2.1. Wearable Motion Capture Instruments
2.2. Ambulatory Motion Capture Systems
3. Application of Wearable Motion Capture Instruments and Systems for the Prevention of Work-Related Musculoskeletal Disorders
3.1. Exposure Measurements
3.1.1. Ambulatory Motion Capture Instruments and Systems
Ref. | Year | Origin | Occup.* | Arm | Trunk | Wrist | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sens. | Post. | Vel. | Sens. | Post. | Vel. | Sens. | Post. | Vel. | ||||
[121] | 2001 | DK | PP | acc | X | Gen | acc | X | X | gon | X | X |
[122] | 2002 | SE | CAD | acc | X | Gen | acc | X | X | gon | X | X |
[123] | 2002 | SE | IMF | acc | X | Gen | acc | X | X | gon | X | X |
[124] | 2004 | US | CS | - | - | - | gon | X | X | - | - | - |
[125] | 2005 | SE | CD | acc | X | Gen | acc | X | X | gon | X | X |
[126] | 2006 | SE | IMF | acc | X | Gen | - | - | - | gon | X | X |
[127] | 2006 | SE | ATC | acc | X | Gen | acc | X | X | gon | X | X |
[128] | 2006 | SE | ATC | acc | X | Gen | - | - | - | gon | X | X |
[129] | 2007 | SE | Cl | acc | X | Gen | - | - | - | gon | X | X |
[130] | 2007 | DE | Nu | - | - | - | IMU 1 | X | - | - | - | - |
[131] | 2008 | DE | OD | - | - | - | IMU 1 | X | - | - | - | - |
[132] | 2008 | NO | HD | acc | X | Gen | - | - | - | - | - | - |
[133] | 2008 | SE | IMF | acc | X | Gen | - | - | - | gon | X | X |
[134] | 2008 | US | IMF | acc | X | - | - | - | - | gon | X | X |
[135] | 2009 | SE | De | acc | X | Gen | - | - | - | - | - | - |
[136] | 2010 | DE | OD | - | - | - | IMU 1 | X | - | - | - | - |
[137] | 2010 | US | CS | acc | X | Inc | - | - | - | - | - | - |
[138] | 2010 | SE | HD | acc | X | Gen | - | - | - | - | - | - |
[139] | 2011 | BR | CE | acc | X | Gen | - | - | - | - | - | - |
[140] | 2011 | SE | De | acc | X | Gen | - | - | - | - | - | - |
[141] | 2011 | US | HC | - | - | - | acc | X | - | - | - | - |
[142] | 2011 | US | CS | - | - | - | acc | X | - | - | - | - |
[143] | 2012 | US | Lo | - | - | - | gon | X | X | - | - | - |
[144] | 2012 | NL | OW | acc | X | - | - | - | - | gon | X | X |
[145] | 2012 | BR | EU | acc | X | - | - | - | - | - | - | - |
[146] | 2012 | US | Da | acc | X | Inc | - | - | - | - | - | - |
[147] | 2012 | SE | MC | acc | X | Gen | - | - | - | gon | X | X |
[148] | 2012 | SE | De | acc | X | Gen | - | - | - | gon | X | X |
[149] | 2012 | DE | Nu | - | - | - | IMU 1 | X | - | - | - | - |
[150] | 2013 | SE | De | acc | X | Gen | acc | X | X | - | - | - |
[151] | 2013 | NO/BR | El | acc | X | - | - | - | - | - | - | - |
[152] | 2013 | US | De, Co | acc | X | Inc | - | - | - | - | - | - |
[153] | 2014 | US | Lo | - | - | - | gon | X | X | - | - | - |
[154] | 2014 | AU | OW | pot | X | - | pot | X | - | - | - | - |
[155] | 2014 | DK | HP | acc | X | Gen | - | - | - | gon | X | X |
[156] | 2014 | DE | Nu | - | - | - | IMU 1 | X | - | - | - | - |
[157] | 2015 | NO | Var | acc | X | - | - | - | - | - | - | - |
[119] | 2016 | SE | ABH | acc | X | Gen | acc | X | X | - | - | - |
[158] | 2016 | SE | GS | acc | X | Gen | - | - | - | gon | X | X |
[118] | 2016 | US | Nu | IMU | X | Inc | IMU | X | X | - | - | - |
[159] | 2016 | US | Da | IMU | X | - | IMU | X | - | - | - | - |
[160] | 2016 | DE | De | - | - | - | IMU + pot | X | - | - | - | - |
[161] | 2016 | DE | OD | - | - | - | IMU | X | - | - | - | - |
[162] | 2017 | DE | OD | - | - | - | IMU | X | - | - | - | - |
[163] | 2017 | DE | Nu | - | - | - | IMU | X | - | - | - | - |
[164] | 2017 | SE | Su | IMU | X | Inc | IMU | X | X | - | - | - |
[96] | 2017 | FR | FC | IMU | X | - | IMU | X | - | gon | X | - |
[165] | 2017 | US | Cl | - | - | - | acc | X | - | - | - | - |
[166] | 2017 | FR | IMF | acc | X | - | acc | X | - | gon | X | - |
[167] | 2018 | DK | Var | acc | X | - | - | - | - | - | - | - |
[168] | 2018 | SE | SG | acc | X | Gen | - | - | - | gon | X | X |
[169] | 2018 | SE | Cl | acc | X | Gen | - | - | - | - | - | - |
[170] | 2018 | DE | De | - | - | - | IMU + pot | X | - | - | - | - |
[171] | 2018 | US | Agr | IMU | X | Inc | IMU | X | X | - | - | - |
[172] | 2019 | US | IMF | IMU | X | Inc | - | - | - | - | - | - |
[173] | 2019 | BR | Agr | IMU | X | - | IMU | X | - | IMU | X | - |
[174] | 2019 | SE | IMF | acc | X | Gen | acc | X | X | - | - | - |
[175] | 2019 | DK | BC | acc | X | - | acc | X | - | - | - | - |
[176] | 2019 | NO | HD | acc | X | - | - | - | - | - | - | - |
[177] | 2019 | NO | CS, HC | acc | X | - | acc | X | - | - | - | - |
[175] | 2019 | DK | BC | acc | X | - | acc | X | - | - | - | - |
[178] | 2019 | US | AH | acc | X | - | acc | X | - | - | - | - |
[179] | 2020 | DE | Ne | - | - | - | gon | X | - | - | - | - |
[180] | 2020 | US | AH | acc | X | - | acc | X | - | - | - | - |
[181] | 2020 | US | AH | acc | X 4 | - | - | - | - | - | - | - |
[182] | 2020 | FR | VA | acc | X | - | acc | X | - | - | - | - |
[183] | 2020 | DK | CC | acc | X | - | acc | X | - | - | - | - |
[184] | 2020 | IR | Ba | acc | - | Inc | - | - | - | - | - | - |
[185] | 2020 | CA | Lo | IMU | X | - | IMU | X | - | - | - | - |
[186] | 2020 | US | Agr | IMU | X | Inc | IMU | X | X | IMU | - | X |
[187] | 2020 | CA | Fa | - | - | - | IMU | X | X | - | - | - |
[188] | 2020 | IT | Lo | - | - | - | IMU | X | - | - | - | - |
[189] | 2021 | SE | OD | acc | X | Gen | acc | X | X | gon | X | X |
[190] | 2021 | DE | Lo | - | - | - | IMU | X | - | - | - | - |
[191] | 2021 | US | IMF | IMU | X | Inc | IMU | X | X | - | - | - |
[192] | 2021 | US | IMF | - | - | - | IMU | X | - | - | - | - |
[82] | 2021 | SE | Lo | IMU 2 | X | Inc + Gen | - | - | - | - | - | - |
[110] | 2021 | US | CS | IMU | X | - | IMU | X | - | - | - | - |
[26] | 2022 | DK | Var | acc | X | - | - | - | - | - | - | - |
[25] | 2022 | DK | Var | - | - | - | acc | X | - | - | - | - |
[193] | 2022 | US | Fi | IMU | X | - | IMU | X | - | - | - | - |
[194] | 2022 | PT | VA | IMU | X | - | IMU | X | - | IMU | X | - |
[195] | 2022 | SE | OD | acc | X | Gen | IMU | X | X | - | - | - |
[196] | 2022 | SE | Su | IMU | X | Gen | IMU | X | X | - | - | - |
[83] | 2022 | SE | Lo | IMU | X | Inc + Gen | - | - | - | - | - | - |
[112] | 2022 | CL | MC | - | - | - | - | - | - | IMU | X | - |
[85] | 2023 3 | BE | Lo | - | - | - | IMU | X | - | - | - | - |
3.1.2. Exposure Metrics and the Need for Harmonization
3.2. Risk Assessment
Ref. | [121] | [125] | [128] | [129] | [138] | [147] | [146] | [150] | [155] | [118] | [158] | [119] | [171] | [169] | [167] | [171] | [177] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2001 | 2005 | 2006 | 2007 | 2010 | 2012 | 2012 | 2013 | 2014 | 2016 | 2016 | 2016 | 2018 | 2018 | 2018 | 2018 | 2019 |
Posture/Angle | |||||||||||||||||
Percentiles | |||||||||||||||||
1st | X | ||||||||||||||||
10th | X | X | X | X | X | X | X | X | X | X | |||||||
50th | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||
90th | X | X | X | X | X | X | X | X | X | X | X | X | |||||
99th | X | X | X | X | X | X | X | X | |||||||||
90th–10th | X | X | X | X | X | X | |||||||||||
95th–5th | X | ||||||||||||||||
Proportion of time | |||||||||||||||||
<15° | |||||||||||||||||
<20° | X | X | X | X | |||||||||||||
<30° | X | ||||||||||||||||
* >30° | X | X | |||||||||||||||
* >45° | X | X | |||||||||||||||
* >60° | X | X | X | X | X | X | X | X | X | X | |||||||
* >90° | X | X | X | X | X | ||||||||||||
Movement (angular velocity) | |||||||||||||||||
Percentiles | |||||||||||||||||
10th | X | X | X | X | X | X | |||||||||||
50th | X | X | X | X | X | X | X | X | X | X | X | X | |||||
90th | X | X | X | X | X | X | X | X | |||||||||
99th | X | X | X | ||||||||||||||
90th–10th | X | X | X | X | |||||||||||||
Proportion of time | |||||||||||||||||
<5°/s | X | X | X | X | |||||||||||||
* >90°/s | X | X | X | X | X | X | X | ||||||||||
Combinations (posture and angular velocity) | |||||||||||||||||
% <15° and <5°/s | |||||||||||||||||
% <20° and <5°/s | X | X | X | X | |||||||||||||
% <30° and <5°/s | X | ||||||||||||||||
% <15° ≥3 s | |||||||||||||||||
% <20° ≥3 s | X | X | |||||||||||||||
% <30° ≥3 s | X | ||||||||||||||||
% <5°/s ≥3 s | X | X | X | X | X | ||||||||||||
% <20° & <5°/s ≥3 s | X | X |
3.2.1. Quantitative Metrics for Risk Assessment
3.2.2. Risk Assessment Using Observational Tools
3.2.3. Integration of Observational Risk Assessment Tools with Wearable Motion Capture Systems
Ref. | Year | Real-Time Processing | Feedback Timing | Feedback Modality | Exposure Criteria | Targeted Body Segment | Instrument | Instrument Location |
---|---|---|---|---|---|---|---|---|
[86] 6 | 2009 | Yes | Concurrent | Visual and auditory | Posture thresholds | Neck | 1 acc | Neck (C7 vertebrae) |
[88] | 2013 | Yes | Concurrent | Vibrotactile | Posture thresholds | Trunk | 1 strain gauge | Trunk (L3 and S2 vertebrae) |
[87] | 2013 | Yes | Concurrent | Visual | RULA | Upper body | 7 IMUs | Head Trunk (sternum/chest) Upper arm (bilateral) Wrist (bilateral) Sacrum |
[92] | 2014 | n/a 1 | Terminal 2 | Visual | OWAS, OCRA index, RULA, and NIOSH lifting index | Whole body | 17 IMUs | Head Trunk (upper and lower back) Shoulder blade Upper arm (bilateral) Forearm (bilateral) Wrist (bilateral) Upper leg (bilateral) Lower leg (bilateral) Feet (bilateral) |
[89] | 2014 | Yes | Concurrent | Auditory | Posture thresholds | Trunk | 1 accelerometer | Hipp |
[90] | 2014 | - | Terminal | Visual | Posture thresholds | Neck and upper back | 2 acc | Head (back) Trunk (upper back) |
[91] | 2014 | Yes | - | Visual 7 | RULA | Upper body | 3 IMUs | Arm Wrist Hand |
[93] 6 | 2015 | Yes | Concurrent | Vibrotactile | Posture thresholds | Upper back | 1 acc | Trunk (upper back) |
[94] | 2016 | Yes | Terminal 2 | Visual 3 | Gross postures | Upper and lower body | 7 IMUs | Trunk (back) Upper arm (bilateral) Forearm (bilateral) Shins (bilateral) |
[95] | 2016 | Yes | - | - | RULA and Strain Index | Upper body | 3 IMUs | Arm Wrist Hand |
[98] | 2017 | Yes | - | Visual 7 | ISO 11226:2000 [240] | Upper and lower body | 8 IMUs | Trunk (lower and upper back) Upper arm (bilateral) Upper leg (bilateral) Lower leg (bilateral) |
[97] | 2017 | Yes | Concurrent | Auditory | ISO 11226:2000 [240] | Upper body | 2 IMUs | Trunk (upper back) Head (backside) |
[96] | 2017 | - | - | - | RULA | Upper body | 7 IMUs, 2 electrogoniometers | Head Trunk (chest) Upper arm (bilateral) Forearm (bilateral) Pelvis (sacrum) Wrist |
[100] | 2017 | n/a 1 | - | - | Posture thresholds (also time-dependent) | Whole body | 4 IMUs 4, 1 potentiometer, 1 flex sensor 4 | Trunk Arm 4 Forearm 4 Wrist 4 Thigh Calf |
[99] | 2018 | Yes | Concurrent | Auditory | Posture thresholds | Trunk | 2 acc | Trunk (upper and lower back) |
[101] | 2018 | Yes | Concurrent | Vibrotactile | Posture thresholds | Trunk | 1 acc | Trunk (center of left clavicle) |
[102] | 2019 | Yes | Concurrent | Vibrotactile | Posture thresholds | Trunk | 1 acc | Neck (posterior) |
[103] | 2019 | Yes | Concurrent | Visual + auditory | Posture thresholds | Trunk | 2 IMUs | Trunk (L1 and L5 vertebrae) |
[109] | 2020 | Yes | Concurrent | Visual + vibrotactile | Posture thresholds (based on RULA and LUBA) | Neck, trunk, and arms | 4 IMUs | Head (back) Trunk (T4 vertebrae) Upper arm (bilateral) |
[106] | 2020 | Yes | - | - | RULA and REBA | Upper and lower body | 17 IMUs | Forehead Trunk (2 front, 1 back) Upper arm (bilateral) Wrist (bilateral) Hand (bilateral) Pelvis/sacrum (front) Upper leg (bilateral) Lower leg (bilateral) Ankle (bilateral) |
[105] | 2020 | Yes | Concurrent | Vibrotactile | Posture thresholds | Trunk and upper arm | 2 IMUs | Trunk (T1–T2 vertebrae)Upper arm (dominant) |
[104] | 2020 | Yes | Concurrent | Vibrotactile | Posture thresholds | Upper arm | 1 IMU | Upper arm (dominant) |
[107] | 2020 | Yes | Concurrent | Auditory | Posture thresholds | Trunk | 1 acc | Hipp |
[108] | 2020 | Yes | Concurrent | Auditory | Posture thresholds | Trunk | 2 IMUs | Trunk (T0 vertebrae and sacrum) |
[111] | 2020 | Yes | Concurrent | Auditory 5 | Posture thresholds | Trunk | 2 IMUs | Trunk: T0 vertebrae and sacrum |
[110] | 2021 | Yes | Terminal | Visual | OWAS and MHT | Whole body | 5 IMUs | Head Trunk (chest) Upper arm (dominant) Thigh (dominant) Calf (dominant) |
[112] | 2022 | - | - | - | RULA | Wrist | 1 IMU | Wrist |
[85] | 2023 | Yes | Concurrent | Vibrotactile | Posture thresholds | Trunk | 1 IMU | Trunk (T1–T2 vertebrae) |
3.3. Risk-Reducing Measures
3.3.1. Work Technique Training
3.3.2. Feedback-Based Work Technique Training Using Wearable Motion Capture Systems
Category | Sub-Category | Description |
---|---|---|
Modality | Audio | Feedback is provided using various audible sources, typically the tone of verbal messages [99]. |
Visual | Feedback is typically provided using (wearable and non-wearable) screens or projectors [87] or by ocular viewing without augmenting devices. | |
Vibrotactile | Feedback is typically provided using a vibration motor attached close to the targeted body segment, such as on the upper arm or trunk [85,104,105]. | |
Tactile | The feedback that typically can be sensed by touch by the application of forces and/or vibrations to the skin or similar. | |
Haptic | Feedback is perceived by touch by the application of forces and/or vibrations or motions (kinesthetic perception). | |
Unimodality vs. multimodality | Feedback is provided using a combination of different feedback modalities (e.g., a combination of audio and vibrotactile feedback), which often can further enhance learning [258]. | |
Positive/negative feedback (augment/reinforcement—suppress) | Negative | Sometimes referred to as posture-correction feedback or error amplification feedback. Typically provided to make the person aware of undesirable motor strategies to initiate alternative motor strategies to prevent or minimize their occurrence [85,104,105]. |
Positive | Feedback is typically provided after or during a successful execution (or trial) to reinforce successful motor strategies and to enhance motivation. | |
Uni-channel versus multi-channel | - | This can refer to the number of locations where the feedback is given, including if different feedback transmitters are given simultaneously or in sequence (i.e., feedback is given at one location and, when it ends, is given at another location). |
Timing | Concurrent | Feedback is provided simultaneously with task execution [85,104,105]. |
Terminal | Feedback is provided after task execution [99]. | |
Fading | The frequency or duration of feedback is reduced with time. | |
Initiation | System determined | Feedback is initiated by the system, e.g., when reaching or exceeding pre-determined thresholds, such as posture angles or angular velocities [85]. |
Self-controlled | Feedback is initiated at the request of the receiver [253]. | |
Miscellaneous | - | An additional variation of the feedback characteristics can be related to the pitch and tonality of the feedback, as well as the duration, and if it is given as one or several signals at a certain temporal pattern. Other aspects refer to the intensity of the signal. |
4. Discussion
4.1. Challenges in Occupational Applications of Wearable Technology
4.2. Validity Concerns and Risk Criteria
4.3. The Need for International Collaborations
4.4. Opportunities in Occupational Applications of Wearable Technology
4.5. Review Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Musculoskeletal Health. Available online: https://iea.cc/what-is-ergonomics (accessed on 23 November 2022).
- Driscoll, T.; Jacklyn, G.; Orchard, J.; Passmore, E.; Vos, T.; Freedman, G.; Lim, S.; Punnett, L. The global burden of occupationally related low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 975–981. [Google Scholar] [CrossRef]
- ILO. Global Trends on Occupational Accidents and Diseases. World Day for Safety and Health at Work. 2015. Available online: https://www.ilo.org/legacy/english/osh/en/story_content/external_files/fs_st_1-ILO_5_en.pdf (accessed on 8 June 2020).
- Tompa, E.; Mofidi, A.; van den Heuvel, S.; van Bree, T.; Michaelsen, F.; Jung, Y.; Porsch, L.; van Emmerik, M. The Value of Occupational Safety and Health and the Societal Costs of Work-Related Injuries and Diseases; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Silverstein, B. Work-Related Musculoskeletal Disorders (WMSD): General Issues. In International Encyclopedia of Ergonomics and Human Factor, 2nd ed.; Karwowski, W., Marras, W.S., Eds.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- NRC. Musculoskeletal Disorders and the Workplace: Low Back and Upper Extremities; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Lind, C.M. Assessment and Design of Industrial Manual handling to Reduce Physical Ergonomics Hazards–Use and Development of Assessment Tools. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2017. [Google Scholar]
- Sundstrup, E.; Hansen, Å.M.; Mortensen, E.L.; Poulsen, O.M.; Clausen, T.; Rugulies, R.; Møller, A.; Andersen, L.L. Retrospectively assessed psychosocial working conditions as predictors of prospectively assessed sickness absence and disability pension among older workers. BMC Public Health 2018, 18, 149. [Google Scholar] [CrossRef] [PubMed]
- Badarin, K.; Hemmingsson, T.; Hillert, L.; Kjellberg, K. The impact of musculoskeletal pain and strenuous work on self-reported physical work ability: A cohort study of Swedish men and women. Int. Arch. Occup. Environ. Health 2022, 95, 939–952. [Google Scholar] [CrossRef]
- Widanarko, B.; Legg, S.; Devereux, J.; Stevenson, M. The combined effect of physical, psychosocial/organisational and/or environmental risk factors on the presence of work-related musculoskeletal symptoms and its consequences. Appl. Ergon. 2014, 45, 1610–1621. [Google Scholar] [CrossRef]
- NIOSH. Musculoskeletal Disorders and Workplace Factors; National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 1997. [Google Scholar]
- Marras, W.S.; Walter, B.A.; Purmessur, D.; Mageswaran, P.; Wiet, M.G. The Contribution of Biomechanical-Biological Interactions of the Spine to Low Back Pain. Hum. Factors 2016, 58, 965–975. [Google Scholar] [CrossRef]
- Harris-Adamson, C.; Eisen, E.A.; Neophytou, A.; Kapellusch, J.; Garg, A.; Hegmann, K.T.; Thiese, M.S.; Dale, A.M.; Evanoff, B.; Bao, S.; et al. Biomechanical and psychosocial exposures are independent risk factors for carpal tunnel syndrome: Assessment of confounding using causal diagrams. Occup. Environ. Med. 2016, 73, 727. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, J.K.; Rest, K.M.; Frings-Dresen, M.H.W. Criteria document for evaluating the work-relatedness of upper-extremity musculoskeletal disorders. Scand. J. Work Environ. Health 2001, 7, 1–102. [Google Scholar] [CrossRef]
- Lötters, F.; Burdorf, A.; Kuiper, J.; Miedema, H. Model for the work-relatedness of low-back pain. Scand. J. Work Environ. Health 2003, 29, 431–440. [Google Scholar] [CrossRef]
- Hoogendoorn, W.E.; van Poppel, M.N.; Bongers, P.M.; Koes, B.W.; Bouter, L.M. Physical load during work and leisure time as risk factors for back pain. Scand. J. Work Environ. Health 1999, 25, 387–403. [Google Scholar] [CrossRef]
- Fox, R.R.; Lu, M.L.; Occhipinti, E.; Jaeger, M. Understanding outcome metrics of the revised NIOSH lifting equation. Appl. Ergon. 2019, 81, 102897. [Google Scholar] [CrossRef]
- Garg, A.; Boda, S.; Hegmann, K.T.; Moore, J.S.; Kapellusch, J.M.; Bhoyar, P.; Thiese, M.S.; Merryweather, A.; Deckow-Schaefer, G.; Bloswick, D.; et al. The NIOSH lifting equation and low-back pain, part 1: Association with low-back pain in the BackWorks prospective cohort study. Hum. Factors 2014, 56, 6–28. [Google Scholar] [CrossRef]
- Garg, A.; Kapellusch, J.M.; Hegmann, K.T.; Moore, J.S.; Boda, S.; Bhoyar, P.; Thiese, M.S.; Merryweather, A.; Deckow-Schaefer, G.; Bloswick, D.; et al. The NIOSH lifting equation and low-back pain, Part 2: Association with seeking care in the backworks prospective cohort study. Hum. Factors 2014, 56, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Hoozemans, M.J.; Knelange, E.B.; Frings-Dresen, M.H.; Veeger, H.E.; Kuijer, P.P. Are pushing and pulling work-related risk factors for upper extremity symptoms? A systematic review of observational studies. Occup. Environ. Med. 2014, 71, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.L.; Fallentin, N.; Thorsen, S.V.; Holtermann, A. Physical workload and risk of long-term sickness absence in the general working population and among blue-collar workers: Prospective cohort study with register follow-up. Occup. Environ. Med. 2016, 73, 246–253. [Google Scholar] [CrossRef]
- Coenen, P.; Kingma, I.; Boot, C.R.; Bongers, P.M.; van Dieën, J.H. Cumulative mechanical low-back load at work is a determinant of low-back pain. Occup. Environ. Med. 2014, 71, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.K. Knee osteoarthritis: Influence of work involving heavy lifting, kneeling, climbing stairs or ladders, or kneeling/squatting combined with heavy lifting. Occup. Environ. Med. 2008, 65, 72–89. [Google Scholar] [CrossRef]
- Hoogendoorn, W.E.; Bongers, P.M.; de Vet, H.C.; Douwes, M.; Koes, B.W.; Miedema, M.C.; Ariëns, G.A.; Bouter, L.M. Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: Results of a prospective cohort study. Spine 2000, 25, 3087–3092. [Google Scholar] [CrossRef]
- Gupta, N.; Bjerregaard, S.S.; Yang, L.; Forsman, M.; Rasmussen, C.L.; Rasmussen, C.D.N.; Clays, E.; Holtermann, A. Does occupational forward bending of the back increase long-term sickness absence risk? A 4-year prospective register-based study using device-measured compositional data analysis. Scand. J. Work Environ. Health 2022, 48, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Rasmussen, C.L.; Forsman, M.; Søgaard, K.; Holtermann, A. How does accelerometry-measured arm elevation at work influence prospective risk of long-term sickness absence? Scand. J. Work Environ. Health 2022, 48, 137–147. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, R.M.; Huisstede, B.M.; Koes, B.W.; Burdorf, A. Associations between work-related factors and the carpal tunnel syndrome--a systematic review. Scand. J. Work Environ. Health 2009, 35, 19–36. [Google Scholar] [CrossRef]
- Andersen, J.H.; Kaergaard, A.; Mikkelsen, S.; Jensen, U.F.; Frost, P.; Bonde, J.P.; Fallentin, N.; Thomsen, J.F. Risk factors in the onset of neck/shoulder pain in a prospective study of workers in industrial and service companies. Occup. Environ. Med. 2003, 60, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaeifar, S.; Svendsen, S.W.; Johnsen, B.; Hansson, G.; Fuglsang-Frederiksen, A.; Frost, P. Reversible median nerve impairment after three weeks of repetitive work. Scand. J. Work Environ. Health 2017, 43, 163–170. [Google Scholar] [CrossRef]
- Kozak, A.; Schedlbauer, G.; Wirth, T.; Euler, U.; Westermann, C.; Nienhaus, A. Association between work-related biomechanical risk factors and the occurrence of carpal tunnel syndrome: An overview of systematic reviews and a meta-analysis of current research. BMC Musculoskelet. Disord. 2015, 16, 231. [Google Scholar] [CrossRef] [PubMed]
- Bovenzi, M. Exposure-response relationship in the hand-arm vibration syndrome: An overview of current epidemiology research. Int. Arch. Occup. Environ. Health 1998, 71, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, T.; Wahlström, J.; Burström, L. Hand-arm vibration and the risk of vascular and neurological diseases-A systematic review and meta-analysis. PLoS ONE 2017, 12, e0180795. [Google Scholar] [CrossRef]
- Bovenzi, M.; Hulshof, C.T. An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and low back pain (1986–1997). Int. Arch. Occup. Environ. Health 1999, 72, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Burström, L.; Nilsson, T.; Wahlström, J. Whole-body vibration and the risk of low back pain and sciatica: A systematic review and meta-analysis. Int. Arch. Occup. Environ. Health 2015, 88, 403–418. [Google Scholar] [CrossRef]
- Eurofound. European Working Conditions Survey-Data Visualisation. Available online: https://www.eurofound.europa.eu/data/european-working-conditions-survey (accessed on 14 November 2022).
- Gallagher, S.; Barbe, M.F. The impaired healing hypothesis: A mechanism by which psychosocial stress and personal characteristics increase MSD risk? Ergonomics 2022, 65, 573–586. [Google Scholar] [CrossRef]
- Ferguson, S.A.; Marras, W.S. A literature review of low back disorder surveillance measures and risk factors. Clin. Biomech. 1997, 12, 211–226. [Google Scholar] [CrossRef]
- Neumann, W.P.; Ekman, M.; Winkel, J. Integrating ergonomics into production system development–The Volvo Powertrain case. Appl. Ergon. 2009, 40, 527–537. [Google Scholar] [CrossRef]
- Lind, C.M.; Rose, L.M. Shifting to proactive risk management: Risk communication using the RAMP tool. Agron. Res. 2016, 14, 513–524. [Google Scholar]
- Cantley, L.F.; Taiwo, O.A.; Galusha, D.; Barbour, R.; Slade, M.D.; Tessier-Sherman, B.; Cullen, M.R. Effect of systematic ergonomic hazard identification and control implementation on musculoskeletal disorder and injury risk. Scand. J. Work Environ. Health 2014, 40, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, K.; Lind, C.M.; Nyman, T. Factors influencing ergonomists’ use of observation-based risk-assessment tools. Work 2019, 64, 93–106. [Google Scholar] [CrossRef] [PubMed]
- EU. Council Directive 89/391/EC of 12 June 1989 on the Introduction of Measures to Encourage Improvements in the Safety and Health of Workers at Work; Publications Office of the European Union: Luxemburg, 1989. [Google Scholar]
- ISO 31010:2018; Risk Management–Guidelines. International Organization for Standardization: Geneva, CH, USA, 2018.
- Beliveau, P.J.; Johnston, H.; Van Eerd, D.; Fischer, S.L. Musculoskeletal disorder risk assessment tool use: A Canadian perspective. Appl. Ergon. 2022, 102, 103740. [Google Scholar] [CrossRef]
- Eliasson, K.; Fjellman-Wiklund, A.; Dahlgren, G.; Hellman, T.; Svartengren, M.; Nyman, T.; Lewis, C. Ergonomists’ experiences of executing occupational health surveillance for workers exposed to hand-intensive work: A qualitative exploration. BMC Health Serv. Res. 2022, 22, 1223. [Google Scholar] [CrossRef]
- Lowe, B.D.; Dempsey, P.G.; Jones, E.M. Ergonomics assessment methods used by ergonomics professionals. Appl. Ergon. 2019, 81, 102882. [Google Scholar] [CrossRef]
- Winkel, J.; Mathiassen, S.E. Assessment of physical work load in epidemiologic studies: Concepts, issues and operational considerations. Ergonomics 1994, 37, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Burdorf, A. The role of assessment of biomechanical exposure at the workplace in the prevention of musculoskeletal disorders. Scand. J. Work Environ. Health 2010, 36, 1–2. [Google Scholar] [CrossRef]
- Fallentin, N. Regulatory actions to prevent work-related musculoskeletal disorders--the use of research-based exposure limits. Scand. J. Work Environ. Health 2003, 29, 247–250. [Google Scholar] [CrossRef]
- Takala, E.P.; Pehkonen, I.; Forsman, M.; Hansson, G.A.; Mathiassen, S.E.; Neumann, W.P.; Sjogaard, G.; Veiersted, K.B.; Westgaard, R.H.; Winkel, J. Systematic evaluation of observational methods assessing biomechanical exposures at work. Scand. J. Work Environ. Health 2010, 36, 3–24. [Google Scholar] [CrossRef]
- Lind, C.M.; Forsman, M.; Rose, L.M. Development and evaluation of RAMP II-a practitioner’s tool for assessing musculoskeletal disorder risk factors in industrial manual handling. Ergonomics 2020, 63, 477–504. [Google Scholar] [CrossRef] [PubMed]
- Lind, C.M.; Forsman, M.; Rose, L.M. Development and evaluation of RAMP I–a practitioner’s tool for screening of musculoskeletal disorder risk factors in manual handling. Int. J. Occup. Saf. Ergon. 2019, 25, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Rhén, I.M.; Forsman, M. Inter- and intra-rater reliability of the OCRA checklist method in video-recorded manual work tasks. Appl. Ergon. 2020, 84, 103025. [Google Scholar] [CrossRef]
- Koch, M.; Lunde, L.K.; Gjulem, T.; Knardahl, S.; Veiersted, K.B. Validity of Questionnaire and Representativeness of Objective Methods for Measurements of Mechanical Exposures in Construction and Health Care Work. PLoS ONE 2016, 11, e0162881. [Google Scholar] [CrossRef] [PubMed]
- EU. Directive 2002/44/EC of the European Parliament and of the Council of 25 June 2002 on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical agents (Vibration) (Sixteenth Individual Directive within the Meaning of Article 16(1) of Directive 89/391/EEC); Publications Office of the European Union: Luxemburg, 2002; pp. 1725–2555. [Google Scholar]
- EU. Directive 2003/10/EC of the European Parliament and of the Council of 6 February 2003 on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Noise) (Seventeenth Individual Directive within the Meaning of Article 16(1) of Directive 89/391/EEC); Publications Office of the European Union: Luxemburg, 2003. [Google Scholar]
- Silverstein, M. Ergonomics and regulatory politics: The Washington State case. Am. J. Ind. Med. 2007, 50, 391–401. [Google Scholar] [CrossRef]
- Arvidsson, I.; Dahlqvist, C.; Enquist, H.; Nordander, C. Action Levels for the Prevention of Work-Related Musculoskeletal Disorders in the Neck and Upper Extremities: A Proposal. Ann. Work Expo. Health 2021, 65, 741–747. [Google Scholar] [CrossRef]
- Haghi, M.; Thurow, K.; Stoll, R. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices. Healthc. Inform. Res. 2017, 23, 4–15. [Google Scholar] [CrossRef]
- Çiçek, M. Wearable technologies and its future applications. Int. J. Electr. Electron. Data Commun. 2015, 3, 45–50. [Google Scholar]
- Izmailova, E.S.; Wagner, J.A.; Perakslis, E.D. Wearable Devices in Clinical Trials: Hype and Hypothesis. Clin. Pharmacol. Ther. 2018, 104, 42–52. [Google Scholar] [CrossRef]
- Ometov, A.; Shubina, V.; Klus, L.; Skibińska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O.; et al. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Stefana, E.; Marciano, F.; Rossi, D.; Cocca, P.; Tomasoni, G. Wearable Devices for Ergonomics: A Systematic Literature Review. Sensors 2021, 21, 777. [Google Scholar] [CrossRef]
- Jeong, S.C.; Kim, S.-H.; Park, J.Y.; Choi, B. Domain-specific innovativeness and new product adoption: A case of wearable devices. Telemat. Inform. 2017, 34, 399–412. [Google Scholar] [CrossRef]
- Qiu, S.; Zhao, H.; Jiang, N.; Wang, Z.; Liu, L.; An, Y.; Zhao, H.; Miao, X.; Liu, R.; Fortino, G. Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Inf. Fusion 2022, 80, 241–265. [Google Scholar] [CrossRef]
- Talitckii, A.; Kovalenko, E.; Shcherbak, A.; Anikina, A.; Bril, E.; Zimniakova, O.; Semenov, M.; Dylov, D.V.; Somov, A. Comparative Study of Wearable Sensors, Video, and Handwriting to Detect Parkinson’s Disease. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Plantard, P.; Shum, H.P.H.; Le Pierres, A.S.; Multon, F. Validation of an ergonomic assessment method using Kinect data in real workplace conditions. Appl. Ergon. 2017, 65, 562–569. [Google Scholar] [CrossRef]
- Patrizi, A.; Pennestrì, E.; Valentini, P.P. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics. Ergonomics 2016, 59, 155–162. [Google Scholar] [CrossRef]
- Lim, S.; D’Souza, C. A Narrative Review on Contemporary and Emerging Uses of Inertial Sensing in Occupational Ergonomics. Int. J. Ind. Ergon. 2020, 76, 102937. [Google Scholar] [CrossRef]
- Giggins, O.M.; Persson, U.M.; Caulfield, B. Biofeedback in rehabilitation. J. Neuroeng. Rehabil. 2013, 10, 60. [Google Scholar] [CrossRef]
- Ma, C.Z.; Wong, D.W.; Lam, W.K.; Wan, A.H.; Lee, W.C. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review. Sensors 2016, 16, 434. [Google Scholar] [CrossRef]
- McDevitt, S.; Hernandez, H.; Hicks, J.; Lowell, R.; Bentahaikt, H.; Burch, R.; Ball, J.; Chander, H.; Freeman, C.; Taylor, C.; et al. Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering 2022, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Markopoulos, P.; Yu, B.; Chen, W.; Timmermans, A. Interactive wearable systems for upper body rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.C.; Sole, G.; Abbott, J.H.; Milosavljevic, S. Extrinsic feedback and management of low back pain: A critical review of the literature. Man. Ther. 2011, 16, 231–239. [Google Scholar] [CrossRef]
- Araujo, F.X.; Scholl Schell, M.; Ribeiro, D.C. Effectiveness of Physiotherapy interventions plus Extrinsic Feedback for neck disorders: A systematic review with meta-analysis. Musculoskelet. Sci. Pract. 2017, 29, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Ranavolo, A.; Draicchio, F.; Varrecchia, T.; Silvetti, A.; Iavicoli, S. Wearable monitoring devices for biomechanical risk assessment at work: Current status and future challenges-a systematic review. Int. J. Environ. Res. Public Health 2018, 15, 2001. [Google Scholar] [CrossRef]
- Kim, W.; Lorenzini, M.; Kapıcıoğlu, K.; Ajoudani, A. ErgoTac: A Tactile Feedback Interface for Improving Human Ergonomics in Workplaces. IEEE Robot. Autom. Let. 2018, 3, 4179–4186. [Google Scholar] [CrossRef]
- Ranavolo, A.; Varrecchia, T.; Iavicoli, S.; Marchesi, A.; Rinaldi, M.; Serrao, M.; Conforto, S.; Cesarelli, M.; Draicchio, F. Surface electromyography for risk assessment in work activities designed using the “revised NIOSH lifting equation”. Int. J. Ind. Ergon. 2018, 68, 34–45. [Google Scholar] [CrossRef]
- Humadi, A.; Nazarahari, M.; Ahmad, R.; Rouhani, H. In-field instrumented ergonomic risk assessment: Inertial measurement units versus Kinect V2. Int. J. Ind. Ergon. 2021, 84, 103147. [Google Scholar] [CrossRef]
- Wohlin, C.; Kalinowski, M.; Romero Felizardo, K.; Mendes, E. Successful combination of database search and snowballing for identification of primary studies in systematic literature studies. Inf. Softw. Technol. 2022, 147, 106908. [Google Scholar] [CrossRef]
- Bos, J.; Kuijer, P.P.; Frings-Dresen, M.H. Definition and assessment of specific occupational demands concerning lifting, pushing, and pulling based on a systematic literature search. Occup. Environ. Med. 2002, 59, 800–806. [Google Scholar] [CrossRef]
- Fan, X.; Lind, C.M.; Rhen, I.M.; Forsman, M. Effects of Sensor Types and Angular Velocity Computational Methods in Field Measurements of Occupational Upper Arm and Trunk Postures and Movements. Sensors 2021, 21, 5527. [Google Scholar] [CrossRef]
- Forsman, M.; Fan, X.; Rhen, I.-M.; Lind, C.M. Mind the gap–development of conversion models between accelerometer- and IMU-based measurements of arm and trunk postures and movements in warehouse work. Appl. Ergon. 2022, 105, 103841. [Google Scholar] [CrossRef]
- Lee, R.; James, C.; Edwards, S.; Skinner, G.; Young, J.L.; Snodgrass, S.J. Evidence for the Effectiveness of Feedback from Wearable Inertial Sensors during Work-Related Activities: A Scoping Review. Sensors 2021, 21, 6337. [Google Scholar] [CrossRef] [PubMed]
- Lind, C.M.; De Clercq, B.; Forsman, M.; Grootaers, A.; Verbrugghe, M.; Van Dyck, L.; Yang, L. Effectiveness and usability of real-time vibrotactile feedback training to reduce postural exposure in real manual sorting work. Ergonomics 2023, 66, 198–216. [Google Scholar] [CrossRef]
- Breen, P.P.; Nisar, A.; Olaighin, G. Evaluation of a single accelerometer based biofeedback system for real-time correction of neck posture in computer users. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 2009, 7269–7272. [Google Scholar] [CrossRef] [PubMed]
- Vignais, N.; Miezal, M.; Bleser, G.; Mura, K.; Gorecky, D.; Marin, F. Innovative system for real-time ergonomic feedback in industrial manufacturing. Appl. Ergon. 2013, 44, 566–574. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, K.; O’Sullivan, L.; O’Sullivan, P.; Dankaerts, W. Investigating the effect of real-time spinal postural biofeedback on seated discomfort in people with non-specific chronic low back pain. Ergonomics 2013, 56, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.C.; Sole, G.; Abbott, J.H.; Milosavljevic, S. The effectiveness of a lumbopelvic monitor and feedback device to change postural behavior: A feasibility randomized controlled trial. J. Orthop. Sports Phys. Ther. 2014, 44, 702–711. [Google Scholar] [CrossRef]
- Thanathornwong, B.; Suebnukarn, S.; Ouivirach, K. A system for predicting musculoskeletal disorders among dental students. Int. J. Occup. Saf. Ergon. 2014, 20, 463–475. [Google Scholar] [CrossRef]
- Peppoloni, L.; Filippeschi, A.; Ruffaldi, E. Assessment of task ergonomics with an upper limb wearable device. In Proceedings of the 22nd Mediterranean Conference on Control and Automation, Palermo, Italy, 16–19 June 2014; pp. 340–345. [Google Scholar]
- Battini, D.; Persona, A.; Sgarbossa, F. Innovative real-time system to integrate ergonomic evaluations into warehouse design and management. Comput. Ind. Eng. 2014, 77, 1–10. [Google Scholar] [CrossRef]
- Thanathornwong, B.; Suebnukarn, S. The Improvement of Dental Posture Using Personalized Biofeedback. Stud. Health Technol. Inform. 2015, 216, 756–760. [Google Scholar]
- Valero, E.; Sivanathan, A.; Bosché, F.; Abdel-Wahab, M. Musculoskeletal disorders in construction: A review and a novel system for activity tracking with body area network. Appl. Ergon. 2016, 54, 120–130. [Google Scholar] [CrossRef]
- Peppoloni, L.; Filippeschi, A.; Ruffaldi, E.; Avizzano, C.A. A novel wearable system for the online assessment of risk for biomechanical load in repetitive efforts. Int. J. Ind. Ergon. 2016, 52, 1–11. [Google Scholar] [CrossRef]
- Vignais, N.; Bernard, F.; Touvenot, G.; Sagot, J.-C. Physical risk factors identification based on body sensor network combined to videotaping. Appl. Ergon. 2017, 65, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, H.; Li, A.R.; Zhang, H. Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention. Autom. Constr. 2017, 74, 2–11. [Google Scholar] [CrossRef]
- Valero, E.; Sivanathan, A.; Bosché, F.; Abdel-Wahab, M. Analysis of construction trade worker body motions using a wearable and wireless motion sensor network. Autom. Constr. 2017, 83, 48–55. [Google Scholar] [CrossRef]
- Doss, R.; Robathan, J.; Abdel-Malek, D.; Holmes, M.W.R. Posture Coaching and Feedback during Patient Handling in a Student Nurse Population. IISE Trans. Occup. Ergon. Hum. Factors 2018, 6, 116–127. [Google Scholar] [CrossRef]
- Otto, T.B.; Campos, A.; de Souza, M.A.; Martins, D.; Bock, E. Online Posture Feedback System Aiming at Human Comfort. In Advances in Ergonomics in Design, Rebelo, F., Soares, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 924–935. [Google Scholar] [CrossRef]
- Park, S.; Hetzler, T.; Hammons, D.; Ward, G. Effects of biofeedback postural training on pre-existing low back pain in static-posture workers. J. Back Musculoskelet. Rehabil. 2018, 31, 849–857. [Google Scholar] [CrossRef]
- Ailneni, R.C.; Syamala, K.R.; Kim, I.S.; Hwang, J. Influence of the wearable posture correction sensor on head and neck posture: Sitting and standing workstations. Work 2019, 62, 27–35. [Google Scholar] [CrossRef]
- Bootsman, R.; Markopoulos, P.; Qi, Q.; Wang, Q.; Timmermans, A.A.A. Wearable technology for posture monitoring at the workplace. Int. J. Hum. Comput. 2019, 132, 99–111. [Google Scholar] [CrossRef]
- Lind, C.M.; Diaz-Olivares, J.A.; Lindecrantz, K.; Eklund, J. A Wearable Sensor System for Physical Ergonomics Interventions Using Haptic Feedback. Sensors 2020, 20, 6010. [Google Scholar] [CrossRef]
- Lind, C.M.; Yang, L.; Abtahi, F.; Hanson, L.; Lindecrantz, K.; Lu, K.; Forsman, M.; Eklund, J. Reducing postural load in order picking through a smart workwear system using real-time vibrotactile feedback. Appl. Ergon. 2020, 89, 103188. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Kim, W.; Zhang, Y.; Xiong, S. Development and Validation of a Wearable Inertial Sensors-Based Automated System for Assessing Work-Related Musculoskeletal Disorders in the Workspace. Int. J. Environ. Res. Public Health 2020, 17, 6050. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.C.; Milosavljevic, S.; Terry, J.; Abbott, J.H. Effectiveness of a lumbopelvic monitor and feedback device to change postural behaviour: The ELF cluster randomised controlled trial. Occup. Environ. Med. 2020, 77, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Owlia, M.; Kamachi, M.; Dutta, T. Reducing lumbar spine flexion using real-time biofeedback during patient handling tasks. Work 2020, 66, 41–51. [Google Scholar] [CrossRef]
- Cerqueira, S.M.; Silva, A.F.D.; Santos, C.P. Smart Vest for Real-Time Postural Biofeedback and Ergonomic Risk Assessment. IEEE Access 2020, 8, 107583–107592. [Google Scholar] [CrossRef]
- Zhao, J.; Obonyo, E.; GBilén, S. Wearable Inertial Measurement Unit Sensing System for Musculoskeletal Disorders Prevention in Construction. Sensors 2021, 21, 1324. [Google Scholar] [CrossRef]
- Kamachi, M.; Owlia, M.; Dutta, T. Evaluating a wearable biofeedback device for reducing end-range sagittal lumbar spine flexion among home caregivers. Appl. Ergon. 2021, 97, 103547. [Google Scholar] [CrossRef]
- Villalobos, A.; Mac Cawley, A. Prediction of slaughterhouse workers’ RULA scores and knife edge using low-cost inertial measurement sensor units and machine learning algorithms. Appl. Ergon. 2022, 98, 103556. [Google Scholar] [CrossRef]
- Trask, C.; Mathiassen, S.E.; Wahlström, J.; Forsman, M. Cost-efficient assessment of biomechanical exposure in occupational groups, exemplified by posture observation and inclinometry. Scand. J. Work Environ. Health 2014, 40, 252–265. [Google Scholar] [CrossRef]
- Rose, L.M.; Eklund, J.; Nord Nilsson, L.; Barman, L.; Lind, C.M. The RAMP package for MSD risk management in manual handling–A freely accessible tool, with website and training courses. Appl. Ergon. 2020, 86, 103101. [Google Scholar] [CrossRef]
- Arvidsson, I.; Dahlqvist, C.; Enquist, H.; Nordander, C. Action Levels for Prevention of Work Related Musculoskeletal Disorders; Arbets- Och Miljömedicin Syd: Lund, Sweden, 2017. [Google Scholar]
- Schall, M.C.; Chen, H.; Cavuoto, L. Wearable inertial sensors for objective kinematic assessments: A brief overview. J. Occup. Environ. Hyg. 2022, 19, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Manivasagam, K.; Yang, L. Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies. Sensors 2022, 22, 1690. [Google Scholar] [CrossRef]
- Schall, M.C., Jr.; Fethke, N.B.; Chen, H. Working postures and physical activity among registered nurses. Appl. Ergon. 2016, 54, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, J.; Bergsten, E.; Trask, C.; Mathiassen, S.E.; Jackson, J.; Forsman, M. Full-Shift Trunk and Upper Arm Postures and Movements Among Aircraft Baggage Handlers. Ann. Occup. Hyg. 2016, 60, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Forsman, M.; Fan, X.; Rhén, I.M.; Lind, C.M. Concerning a Work Movement Velocity Action Level Proposed in “Action Levels for the Prevention of Work-Related Musculoskeletal Disorders in the Neck and Upper Extremities: A Proposal” by Inger Arvidsson et al. (2021). Ann. Work Expo. Health 2022, 66, 130–131. [Google Scholar] [CrossRef] [PubMed]
- Juul-Kristensen, B.; Hansson, G.A.; Fallentin, N.; Andersen, J.H.; Ekdahl, C. Assessment of work postures and movements using a video-based observation method and direct technical measurements. Appl. Ergon. 2001, 32, 517–524. [Google Scholar] [CrossRef]
- Byström, J.U.; Hansson, G.A.; Rylander, L.; Ohlsson, K.; Källrot, G.; Skerfving, S. Physical workload on neck and upper limb using two CAD applications. Appl. Ergon. 2002, 33, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Christmansson, M.; Medbo, L.; Hansson, G.Å.; Ohlsson, K.; Unge Byström, J.; Möller, T.; Forsman, M. A case study of a principally new way of materials kitting—An evaluation of time consumption and physical workload. Int. J. Ind. Ergon. 2002, 30, 49–65. [Google Scholar] [CrossRef]
- Hess, J.A.; Hecker, S.; Weinstein, M.; Lunger, M. A participatory ergonomics intervention to reduce risk factors for low-back disorders in concrete laborers. Appl. Ergon. 2004, 35, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Kazmierczak, K.; Mathiassen, S.E.; Forsman, M.; Winkel, J. An integrated analysis of ergonomics and time consumption in Swedish “craft-type’ car disassembly. Appl. Ergon. 2005, 36, 263–273. [Google Scholar] [CrossRef]
- Balogh, I.; Ohlsson, K.; Hansson, G.Å.; Engström, T.; Skerfving, S. Increasing the degree of automation in a production system: Consequences for the physical workload. Int. J. Ind. Ergon. 2006, 36, 353–365. [Google Scholar] [CrossRef]
- Arvidsson, I.; Arvidsson, M.; Axmon, A.; Hansson, G.Å.; Johansson, C.R.; Skerfving, S. Musculoskeletal disorders among female and male air traffic controllers performing identical and demanding computer work. Ergonomics 2006, 49, 1052–1067. [Google Scholar] [CrossRef]
- Arvidsson, I.; Hansson, G.Å.; Mathiassen, S.E.; Skerfving, S. Changes in physical workload with implementation of mouse-based information technology in air traffic control. Int. J. Ind. Ergon. 2006, 36, 613–622. [Google Scholar] [CrossRef]
- Unge, J.; Ohlsson, K.; Nordander, C.; Hansson, G.Å.; Skerfving, S.; Balogh, I. Differences in physical workload, psychosocial factors and musculoskeletal disorders between two groups of female hospital cleaners with two diverse organizational models. Int. Arch. Occup. Environ. Health 2007, 81, 209–220. [Google Scholar] [CrossRef]
- Freitag, S.; Ellegast, R.; Dulon, M.; Nienhaus, A. Quantitative measurement of stressful trunk postures in nursing professions. Ann. Occup. Hyg. 2007, 51, 385–395. [Google Scholar] [CrossRef]
- Hermanns, I.; Raffler, N.; Ellegast, R.P.; Fischer, S.; Göres, B. Simultaneous field measuring method of vibration and body posture for assessment of seated occupational driving tasks. Int. J. Ind. Ergon. 2008, 38, 255–263. [Google Scholar] [CrossRef]
- Veiersted, K.B.; Gould, K.S.; Osteras, N.; Hansson, G.A. Effect of an intervention addressing working technique on the biomechanical load of the neck and shoulders among hairdressers. Appl. Ergon. 2008, 39, 183–190. [Google Scholar] [CrossRef]
- Nordander, C.; Ohlsson, K.; Balogh, I.; Hansson, G.Å.; Axmon, A.; Persson, R.; Skerfving, S. Gender differences in workers with identical repetitive industrial tasks: Exposure and musculoskeletal disorders. Int. Arch. Occup. Environ. Health 2008, 81, 939–947. [Google Scholar] [CrossRef]
- Buchholz, B.; Park, J.S.; Gold, J.; Punnett, L. Subjective ratings of upper extremity exposures: Inter-method agreement with direct measurement of exposures. Ergonomics 2008, 51, 1064–1077. [Google Scholar] [CrossRef]
- Jonker, D.; Rolander, B.; Balogh, I. Relation between perceived and measured workload obtained by long-term inclinometry among dentists. Appl. Ergon. 2009, 40, 309–315. [Google Scholar] [CrossRef]
- Raffler, N.; Hermanns, I.; Sayn, D.; Göres, B.; Ellegast, R.; Rissler, J. Assessing combined exposures of whole-body vibration and awkward posture―Further results from application of a simultaneous field measurement methodology. Ind. Health 2010, 48, 638–644. [Google Scholar] [CrossRef]
- Hess, J.A.; Kincl, L.; Amasay, T.; Wolfe, P. Ergonomic evaluation of masons laying concrete masonry units and autoclaved aerated concrete. Appl. Ergon. 2010, 41, 477–483. [Google Scholar] [CrossRef]
- Wahlström, J.; Mathiassen, S.E.; Liv, P.; Hedlund, P.; Ahlgren, C.; Forsman, M. Upper arm postures and movements in female hairdressers across four full working days. Ann. Occup. Hyg. 2010, 54, 584–594. [Google Scholar] [CrossRef]
- Moriguchi, C.S.; Carnaz, L.; Alencar, J.F.; Miranda Júnior, L.C.; Granqvist, L.; Hansson, G.; Gil Coury, H.J. Postures and movements in the most common tasks of power line workers. Ind. Health 2011, 49, 482–491. [Google Scholar] [CrossRef]
- Jonker, D.; Rolander, B.; Balogh, I.; Sandsjö, L.; Ekberg, K.; Winkel, J. Mechanical exposure among general practice dentists in Sweden and possible implications of rationalisation. Ergonomics 2011, 54, 953–960. [Google Scholar] [CrossRef]
- Ribeiro, D.C.; Sole, G.; Abbott, J.H.; Milosavljevic, S. Cumulative postural exposure measured by a novel device: A preliminary study. Ergonomics 2011, 54, 858–865. [Google Scholar] [CrossRef]
- Fethke, N.B.; Gant, L.C.; Gerr, F. Comparison of biomechanical loading during use of conventional stud welding equipment and an alternate system. Appl. Ergon. 2011, 42, 725–734. [Google Scholar] [CrossRef]
- Lavender, S.A.; Marras, W.S.; Ferguson, S.A.; Splittstoesser, R.E.; Yang, G. Developing physical exposure-based back injury risk models applicable to manual handling jobs in distribution centers. J. Occup. Environ. Hyg. 2012, 9, 450–459. [Google Scholar] [CrossRef]
- Bruno Garza, J.L.; Eijckelhof, B.H.W.; Johnson, P.W.; Raina, S.M.; Rynell, P.W.; Huysmans, M.A.; van Dieën, J.H.; van der Beek, A.J.; Blatter, B.M.; Dennerlein, J.T. Observed differences in upper extremity forces, muscle efforts, postures, velocities and accelerations across computer activities in a field study of office workers. Ergonomics 2012, 55, 670–681. [Google Scholar] [CrossRef]
- Moriguchi, C.S.; Carnaz, L.; Miranda Júnior, L.C.; Marklin, R.W.; Gil Coury, H.J. Are posture data from simulated tasks representative of field conditions? Case study for overhead electric utility workers. Ergonomics 2012, 55, 1382–1394. [Google Scholar] [CrossRef]
- Douphrate, D.I.; Fethke, N.B.; Nonnenmann, M.W.; Rosecrance, J.C.; Reynolds, S.J. Full shift arm inclinometry among dairy parlor workers: A feasibility study in a challenging work environment. Appl. Ergon. 2012, 43, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, I.; Balogh, I.; Hansson, G.; Ohlsson, K.; Åkesson, I.; Nordander, C. Rationalization in meat cutting–consequences on physical workload. Appl. Ergon. 2012, 43, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Åkesson, I.; Balogh, I.; Hansson, G.Å. Physical workload in neck, shoulders and wrists/hands in dental hygienists during a work-day. Appl. Ergon. 2012, 43, 803–811. [Google Scholar] [CrossRef]
- Freitag, S.; Fincke-Junod, I.; Seddouki, R.; Dulon, M.; Hermanns, I.; Kersten, J.F.; Larsson, T.J.; Nienhaus, A. Frequent bending--an underestimated burden in nursing professions. Ann. Occup. Hyg. 2012, 56, 697–707. [Google Scholar] [CrossRef]
- Jonker, D.; Rolander, B.; Balogh, I.; Sandsjö, L.; Ekberg, K.; Winkel, J. Rationalisation in public dental care–impact on clinical work tasks and mechanical exposure for dentists–a prospective study. Ergonomics 2013, 56, 303–313. [Google Scholar] [CrossRef]
- Moriguchi, C.S.; Carnaz, L.; Veiersted, K.B.; Hanvold, T.N.; Hæg, L.B.; Hansson, G.; Cote Gil Coury, H.J. Occupational posture exposure among construction electricians. Appl. Ergon. 2013, 44, 86–92. [Google Scholar] [CrossRef]
- Ettinger, L.; Kincl, L.; Johnson, P.; Carter, C.; Garfinkel, S.; Karduna, A. Workday Arm Elevation Exposure: A Comparison Between Two Professions. IISE Trans. Occup. Ergon. Hum. Factors 2013, 1, 119–127. [Google Scholar] [CrossRef]
- Ferguson, S.A.; Marras, W.S.; Lavender, S.A.; Splittstoesser, R.E.; Yang, G. Are workers who leave a job exposed to similar physical demands as workers who develop clinically meaningful declines in low-back function? Hum. Factors 2014, 56, 58–72. [Google Scholar] [CrossRef]
- Ciccarelli, M.; Straker, L.; Mathiassen, S.E.; Pollock, C. Posture variation among office workers when using different information and communication technologies at work and away from work. Ergonomics 2014, 57, 1678–1686. [Google Scholar] [CrossRef]
- Heilskov-Hansen, T.; Svendsen, S.W.; Thomsen, J.F.; Mikkelsen, S.; Hansson, G.Å. Sex differences in task distribution and task exposures among Danish house painters: An observational study combining questionnaire data with biomechanical measurements. PLoS ONE 2014, 9, e110899. [Google Scholar] [CrossRef]
- Freitag, S.; Seddouki, R.; Dulon, M.; Kersten, J.F.; Larsson, T.J.; Nienhaus, A. The effect of working position on trunk posture and exertion for routine nursing tasks: An experimental study. Ann. Occup. Hyg. 2014, 58, 317–325. [Google Scholar] [CrossRef]
- Hanvold, T.N.; Wærsted, M.; Mengshoel, A.M.; Bjertness, E.; Veiersted, K.B. Work with prolonged arm elevation as a risk factor for shoulder pain: A longitudinal study among young adults. Appl. Ergon. 2015, 47, 43–51. [Google Scholar] [CrossRef]
- Balogh, I.; Ohlsson, K.; Nordander, C.; Bjork, J.; Hansson, G.A. The importance of work organization on workload and musculoskeletal health–Grocery store work as a model. Appl. Ergon. 2016, 53 Pt A, 143–151. [Google Scholar] [CrossRef]
- Schall, M.C., Jr.; Fethke, N.B.; Chen, H.; Oyama, S.; Douphrate, D.I. Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies. Ergonomics 2016, 59, 591–602. [Google Scholar] [CrossRef]
- Nowak, J.; Erbe, C.; Hauck, I.; Groneberg, D.A.; Hermanns, I.; Ellegast, R.; Ditchen, D.; Ohlendorf, D. Motion analysis in the field of dentistry: A kinematic comparison of dentists and orthodontists. BMJ Open 2016, 6, e011559. [Google Scholar] [CrossRef]
- Raffler, N.; Ellegast, R.; Kraus, T.; Ochsmann, E. Factors affecting the perception of whole-body vibration of occupational drivers: An analysis of posture and manual materials handling and musculoskeletal disorders. Ergonomics 2016, 59, 48–60. [Google Scholar] [CrossRef]
- Raffler, N.; Rissler, J.; Ellegast, R.; Schikowsky, C.; Kraus, T.; Ochsmann, E. Combined exposures of whole-body vibration and awkward posture: A cross sectional investigation among occupational drivers by means of simultaneous field measurements. Ergonomics 2017, 60, 1564–1575. [Google Scholar] [CrossRef]
- Kozak, A.; Freitag, S.; Nienhaus, A. Evaluation of a Training Program to Reduce Stressful Trunk Postures in the Nursing Professions: A Pilot Study. Ann. Work Expo. Health 2017, 61, 22–32. [Google Scholar] [CrossRef]
- Yu, D.; Dural, C.; Morrow, M.M.; Yang, L.; Collins, J.W.; Hallbeck, S.; Kjellman, M.; Forsman, M. Intraoperative workload in robotic surgery assessed by wearable motion tracking sensors and questionnaires. Surg. Endosc. 2017, 31, 877–886. [Google Scholar] [CrossRef]
- Arias, O.E.; Umukoro, P.E.; Stoffel, S.D.; Hopcia, K.; Sorensen, G.; Dennerlein, J.T. Associations between trunk flexion and physical activity of patient care workers for a single shift: A pilot study. Work 2017, 56, 247–255. [Google Scholar] [CrossRef]
- Zare, M.; Biau, S.; Brunet, R.; Roquelaure, Y. Comparison of three methods for evaluation of work postures in a truck assembly plant. Ergonomics 2017, 60, 1551–1563. [Google Scholar] [CrossRef]
- Palm, P.; Gupta, N.; Forsman, M.; Skotte, J.; Nordquist, T.; Holtermann, A. Exposure to Upper Arm Elevation During Work Compared to Leisure Among 12 Different Occupations Measured with Triaxial Accelerometers. Ann. Work Expo. Health 2018, 62, 689–698. [Google Scholar] [CrossRef]
- Simonsen, J.G.; Dahlqvist, C.; Enquist, H.; Nordander, C.; Axmon, A.; Arvidsson, I. Assessments of Physical Workload in Sonography Tasks Using Inclinometry, Goniometry, and Electromyography. Saf. Health Work 2018, 9, 326–333. [Google Scholar] [CrossRef]
- Dahlqvist, C.; Nordander, C.; Forsman, M.; Enquist, H. Self-recordings of upper arm elevation during cleaning–comparison between analyses using a simplified reference posture and a standard reference posture. BMC Musculoskelet. Disord. 2018, 19, 402. [Google Scholar] [CrossRef]
- Hauck, I.; Erbe, C.; Nowak, J.; Hermanns, I.; Ditchen, D.; Ellegast, R.; Oremek, G.; Groneberg, D.A.; Ohlendorf, D. Kinematic posture analysis of orthodontists in their daily working practice. J. Orofac. Orthop. 2018, 79, 389–402. [Google Scholar] [CrossRef]
- Granzow, R.F.; Schall, M.C., Jr.; Smidt, M.F.; Chen, H.; Fethke, N.B.; Huangfu, R. Characterizing exposure to physical risk factors among reforestation hand planters in the Southeastern United States. Appl. Ergon. 2018, 66, 1–8. [Google Scholar] [CrossRef]
- Kersten, J.T.; Fethke, N.B. Radio frequency identification to measure the duration of machine-paced assembly tasks: Agreement with self-reported task duration and application in variance components analyses of upper arm postures and movements recorded over multiple days. Appl. Ergon. 2019, 75, 74–82. [Google Scholar] [CrossRef]
- Merino, G.; da Silva, L.; Mattos, D.; Guimarães, B.; Merino, E. Ergonomic evaluation of the musculoskeletal risks in a banana harvesting activity through qualitative and quantitative measures, with emphasis on motion capture (Xsens) and EMG. Int. J. Ind. Ergon. 2019, 69, 80–89. [Google Scholar] [CrossRef]
- Heiden, M.; Zetterberg, C.; Mathiassen, S.E. Trunk and upper arm postures in paper mill work. Appl. Ergon. 2019, 76, 90–96. [Google Scholar] [CrossRef]
- Jorgensen, M.B.; Gupta, N.; Korshoj, M.; Lagersted-Olsen, J.; Villumsen, M.; Mortensen, O.S.; Skotte, J.; Sogaard, K.; Madeleine, P.; Samani, A.; et al. The DPhacto cohort: An overview of technically measured physical activity at work and leisure in blue-collar sectors for practitioners and researchers. Appl. Ergon. 2019, 77, 29–39. [Google Scholar] [CrossRef]
- Wærsted, M.; Enquist, H.; Veiersted, K.B. Hairdressers’ shoulder load when blow-drying–Studying the effect of a new blow dryer design on arm inclination angle and muscle pain. Int. J. Ind. Ergon. 2019, 74, 102839. [Google Scholar] [CrossRef]
- Merkus, S.L.; Lunde, L.K.; Koch, M.; Waersted, M.; Knardahl, S.; Veiersted, K.B. Physical capacity, occupational physical demands, and relative physical strain of older employees in construction and healthcare. Int. Arch. Occup. Environ. Health 2019, 92, 295–307. [Google Scholar] [CrossRef]
- Thamsuwan, O.; Galvin, K.; Tchong-French, M.; Kim, J.H.; Johnson, P.W. A feasibility study comparing objective and subjective field-based physical exposure measurements during apple harvesting with ladders and mobile platforms. J. Agromedicine 2019, 24, 268–278. [Google Scholar] [CrossRef]
- Anne, B.; Ingo, H.; Rolf, E.; Fraeulin, L.; Fabian, H.; Mache, S.; Groneberg, D.A.; Daniela, O. A kinematic posture analysis of neurological assistants in their daily working practice-a pilot study. J. Occup. Med. Toxicol. 2020, 15, 1–3. [Google Scholar] [CrossRef]
- Thamsuwan, O.; Galvin, K.; Tchong-French, M.; Aulck, L.; Boyle, L.N.; Ching, R.P.; McQuade, K.J.; Johnson, P.W. Comparisons of physical exposure between workers harvesting apples on mobile orchard platforms and ladders, part 1: Back and upper arm postures. Appl. Ergon. 2020, 89, 103193. [Google Scholar] [CrossRef]
- Thamsuwan, O.; Galvin, K.; Tchong-French, M.; Aulck, L.; Boyle, L.N.; Ching, R.P.; McQuade, K.J.; Johnson, P.W. Comparisons of physical exposure between workers harvesting apples on mobile orchard platforms and ladders, part 2: Repetitive upper arm motions. Appl. Ergon. 2020, 89, 103192. [Google Scholar] [CrossRef]
- Zare, M.; Bodin, J.; Sagot, J.C.; Roquelaure, Y. Quantification of Exposure to Risk Postures in Truck Assembly Operators: Neck, Back, Arms and Wrists. Int. J. Environ. Res. Public Health 2020, 17, 6062. [Google Scholar] [CrossRef]
- Holtermann, A.; Fjeldstad Hendriksen, P.; Greby Schmidt, K.; Jagd Svendsen, M.; Nørregaard Rasmussen, C.D. Physical Work Demands of Childcare Workers in Denmark: Device-Based Measurements and Workplace Observations Among 199 Childcare Workers from 16 Day Nurseries. Ann. Work Expo. Health 2020, 64, 586–595. [Google Scholar] [CrossRef]
- Nourollahi-Darabad, M.; Afshari, D.; Dianat, I.; Jodakinia, L. Long-duration assessment of upper arm posture and motion and their association with perceived symptoms among bakery workers. Int. J. Ind. Ergon. 2020, 80, 103029. [Google Scholar] [CrossRef]
- Robert-Lachaine, X.; Larue, C.; Denis, D.; Delisle, A.; Mecheri, H.; Corbeil, P.; Plamondon, A. Feasibility of quantifying the physical exposure of materials handlers in the workplace with magnetic and inertial measurement units. Ergonomics 2020, 63, 283–292. [Google Scholar] [CrossRef]
- Fethke, N.B.; Schall, M.C., Jr.; Chen, H.; Branch, C.A.; Merlino, L.A. Biomechanical factors during common agricultural activities: Results of on-farm exposure assessments using direct measurement methods. J. Occup. Environ. Hyg. 2020, 17, 85–96. [Google Scholar] [CrossRef]
- Khan, M.I.; Bath, B.; Kociolek, A.; Zeng, X.; Koehncke, N.; Trask, C. Trunk Posture Exposure Patterns among Prairie Ranch and Grain Farmers. J. Agromedicine 2020, 25, 210–220. [Google Scholar] [CrossRef]
- Porta, M.; Pau, M.; Orrù, P.F.; Nussbaum, M.A. Trunk Flexion Monitoring among Warehouse Workers Using a Single Inertial Sensor and the Influence of Different Sampling Durations. Int. J. Environ. Res. Public Health 2020, 17, 7117. [Google Scholar] [CrossRef]
- Wilhelmsson, S.; Andersson, M.; Arvidsson, I.; Dahlqvist, C.; Hemsworth, P.H.; Yngvesson, J.; Hultgren, J. Physical workload and psychosocial working conditions in Swedish pig transport drivers. Int. J. Ind. Ergon. 2021, 83, 103124. [Google Scholar] [CrossRef]
- Loske, D.; Klumpp, M.; Keil, M.; Neukirchen, T. Logistics Work, Ergonomics and Social Sustainability: Empirical Musculoskeletal System Strain Assessment in Retail Intralogistics. Logistics 2021, 5, 89. [Google Scholar] [CrossRef]
- Schall, M.C., Jr.; Zhang, X.; Chen, H.; Gallagher, S.; Fethke, N.B. Comparing upper arm and trunk kinematics between manufacturing workers performing predominantly cyclic and non-cyclic work tasks. Appl. Ergon. 2021, 93, 103356. [Google Scholar] [CrossRef]
- Brents, C.; Hischke, M.; Reiser, R.; Rosecrance, J. Trunk Posture during Manual Materials Handling of Beer Kegs. Int. J. Environ. Res. Public Health 2021, 18, 7380. [Google Scholar] [CrossRef]
- Kim, J.H.; Vaughan, A.; Kincl, L. Characterization of Musculoskeletal Injury Risk in Dungeness Crab Fishing. J. Agromedicine 2022, 28, 309–320. [Google Scholar] [CrossRef]
- Nunes, M.L.; Folgado, D.; Fujão, C.; Silva, L.; Rodrigues, J.; Matias, P.; Barandas, M.; Carreiro, A.V.; Madeira, S.; Gamboa, H. Posture Risk Assessment in an Automotive Assembly Line Using Inertial Sensors. IEEE Access 2022, 10, 83221–83235. [Google Scholar] [CrossRef]
- Rolander, B.; Forsman, M.; Ghafouri, B.; Abtahi, F.; Wåhlin, C. Measurements and observations of movements at work for warehouse forklift truck operators. Int. J. Occup. Saf. Ergon. 2022, 28, 1840–1848. [Google Scholar] [CrossRef]
- Fan, X.; Forsman, M.; Yang, L.; Lind, C.M.; Kjellman, M. Surgeons’ physical workload in open surgery versus robot-assisted surgery and nonsurgical tasks. Surg. Endosc. 2022, 36, 8178–8194. [Google Scholar] [CrossRef]
- Jackson, J.A.; Mathiassen, S.E.; Wahlström, J.; Liv, P.; Forsman, M. Is what you see what you get? Standard inclinometry of set upper arm elevation angles. Appl. Ergon. 2015, 47, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.A.; Mathiassen, S.E.; Wahlström, J.; Liv, P.; Forsman, M. Digging deeper into the assessment of upper arm elevation angles using standard inclinometry. Appl. Ergon. 2015, 51, 102–103. [Google Scholar] [CrossRef]
- Li, J.D.; Lu, T.W.; Lin, C.C.; Kuo, M.Y.; Hsu, H.C.; Shen, W.C. Soft tissue artefacts of skin markers on the lower limb during cycling: Effects of joint angles and pedal resistance. J. Biomech. 2017, 62, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.I.M.; Nussbaum, M.A.; Kong, Z.Y. Using a smart textile system for classifying occupational manual material handling tasks: Evidence from lab-based simulations. Ergonomics 2019, 62, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Porta, M.; Kim, S.; Pau, M.; Nussbaum, M.A. Classifying diverse manual material handling tasks using a single wearable sensor. Appl. Ergon. 2021, 93, 103386. [Google Scholar] [CrossRef]
- Berglund, K.; Lind, C.M.; Kjellberg, K.; Yang, L.; Målqvist, I.; Forsman, M. Fysisk Belastning Inom Hemtjänsten–Kartläggning Och Åtgärdsförslag (Physical Workload in Home Care–Inventory and Measures); Centre for Occupational and Environmental Medicine, Stockholm County Council: Stockholm, Sweden, 2021. [Google Scholar]
- Bouvier, B.; Duprey, S.; Claudon, L.; Dumas, R.; Savescu, A. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations. Sensors 2015, 15, 18813. [Google Scholar] [CrossRef]
- Fantozzi, S.; Giovanardi, A.; Magalhães, F.A.; Di Michele, R.; Cortesi, M.; Gatta, G. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J. Sports Sci. 2016, 34, 1073–1080. [Google Scholar] [CrossRef]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med. Biol. Eng. Comput. 2017, 55, 609–619. [Google Scholar] [CrossRef]
- Forsman, M.; Yang, L.; Chinarro, F.; Willén, J. A Low-Cost Sensor-Based Smartphone App for Wrist Velocity Measurements. In Proceedings of Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021), Cham; pp. 763–767.
- Muller, A.; Mecheri, H.; Corbeil, P.; Plamondon, A.; Robert-Lachaine, X. Inertial Motion Capture-Based Estimation of L5/S1 Moments during Manual Materials Handling. Sensors 2022, 22, 6454. [Google Scholar] [CrossRef]
- Holtermann, A.; Schellewald, V.; Mathiassen, S.E.; Gupta, N.; Pinder, A.; Punakallio, A.; Veiersted, K.B.; Weber, B.; Takala, E.P.; Draicchio, F.; et al. A practical guidance for assessments of sedentary behavior at work: A PEROSH initiative. Appl. Ergon. 2017, 63, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Douwes, M.; Forsman, M.; Könemann, R.; Heinrich, K.; Enquist, H.; Pinder, A.; Punakallio, A.; Uusitalo, A.; Ditchen, D.; et al. Assessing Arm Elevation at Work with Technical Systems; TNO: Leiden, The Netherlands, 2018. [Google Scholar] [CrossRef]
- ISO 12100:2010; Safety of Machinery–General Principles for Design–Risk Assessment and Risk Reduction. International Organization for Standardization: Geneva, Switzerland, 2010.
- Waters, T.R.; Putz-Anderson, V.; Garg, A.; Fine, L.J. Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 1993, 36, 749–776. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.L.; Waters, T.R.; Krieg, E.; Werren, D. Efficacy of the revised NIOSH lifting equation to predict risk of low-back pain associated with manual lifting: A one-year prospective study. Hum. Factors 2014, 56, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.A.; Asterland, P.; Holmer, N.G.; Skerfving, S. Validity and reliability of triaxial accelerometers for inclinometry in posture analysis. Med. Biol. Eng. Comput. 2001, 39, 405–413. [Google Scholar] [CrossRef]
- Arvidsson, I.; Dahlqvist, C.; Enquist, H.; Nordander, C. Reply to Letter to the Editor, by Mikael Forsman, Xuelong Fan, Ida-Märta Rhen and Carl Mikael Lind. Ann. Work Expo. Health 2021, 66, 132. [Google Scholar] [CrossRef]
- Marras, W.S.; Ferguson, S.A.; Gupta, P.; Bose, S.; Parnianpour, M.; Kim, J.Y.; Crowell, R.R. The quantification of low back disorder using motion measures: Methodology and validation. Spine 1999, 24, 2091–2100. [Google Scholar] [CrossRef]
- Marras, W.S.; Lavender, S.A.; Leurgans, S.E.; Rajulu, S.L.; Gary Allread, W.; Fathallah, F.A.; Ferguson, S.A. The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders: The effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury. Spine 1993, 18, 617–628. [Google Scholar] [CrossRef]
- Marras, W.S.; Lavender, S.A.; Leurgans, S.E.; Fathallah, F.A.; Ferguson, S.A.; Allread, W.G.; Rajulu, S.L. Biomechanical risk factors for occupationally related low back disorders. Ergonomics 1995, 38, 377–410. [Google Scholar] [CrossRef]
- Ranavolo, A.; Ajoudani, A.; Cherubini, A.; Bianchi, M.; Fritzsche, L.; Iavicoli, S.; Sartori, M.; Silvetti, A.; Vanderborght, B.; Varrecchia, T.; et al. The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics. Sensors 2020, 20, 5750. [Google Scholar] [CrossRef]
- NIOSH. Hierarchy of Controls. Available online: https://www.cdc.gov/niosh/topics/hierarchy/default.html (accessed on 3 November 2022).
- Graben, P.R.; Schall, M.C., Jr.; Gallagher, S.; Sesek, R.; Acosta-Sojo, Y. Reliability Analysis of Observation-Based Exposure Assessment Tools for the Upper Extremities: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 595. [Google Scholar] [CrossRef]
- Moore, J.S.; Garg, A. The Strain Index: A proposed method to analyze jobs for risk of distal upper extremity disorders. Am. Ind. Hyg. Assoc. J. 1995, 56, 443–458. [Google Scholar] [CrossRef]
- Garg, A.; Moore, J.S.; Kapellusch, J.M. The Revised Strain Index: An improved upper extremity exposure assessment model. Ergonomics 2017, 60, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, S.; Schall, M.C., Jr.; Sesek, R.F.; Huangfu, R. An Upper Extremity Risk Assessment Tool Based on Material Fatigue Failure Theory: The Distal Upper Extremity Tool (DUET). Hum. Factors 2018, 60, 1146–1162. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Gray, M.; Hunter, L.; Birtles, M.; Riley, D. Development of an Assessment Tool for Repetitive Tasks of the Upper Limbs (ART); HSE Books: Derbyshire, UK, 2009. [Google Scholar]
- Douwes, M.; de Kraker, H. Development of a non-expert risk assessment method for hand-arm related tasks (HARM). Int. J. Ind. Ergon. 2014, 44, 316–327. [Google Scholar] [CrossRef]
- Gallagher, S.; Sesek, R.F.; Schall, M.C., Jr.; Huangfu, R. Development and validation of an easy-to-use risk assessment tool for cumulative low back loading: The Lifting Fatigue Failure Tool (LiFFT). Appl. Ergon. 2017, 63, 142–150. [Google Scholar] [CrossRef] [PubMed]
- McAtamney, L.; Nigel Corlett, E. RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 1993, 24, 91–99. [Google Scholar] [CrossRef]
- Hignett, S.; McAtamney, L. Rapid Entire Body Assessment (REBA). Appl. Ergon. 2000, 31, 201–205. [Google Scholar] [CrossRef]
- Karhu, O.; Kansi, P.; Kuorinka, I. Correcting working postures in industry: A practical method for analysis. Appl. Ergon. 1977, 8, 199–201. [Google Scholar] [CrossRef]
- Lind, C.M. Pushing and pulling: An assessment tool for occupational health and safety practitioners. Int. J. Occup. Saf. Ergon. 2018, 24, 14–26. [Google Scholar] [CrossRef]
- Oakman, J.; Weale, V.; Kinsman, N.; Nguyen, H.; Stuckey, R. Workplace physical and psychosocial hazards: A systematic review of evidence informed hazard identification tools. Appl. Ergon. 2022, 100, 103614. [Google Scholar] [CrossRef]
- Oakman, J.; Kinsman, N.; Weale, V.; Stuckey, R. A qualitative exploration of tools used by WHS professionals for the prevention of musculoskeletal disorders. Saf. Sci. 2022, 149, 105685. [Google Scholar] [CrossRef]
- Pascual, S.A.; Naqvi, S. An investigation of ergonomics analysis tools used in industry in the identification of work-related musculoskeletal disorders. Int. J. Occup. Saf. Ergon. 2008, 14, 237–245. [Google Scholar] [CrossRef]
- Diego-Mas, J.A.; Poveda-Bautista, R.; Garzon-Leal, D.C. Influences on the use of observational methods by practitioners when identifying risk factors in physical work. Ergonomics 2015, 58, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Tajvar, A.; Daneshmandi, H.; Seif, M.; Parsaei, H.; Choobineh, A. A Mixed-Methods Investigation of Occupational Health Specialists’ Knowledge and Application of Pen-and-Paper Observational Methods for Ergonomics Assessment. IISE Trans. Occun. Ergon. Hum. 2022, 10, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Snook, S.H.; Ciriello, V.M. The design of manual handling tasks: Revised tables of maximum acceptable weights and forces. Ergonomics 1991, 34, 1197–1213. [Google Scholar] [CrossRef] [PubMed]
- Mital, A.; Nicholson, A.S.; Ayoub, M.M. A Guide to Manual Materials Handling; Taylor & Francis: London, UK, 1997. [Google Scholar]
- Forsman, M.; Bernmark, E.; Nilsson, B.; Pousette, S.; Mathiassen, S.E. Participative development of packages in the food industry--evaluation of ergonomics and productivity by objective measurements. Work 2012, 41 (Suppl. 1), 1751–1755. [Google Scholar] [CrossRef] [PubMed]
- Mathiassen, S.E.; Paquet, V. The ability of limited exposure sampling to detect effects of interventions that reduce the occurrence of pronounced trunk inclination. Appl. Ergon. 2010, 41, 295–304. [Google Scholar] [CrossRef]
- ISO 11226:2000; Ergonomics—Evaluation of Static Working Postures. International Organization for Standardization: Geneva, Switzerland, 2000.
- Kee, D.; Karwowski, W. LUBA: An assessment technique for postural loading on the upper body based on joint motion discomfort and maximum holding time. Appl. Ergon. 2001, 32, 357–366. [Google Scholar] [CrossRef]
- Miedema, M.C.; Douwes, M.; Dul, J. Recommended maximum holding times for prevention of discomfort of static standing postures. Int. J. Ind. Ergon. 1997, 19, 9–18. [Google Scholar] [CrossRef]
- Douwes, M.; Boocock, M.; Coenen, P.; van den Heuvel, S.; Bosch, T. Predictive validity of the Hand Arm Risk assessment Method (HARM). Int. J. Ind. Ergon. 2014, 44, 328–334. [Google Scholar] [CrossRef]
- Rhen, I.-M.; Gyllensvärd, D.; Hanson, L.; Högberg, D. Time dependent exposure analysis and risk assessment of a manikin’s wrist movements. In Proceedings of the First International Symposium on Digital Human Modeling, Lyon, France, 14–16 June 2011. [Google Scholar]
- Spielholz, P.; Silverstein, B.; Morgan, M.; Checkoway, H.; Kaufman, J. Comparison of self-report, video observation and direct measurement methods for upper extremity musculoskeletal disorder physical risk factors. Ergonomics 2001, 44, 588–613. [Google Scholar] [CrossRef] [PubMed]
- Pulido, J.A.; Barrero, L.H.; Mathiassen, S.E.; Dennerlein, J.T. Correctness of Self-Reported Task Durations: A Systematic Review. Ann Work Expo. Health 2017, 62, 1–16. [Google Scholar] [CrossRef]
- EU. Council Directive 90/269/EEC of 29 May 1990 on the Minimum Health and Safety Requirements for the Manual Handling of Loads Where There Is a Risk Particularly of Back Injury to Workers; Publications Office of the European Union: Luxemburg, 1990. [Google Scholar]
- Karimi, A.; Dianat, I.; Barkhordari, A.; Yusefzade, I.; Rohani-Rasaf, M. A multicomponent ergonomic intervention involving individual and organisational changes for improving musculoskeletal outcomes and exposure risks among dairy workers. Appl. Ergon. 2020, 88, 103159. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.L.; Skovlund, S.V.; Vinstrup, J.; Geisle, N.; Sørensen, S.I.; Thorsen, S.V.; Sundstrup, E. Potential of micro-exercise to prevent long-term sickness absence in the general working population: Prospective cohort study with register follow-up. Sci. Rep. 2022, 12, 2280. [Google Scholar] [CrossRef]
- Sundstrup, E.; Seeberg, K.G.V.; Bengtsen, E.; Andersen, L.L. A Systematic Review of Workplace Interventions to Rehabilitate Musculoskeletal Disorders Among Employees with Physical Demanding Work. J. Occup. Rehabil. 2020, 30, 588–612. [Google Scholar] [CrossRef] [PubMed]
- Yassi, A.; Cooper, J.E.; Tate, R.B.; Gerlach, S.; Muir, M.; Trottier, J.; Massey, K. A randomized controlled trial to prevent patient lift and transfer injuries of health care workers. Spine 2001, 26, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Denis, D.; Gonella, M.; Comeau, M.; Lauzier, M. Questioning the value of manual material handling training: A scoping and critical literature review. Appl. Ergon. 2020, 89, 103186. [Google Scholar] [CrossRef] [PubMed]
- Chan, V.C.H.; Welsh, T.N.; Tremblay, L.; Frost, D.M.; Beach, T.A.C. A comparison of augmented feedback and didactic training approaches to reduce spine motion during occupational lifting tasks. Appl. Ergon. 2022, 99, 103612. [Google Scholar] [CrossRef]
- Clemes, S.A.; Haslam, C.O.; Haslam, R.A. What constitutes effective manual handling training? A systematic review. Occup. Med. 2010, 60, 101–107. [Google Scholar] [CrossRef]
- Verbeek, J.H.; Martimo, K.P.; Karppinen, J.; Kuijer, P.P.; Viikari-Juntura, E.; Takala, E.P. Manual material handling advice and assistive devices for preventing and treating back pain in workers. Cochrane Database Syst. Rev. 2011, 6, Cd005958. [Google Scholar] [CrossRef]
- Hogan, D.A.; Greiner, B.A.; O’Sullivan, L. The effect of manual handling training on achieving training transfer, employee’s behaviour change and subsequent reduction of work-related musculoskeletal disorders: A systematic review. Ergonomics 2014, 57, 93–107. [Google Scholar] [CrossRef]
- Ribeiro, D.C.; Milosavljevic, S.; Abbott, J.H. Effectiveness of a lumbopelvic monitor and feedback device to change postural behaviour: A protocol for the ELF cluster randomised controlled trial. BMJ Open 2017, 7, e015568. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.; Rauter, G.; Riener, R.; Wolf, P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychon. Bull. Rev. 2013, 20, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, P.G.; McGorry, R.W.; Maynard, W.S. A survey of tools and methods used by certified professional ergonomists. Appl. Ergon. 2005, 36, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Schall, M.C.; Fethke, N.B. Gyroscope vector magnitude: A proposed method for measuring angular velocities. Appl. Ergon. 2022, 109, 103981. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Schall, M.C.; Fethke, N.B. Measuring upper arm elevation using an inertial measurement unit: An exploration of sensor fusion algorithms and gyroscope models. Appl. Ergon. 2020, 89, 103187. [Google Scholar] [CrossRef]
- Kim, T.; Chiu, W. Consumer acceptance of sports wearable technology: The role of technology readiness. Int. J. Sports Mark. Spons. 2019, 20, 109–126. [Google Scholar] [CrossRef]
- Schall, M.C., Jr.; Sesek, R.F.; Cavuoto, L.A. Barriers to the Adoption of Wearable Sensors in the Workplace: A Survey of Occupational Safety and Health Professionals. Hum. Factors 2018, 60, 351–362. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Hettinger, L.J.; Huang, Y.H.; Jeffries, S.; Lesch, M.F.; Simmons, L.A.; Verma, S.K.; Willetts, J.L. Employee acceptance of wearable technology in the workplace. Appl. Ergon. 2019, 78, 148–156. [Google Scholar] [CrossRef]
- Datta, P.; Namin, A.S.; Chatterjee, M. A Survey of Privacy Concerns in Wearable Devices. In Proceedings of the 2018 IEEE International Conference on Big Data (IEEE Big Data 2018), Seattle, WA, USA, 10–13 December 2018; pp. 4549–4553. [Google Scholar]
- Mettler, T.; Wulf, J. Physiolytics at the workplace: Affordances and constraints of wearables use from an employee’s perspective. Inf. Syst. J. 2019, 29, 245–273. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A.; Smets, M. Usability, User Acceptance, and Health Outcomes of Arm-Support Exoskeleton Use in Automotive Assembly: An 18-month Field Study. J. Occup. Environ. Med. 2022, 64, 202–211. [Google Scholar] [CrossRef] [PubMed]
- David, G.C. Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occup. Med. 2005, 55, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Buckle, P.; Li, G. User needs in exposure assessment for musculoskeletal risk assessment. In Proceedings of the First International Cyberspace Conference on Ergonomics, Perth, Australia, 1–30 September 1996. [Google Scholar]
- Papp, E.; Wölfel, C.; Krzywinski, J. Acceptance and user experience of wearable assistive devices for industrial purposes. Proc. Des. Soc. DESIGN Conf. 2020, 1, 1515–1520. [Google Scholar] [CrossRef]
- Wulff, I.A.; Westgaard, R.H.; Rasmussen, B. Ergonomic criteria in large-scale engineering design—II: Evaluating and applying requirements in the real world of design. Appl. Ergon. 1999, 30, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Wells, R.P.; Neumann, W.P.; Nagdee, T.; Theberge, N. Solution Building Versus Problem Convincing: Ergonomists Report on Conducting Workplace Assessments. IISE Trans. Occun. Ergon. Hum. Factors 2013, 1, 50–65. [Google Scholar] [CrossRef]
- Yang, L.; Grooten, W.J.A.; Forsman, M. An iPhone application for upper arm posture and movement measurements. Appl. Ergon. 2017, 65, 492–500. [Google Scholar] [CrossRef]
- Chen, H.; Schall, M.C.; Fethke, N. Accuracy of angular displacements and velocities from inertial-based inclinometers. Appl. Ergon. 2018, 67, 151–161. [Google Scholar] [CrossRef]
- You, D.; Smith, A.H.; Rempel, D. Meta-analysis: Association between wrist posture and carpal tunnel syndrome among workers. Saf. Health Work 2014, 5, 27–31. [Google Scholar] [CrossRef]
- Kilbom, Å. Repetitive work of the upper extremity: Part II—The scientific basis (knowledge base) for the guide. Int. J. Ind. Ergon. 1994, 14, 59–86. [Google Scholar] [CrossRef]
- Hansson, G.A.; Balogh, I.; Ohlsson, K.; Rylander, L.; Skerfving, S. Goniometer measurement and computer analysis of wrist angles and movements applied to occupational repetitive work. J. Electromyogr. Kinesiol. 1996, 6, 23–35. [Google Scholar] [CrossRef]
- Jonker, D.; Gustafsson, E.; Rolander, B.; Arvidsson, I.; Nordander, C. Health surveillance under adverse ergonomics conditions--validity of a screening method adapted for the occupational health service. Ergonomics 2015, 58, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Balogh, I.; Arvidsson, I.; Björk, J.; Hansson, G.Å.; Ohlsson, K.; Skerfving, S.; Nordander, C. Work-related neck and upper limb disorders–Quantitative exposure-response relationships adjusted for personal characteristics and psychosocial conditions. BMC Musculoskelet. Disord. 2019, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, C.; Schellewald, V.; Heßling, S.; Hermanns-Truxius, I.; Desbrosses, K.; Douwes, M.; Draicchio, F.; Enquist, H.; Forsman, M.; Gupta, N.; et al. PEPPA-Exchange Platform for Measurements of Occupational Physical Activity and Physical Workload. In Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021), Online, 13–18 June 2021; Springer International Publishing: Cham, Switzerland, 2022; pp. 175–182. [Google Scholar]
- Zare, M.; Sagot, J.C.; Roquelaure, Y. Within and between Individual Variability of Exposure to Work-Related Musculoskeletal Disorder Risk Factors. Int. J. Environ. Res. Public Health 2018, 15, 1003. [Google Scholar] [CrossRef] [PubMed]
- Chan, V.C.H.; Ross, G.B.; Clouthier, A.L.; Fischer, S.L.; Graham, R.B. The role of machine learning in the primary prevention of work-related musculoskeletal disorders: A scoping review. Appl. Ergon. 2022, 98, 103574. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sharma, N.; Blumenstein, M. Recent advances in video-based human action recognition using deep learning: A review. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2865–2872. [Google Scholar]
- Zimmermann, T.; Taetz, B.; Bleser, G. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning. Sensors 2018, 18, 302. [Google Scholar] [CrossRef]
- Lorenz, M.; Bleser, G.; Akiyama, T.; Niikura, T.; Stricker, D.; Taetz, B. Towards Artefact Aware Human Motion Capture using Inertial Sensors Integrated into Loose Clothing. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 1682–1688. [Google Scholar]
- Thomas, B.; Lu, M.L.; Jha, R.; Bertrand, J. Machine Learning for Detection and Risk Assessment of Lifting Action. EEE Trans. Hum. Mach. Syst. 2022, 52, 1196–1204. [Google Scholar] [CrossRef]
- Snyder, K.; Thomas, B.; Lu, M.L.; Jha, R.; Barim, M.S.; Hayden, M.; Werren, D. A deep learning approach for lower back-pain risk prediction during manual lifting. PLoS ONE 2021, 16, e0247162. [Google Scholar] [CrossRef]
- Kulsoom, F.; Narejo, S.; Mehmood, Z.; Chaudhry, H.N.; Butt, A.; Bashir, A.K. A review of machine learning-based human activity recognition for diverse applications. Neural Comput. Appl. 2022, 34, 18289–18324. [Google Scholar] [CrossRef]
- Trost, S.G.; Zheng, Y.; Wong, W.K. Machine learning for activity recognition: Hip versus wrist data. Physiol. Meas. 2014, 35, 2183–2189. [Google Scholar] [CrossRef]
- Ramasamy Ramamurthy, S.; Roy, N. Recent trends in machine learning for human activity recognition—A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1254. [Google Scholar] [CrossRef]
- Hawley, S.J.; Hamilton-Wright, A.; Fischer, S.L. Detecting subject-specific fatigue-related changes in lifting kinematics using a machine learning approach. Ergonomics 2023, 66, 113–124. [Google Scholar] [CrossRef]
- Floridi, L.; Chiriatti, M. GPT-3: Its Nature, Scope, Limits, and Consequences. Minds Mach. 2020, 30, 681–694. [Google Scholar] [CrossRef]
- Rahmanti, A.R.; Yang, H.C.; Bintoro, B.S.; Nursetyo, A.A.; Muhtar, M.S.; Syed-Abdul, S.; Li, Y.J. SlimMe, a Chatbot With Artificial Empathy for Personal Weight Management: System Design and Finding. Front. Nutr. 2022, 9, 870775. [Google Scholar] [CrossRef] [PubMed]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; De Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Lim, S. Vibrotactile feedback in virtual motor learning: A systematic review. Appl. Ergon. 2022, 101, 103694. [Google Scholar] [CrossRef] [PubMed]
- Adriana Cárdenas-Robledo, L.; Hernández-Uribe, Ó.; Reta, C.; Antonio Cantoral-Ceballos, J. Extended reality applications in industry 4.0.–A systematic literature review. Telemat. Inform. 2022, 73, 101863. [Google Scholar] [CrossRef]
- Kaplan, A.D.; Cruit, J.; Endsley, M.; Beers, S.M.; Sawyer, B.D.; Hancock, P.A. The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta-Analysis. Hum. Factors 2021, 63, 706–726. [Google Scholar] [CrossRef]
- Rivera, F.; Brolin, E.; Syberfeldt, A.; Högberg, D.; Iriondo, A.; Perez Luque, E. Using Virtual Reality and Smart Textiles to Assess the Design of Workstations. In Advances in Transdisciplinary Engineering; Säfsten, K., Elgh, F., Eds.; IOS Press: Amsterdam, NL, USA, 2020; Volume 13, pp. 145–154. [Google Scholar]
- Lawson, G.; Salanitri, D.; Waterfield, B. Future directions for the development of virtual reality within an automotive manufacturer. Appl. Ergon. 2016, 53 Pt B, 323–330. [Google Scholar] [CrossRef]
- Lind, C.M.; Sandsjö, L.; Mahdavian, N.; Högberg, D.; Hanson, L.; Diaz Olivares, J.A.; Yang, L.; Forsman, M. Prevention of Work Related Musculoskeletal Disorders Using Smart Workwear–The Smart Workwear Consortium. In Human Systems Engineering and Design; Ahram, T., Karwowski, W., Taiar, R., Eds.; Springer: Cham, Switzerland, 2019; Volume 876, pp. 477–483. [Google Scholar]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
Ref. | Term | Definition |
---|---|---|
[59] | Wearable electronics | “Devices that can be worn or mated with human skin to continuously and closely monitor an individual’s activities without interrupting or limiting the user’s motions” |
[60] | Wearable technology | “An application enabled computing device that accepts and processes inputs. This device is generally a fashion accessory usually worn or attached to the body. The device could work independently or be tethered to a smartphone allowing some kind of meaningful interaction with the user. The wearable product could be on the body (like a smart patch), around the body (like a wristwatch or a headband), or in the body (like an identification sensor embedded under the skin or a sensor attached to the heart monitoring cardiac aberrations)” |
[61] | Wearable technology | “Sensors and/or software applications (apps) on smartphones and tablets that can collect health-related data remotely, i.e., outside of the healthcare provider’s office. The data can be collected passively or may require a user’s input.” |
[62] | Wearable device/technology | “Small electronic and mobile devices, or computers with wireless communications capability that are incorporated into gadgets, accessories, or clothes, which can be worn on the human body, or even invasive versions such as micro-chips or smart tattoos” |
[63] | Wearable device | “A tiny package with powerful sensing, processing, storage, and communications capabilities, and the term can refer to any electronic device or product designed to provide a specific service that can be worn by the user.” |
[64] | Wearable device | “Any electronic device or product designed to provide a specific service that can be worn by the user. Wearable technologies are unique in their requirements and functions as the technology incorporate computer and electronic technologies to clothing and other accessories. Typical wearable devices may include components such as sensors, speech recognition technologies, positioning chips, displays, and special monitoring devices. They must be self-powered and fully functional in order to provide access to information anywhere and at any time.” |
Our definition | Wearable device | Gadgets, accessories, or clothes with incorporated self-powered electronics and software that are capable of sensing, processing, and storing, and have communication capabilities that can be comfortably worn on the human body or be implanted on or under the skin, and that are not perceived as obtrusive and hindering performance (such as work performance). |
Identified Articles | Sources (Screened) | |||||
---|---|---|---|---|---|---|
Systematic Literature Reviews | Original Article | |||||
Ref. | Year | Lee et al. [84] | Ranavolo et al. [76] | Stefana et al. [63] | McDevitt et al. [72] | Lind et al. [85] |
[86] | 2009 | X | X | - | - | X |
[87] | 2013 | X | X | - | - | X |
[88] 2 | 2013 | - | - | - | - | - |
[89,90] | 2014 | X | - | - | - | - |
[91] | 2014 | - | X | X | - | - |
[92] | 2014 | X | - | - | - | X |
[93] | 2015 | X | - | - | - | - |
[94,95] | 2016 | X | X | X | - | - |
[96] 2 | 2017 | - | - | - | - | - |
[97] | 2017 | - | X | X | - | - |
[98] | 2017 | - | - | X | - | - |
[99] | 2018 | X | - | - | - | X |
[100] 2 | 2018 | - | - | - | - | - |
[101] | 2018 | X | - | - | - | - |
[102,103] | 2019 | X | - | - | - | - |
[104] | 2020 | X | - | - | - | X |
[105,106] | 2020 | - | - | - | - | X |
[107,108] 2 | 2020 | - | - | - | - | - |
[109] | 2020 | X | - | X | - | - |
[110] 2 | 2021 | - | - | - | - | - |
[111] | 2021 | - | - | - | - | X |
[112] 2 | 2022 | - | - | - | - | - |
[85] 1 | 2023 | - | - | - | - | X |
10th Percentile | 50th Percentile | 90th Percentile | ||
---|---|---|---|---|
Angular velocity | Arm * | - | 60°/s | - |
Wrist (non-forceful work) | - | 20°/s | - | |
Wrist (forceful work) | - | 15°/s | - | |
Posture | Arm (non-supported) | - | 30° | 60° |
Tool | Targeted Work Exposure | Targeted Body Segment |
---|---|---|
Strain Index [221] | repetitive manual handling | arm, hand/wrist |
Revised Strain Index [222] | repetitive manual handling | arm, hand/wrist |
Distal Upper Extremity Tool [223] | repetitive manual handling | arm, hand/wrist |
ART [224] | repetitive manual handling | arm, hand/wrist, neck, trunk |
HARM [225] | repetitive manual handling | arm, hand/wrist, neck, |
Revised NIOSH Lifting Equation [211] | manual lifting/lowering | back, whole body |
Lifting Fatigue Failure Tool [226] | manual lifting/lowering | back |
RAMP II [51] | various manual handling tasks, e.g., repetitive manual handling, lifting/lowering, pushing/pulling, and demanding postures | whole body |
RULA [227] | demanding postures and force exertion | whole body |
REBA [228] | demanding postures and force exertion | whole body |
OWAS [229] | demanding postures and force exertion | whole body |
Tool | A sampling of Exposure to Postures | |
---|---|---|
Single Demanding Events | Cumulative Exposure | |
RULA [227] | X | |
REBA [228] | X | |
OWAS [229] | x | |
ART [224] | x | |
HARM [225] | x | |
RAMP II [51] | x |
Tool | No. of Categories | Neutral Zone | Non-Neutral Zone (Forward) | Non-Neutral Zone (Backward) |
---|---|---|---|---|
RULA [227] | 5 | −20° 1 to 20° | 20–45°, 45–90°, >90° | <−20° 1 |
HARM [225] | 3 | 0° to 30° 2 | >30° 2 | <−0° 1,3 |
Tool | No. of Categories | Neutral Zone | Non-Neutral Zone (Forward) | Non-Neutral Zone (Backward) |
---|---|---|---|---|
RULA [227] | 4 | 0–10° | 10–20°, >20° | −20° * (and more) |
HARM [225] | 3 | 0–20° | >20° | −10° * (and more) |
RAMP II [51] | 3 | −9° to 29° | ≥30° | −10° * (and more) |
Tool | No. of Categories | Forward Flexion | Extension (Backward Bending) |
---|---|---|---|
RULA [227] | 2 | posture is held static for a longer time than 1 min without a break, repeated more than 4 times per min | posture is held static for a longer time than 1 min without a break, repeated more than 4 times per min |
HARM [225] | 3 | 0–10%, 10–50%, >50% * | 0–10%, 10–50%, >50% * |
RAMP II [51] | 5–7 | <5 min, 5 min to <30 min, 30 min to <1 h, 1 h to <2 h, 2 h to <3 h, 3 h to < 4 h, >4 h | <5 min, 5 min to <30 min, 30 min to <1 h, 1 h to <2 h, >2 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lind, C.M.; Abtahi, F.; Forsman, M. Wearable Motion Capture Devices for the Prevention of Work-Related Musculoskeletal Disorders in Ergonomics—An Overview of Current Applications, Challenges, and Future Opportunities. Sensors 2023, 23, 4259. https://doi.org/10.3390/s23094259
Lind CM, Abtahi F, Forsman M. Wearable Motion Capture Devices for the Prevention of Work-Related Musculoskeletal Disorders in Ergonomics—An Overview of Current Applications, Challenges, and Future Opportunities. Sensors. 2023; 23(9):4259. https://doi.org/10.3390/s23094259
Chicago/Turabian StyleLind, Carl Mikael, Farhad Abtahi, and Mikael Forsman. 2023. "Wearable Motion Capture Devices for the Prevention of Work-Related Musculoskeletal Disorders in Ergonomics—An Overview of Current Applications, Challenges, and Future Opportunities" Sensors 23, no. 9: 4259. https://doi.org/10.3390/s23094259
APA StyleLind, C. M., Abtahi, F., & Forsman, M. (2023). Wearable Motion Capture Devices for the Prevention of Work-Related Musculoskeletal Disorders in Ergonomics—An Overview of Current Applications, Challenges, and Future Opportunities. Sensors, 23(9), 4259. https://doi.org/10.3390/s23094259