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Abstract: The identification of wear rubber balls in the rubber ball cleaning system in heat exchange
equipment directly affects the descaling efficiency. For the problem that the rubber ball image
contains impurities and bubbles and the segmentation is low in real time, a multi-scale feature fusion
real-time instance segmentation model based on the attention mechanism is proposed for the object
segmentation of the rubber ball images. First, we introduce the Pyramid Vision Transformer instead
of the convolution module in the backbone network and use the spatial-reduction attention layer of
the transformer to improve the feature extraction ability across scales and spatial reduction to reduce
computational cost; Second, we improve the feature fusion module to fuse image features across
scales, combined with an attention mechanism to enhance the output feature representation; Third,
the prediction head separates the mask branches separately. Combined with dynamic convolution, it
improves the accuracy of the mask coefficients and increases the number of upsampling layers. It
also connects the penultimate layer with the second layer feature map to achieve detection of smaller
images with larger feature maps to improve the accuracy. Through the validation of the produced
rubber ball dataset, the Dice score, Jaccard coefficient, and mAP of the actual segmented region of
this network with the rubber ball dataset are improved by 4.5%, 4.7%, and 7.73%, respectively, and
our model achieves 33.6 fps segmentation speed and 79.3% segmentation accuracy. Meanwhile, the
average precision of Box and Mask can also meet the requirements under different IOU thresholds.
We compared the DeepMask, Mask R-CNN, BlendMask, SOLOv1 and SOLOv2 instance segmentation
networks with this model in terms of training accuracy and segmentation speed and obtained good
results. The proposed modules can work together to better handle object details and achieve better
segmentation performance.

Keywords: rubber ball cleaning system; image segmentation; feature fusion; polarized self-attention;
Pyramid Vision Transformer; attention mechanism

1. Introduction

Condensing equipment is an indispensable large-scale heat exchange equipment in
the electric power, petrochemical, and other industries. During long-term operation of the
condenser, impurities in the cooling water will collect on the inner surface of the cooling
tube, causing the inner wall of the cooling tube to scale and even block the cooling tube
in serious cases. The rubber ball cleaning system is designed to clean and descale the
condensing unit [1,2]. The rubber ball cleaning system mainly works by rubbing the inner
wall of the rubber ball, which is larger than the diameter of the condensate tube. However,
under the influence of friction conditions and water quality of cooling water, the rubber
ball wears, the diameter decreases, and the phenomenon of ball leakage and ball loss occurs
in the system, which reduces the cleaning effect. In order to achieve the best cleaning
effect, we need to monitor the number and diameter changes of rubber balls in real time
to replace the rubber balls in time and ensure the cleaning effect. This paper proposes an
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innovative image segmentation method based on neural networks, which can realize online
identification of rubber balls, diameter detection, and reduce labour cost.

For rubber balls in cooling water, this paper adopts an image segmentation method
to detect the diameter and number of rubber balls. In recent years, there has been much
research on image segmentation in water, such as image segmentation based on fuzzy
theory, which uses fuzzy nonlinear transformation to improve the image. J.C. Bezdek [3]
proposed a fuzzy C-mean clustering image segmentation algorithm, which maximizes
the similarity of intra-class data objects and minimizes the similarity of inter-class data
objects. The algorithm is also able to retain the target information well. Yiru Wang et al. [4]
proposed an improved Markov Random Field model for underwater image segmentation
in 2015, which combines MRF model with Hard C-mean clustering. The combination
of MRF model and Hard C-mean clustering technique can obtain the underwater image
segmentation method and combines labelling and local features. Liu, Y. et al. [5] designed
a fine segmentation model for underwater images in 2020 and proposed an improved level
set image segmentation algorithm, which can accurately segment underwater images but is
sensitive to light. Wei Wei et al. [6] proposed a local threshold segmentation method based
on image grayscale waveform, applying asymmetric median filtering to remove noise and
detect peaks and valleys on the gray wave to locate edges and entities, and this method
can significantly improve the multi-noise and illumination of uneven images.

Due to the problems that rubber balls are mainly in cooling water, the target density of
collected rubber ball images is large, the rubber balls will cover each other, fast movement,
and uneven illumination, it is not easy for traditional machine learning image segmentation
to capture the characteristics of rubber ball images; the image edges are easily expanded
and distorted, and it will be a very tedious task to obtain the ideal segmentation effect.
Therefore, this paper adopts deep learning based image segmentation. In 2017, Kai-Ming
He [7] added mask prediction branch to the structure of Faster R-CNN [8] and improved
ROI Pooling, proposed ROI Align, and implemented a new instance segmentation network.
Mask R-CNN belongs to two-stage method: the first stage uses RPN (region proposal
network) to generate ROI (region of interest) candidate regions; and the phase two model
predicts the category, bounding box offset, and binarization mask for each ROI. After that,
Zhaogin Huang et al. [9] proposed a network block to regress the instance features together
with the corresponding predicted masks to the mask IOU. The mask scoring strategy
calibrates the inconsistency between mask quality and mask scoring and improves the
instance segmentation performance by prioritizing more accurate mask predictions during
COCO AP evaluation. Li Bing et al. [10] improved the network structure based on the
Mask R-CNN algorithm improvement network by first replacing the standard convolution
of some residual modules in the ResNet feature extraction network with deformable
convolution; then, they connected the spatial attention mechanism module and the channel
attention mechanism module in parallel and added deformable convolution to these two
modules, which significantly improved the instance segmentation accuracy, as well as
the edge refinement. Zonghui Guo et al. [11] used the remote context capability of the
transformer to capture the global information of underwater images and improve the
underwater image information. Xu, Xi et al. [12] combined the multiscale transformer
with CNN module and were able to extract the contextual information of different regions
and the segmentation effect was effectively improved. Huang, Andi et al. [13] proposed a
multiscale feature fusion network, based on the SSD network, and combined the backbone
network with CBAM module so that the network focuses on the target information and has
obvious advantages in underwater images with higher accuracy. However, the rubber ball
is an image moving in water, and it is necessary to improve the segmentation speed while
improving the segmentation accuracy. The YOLO network is a single-stage real-time target
recognition model with fast recognition speed. According to the characteristics of this
model, Bolya [14] proposed Yolact, a fully convolutional real-time instance segmentation
model which implements a one-stage instance segmentation network; the results had
excellent segmentation speed. Combining the above studies and the problems of rubber
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balls, this paper designs a multi-scale feature fusion instance segmentation model based on
the attention mechanism. This model can segment the moving rubber balls under cooling
water impact in real time while taking into account the segmentation accuracy. This method
is based on the Yolact model: (1) it introduces Pyramid Vision Transformer (PVT) [15] in
the backbone network to replace the convolution module, uses a spatial-reduction attention
layer of the transformer to enhance the ability of feature extraction at different scales as
well as spatial reduction to reduce computational cost, and fuses multi-scale features by
feature pyramids to reduce the loss of semantic information and achieve the extraction
of more detailed information; (2) Integrating Polarized Self-Attention (PSA) [16] and the
feature fusion module to fuse image features across scales at the FPN [17] maintains high
internal resolution by separating spatial and channel attention independently of each other,
adds a non-linear component to fully retain high-resolution information, and improves
the quality of feature maps at different scales; (3) The prediction module separates the
mask branches separately and combines dynamic convolution with multi-convolution
kernel fusion to enhance the model representation and improve the accuracy of the mask
coefficients. The detection module performs intensive prediction on the extracted fusion
features and uses the SIOU loss function [18] and Fast NMS to filter out the position of the
object prediction frame, which improves the IOU computation rate and the target frame
suppression accuracy.

2. Related Work

The rubber ball cleaning system is an environmentally friendly and effective cleaning
method for industrial condensers, but there are problems such as the system losing balls,
leaking balls, and the inability to replace the balls in time. In response to these problems,
Japan’s Hitachi has proposed the BRM system using fibre optic sensors to automatically
detect the number of recirculating cleaned balls. Germany’s Taprogge has proposed the
BEM system using water flow to measure the effectiveness of rubber ball cleaning. Zhou
Dengjin et al. [19] proposed a PLC based rubber ball online cleaning system which calculates
the fouling thermal resistance online and can flexibly control the cleaning process to achieve
energy saving. Han Jian [20] proposed a new type of rubber ball cleaning system for
condenser cleaning and local accumulation of rubber balls, using numerical simulation to
select the ball throwing method and PLC for obstacle detection. Li Zhi et al. [21] proposed
an automatic detection device for rubber ball cleaning based on image processing, using
image stitching, image pre-processing, and the minimum error segmentation method for
image segmentation. This method is capable of detecting the number and radius of rubber
balls, but has low detection efficiency for noisy images. In this paper, we propose an
automatic monitoring system based on neural networks, mainly using deep learning image
segmentation models for segmentation.

The real-time segmentation of cleaning rubber balls is a relatively novel problem,
mainly because the cleaning rubber balls have high density, fast movement, and a light
reflection issue. In the downsampling process of the traditional convolutional neural net-
work, the feature representation ability is gradually degraded and the shallow semantic
information is weak. As the convolutional layer is gradually deepened, the semantic infor-
mation is enhanced, but the location information is weakened and the feature resolution is
reduced, so it is necessary to improve the depth segmentation model on innovation. Wang
Hua et al. [22] proposed an improved U-net model for underwater mineral segmentation by
introducing the sampling module and the residual module on the pyramid into the U-net
model to achieve superior segmentation performance. Yu Shengliang et al. [23] proposed a
U-net segmentation model based on the mix transformer for underwater collision object
recognition segmentation. They also introduced the OHEM cross-entropy loss function
to improve the learning ability, which has good robustness to underwater images. To
improve the accuracy of the model, attention mechanisms are embedded in the network to
enhance the primary features and filter out the secondary features. Attention models were
first introduced in the Natural Language Processing (NLP) domain through transformer
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models. Later, attention mechanisms were gradually used in computer vision. This was
followed by self-attention research by Bello et al. [24]. These research initiatives have
greatly benefited computer vision tasks such as image classification and semantic segmen-
tation. Subsequently, Kumar et al. [25] proposed deformable attention blocks to enable
more effective contextual information linking. Wang [26], Lu [27], and Kun Lu [28] et al.
separately proposed an attention-based mechanism for segmentation networks, which also
achieved good results. Therefore, we also introduce an attention mechanism based on the
Yolact network. Here is an introduction to the Yolact network.

Given the real-time capabilities of the Yolact network, we adopt Yolact as the underly-
ing model to solve the problem. The main idea of Yolact is to directly add the mask branch
to the one-stage object detection algorithm without adding any ROI pooling operation.
It divides the instance segmentation into two parallel branches: one for classification and
one for mask prediction:

(1) Using FCN [29] to generate larger-resolution prototype masks which are not specific
to any instance.

(2) The object detection branch adds an extra head to predict the mask factor vector for
instance-specific weighted encoding of the prototype mask.

Finally, we take the instance of the target detection branch after Fast NMS, multiply the
prototype mask and the mask factor vector one by one, and then, combine the multiplied
results for output.

The model structure of the Yolact network is shown in Figure 1. The model is mainly
composed of the backbone network, prediction head, Fast NMS, Protonet [30], and the final
image clipping and thresholding. The common feature backbone networks of Yolact model
include VGG [31], ResNet [32], DenseNet [33], etc. DSSD [34] is used as the prediction
head. First, the image features are extracted from the backbone; then, the Protonet branch
generates the instance mask, the prediction head branch generates the mask coefficients,
and the output results of the two branches are linearly multiplied to obtain the global mask;
finally, the mask is clipped and thresholded to obtain the target mask.

Figure 1. Architecture of Yolact, where C1∼C5 is the backbone network, P3∼P7 is the neck FPN
module, whose output is connected to the prediction head, and the output of the prediction head is
connected to the Detection Module. The output of the highest resolution layer P3 is connected to the
instance generation module Protonet, which generates the instance mask.

3. A Multi-Scale Feature Fusion Real-Time Instance Segmentation Model Based on
Attention Mechanism

The specific model used in this paper is shown in Figure 2, which is an end-to-end
single-stage instance segmentation model for real-time monitoring. Its basic modules and
corresponding enhancements are described below.
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Figure 2. A multi-scale Yolact model based on attentional mechanisms, where C1∼C4 is the Pyramid
Vision Transformer backbone module. Feature fusion module (FFM) integrates low-level and high-
level feature information. Module P2∼P5 is the FPN module with polarized self-attention (PSA)
module inserted between the FPN module and the prediction head, prediction head output of
category confidence, position offset, mask coefficient, mask coefficient using dynamic convolution
branching separately, and detection module using loss function SIoU and Fast NMS.

3.1. Yolact Network

Yolact [14] is an efficient single-stage instance segmentation model that draws on the
YOLO [35–38] series of object detection and is real-time. Compared with other instance
segmentation models, Yolact focuses on speed and has been greatly improved. Therefore,
the network framework of this paper is based on the Yolact network, where C1∼C4 is the
Pyramid Vision Transformer (PVT) backbone network, and P2∼P6 is the neck FPN module
with Polarized Self-Attention (PSA) module inserted between the neck FPN module and
the prediction head, and prediction head output category confidence, position offset, mask
coefficient, mask coefficient using dynamic convolution branching separately, and detection
module using loss function SIOU and Fast NMS. The output of the highest resolution layer
P2 output is connected to the instance generation module Protonet, which generates the
instance mask. Comparing the above figure, we can see that our improvement is mainly
in the feature backbone network module. The original convolutional layer is changed
to the PVT module with dynamic weights and global receptive fields, as shown in the
orange boxes in the figure above. To output high resolution feature maps and enhance
the difference between target and background, the PSA is added to the output of the neck,
as shown in the blue boxes in the figure. The Fast NMS speed of the prediction box is used,
as shown in the brown box in the figure.

3.2. Pyramid Vision Transformer

The PETE is in each layer of PVT. The structure of PVT is shown in Figure 3. Patch
Embedding is mainly used for feature dimensionality reduction and Transformer Encoder
is used for image feature encoding. The structure of Patch Embedding and Transformer
Encoder is shown in Figure 4. We replaced the residual convolution module with a PETE
module to reduce the loss of image features, followed by the design of a progressive
pyramid structure and Spatially Reduced Attention (SAR), which can reduce resource
consumption and allow the backbone network the flexibility to learn multi-scale and high-
resolution features. The backbone network has four layers generating feature maps at
different scales. Compared to the previous layer, the dimension of each layer is halved,
and the resolution of the feature map is reduced to obtain a multi-scale feature map. Each
layer has a similar structure, Patch Embedding Layer and Transformer Encoder. Patch
Embedding is mainly used to encode image information, and the Transformer Encoder is
used to decode and enrich feature information. For the first layer, given an input image of
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W × H × 3, first tokenize it, that is, perform Patch Embedding, and divide it into W × H
42

patches, that is, the size of each patch is 4× 4× 3. The dimension of the feature map
finally obtained by this layer is halved, and the number of tokens is correspondingly
reduced by four times. After that, the feature map of each layer is 1

4 , 1
8 , 1

16 , 1
32 . Since the

patch dimensions of each layer are different, they correspond to different position vectors.
The position vector is calculated as follows:

PE(pos,2i) = sin
(

pos/10,0002i/d
)

PE(pos,2i+1) = cos
(

pos/10,0002i/d
) (1)

where pos represents the position of the patch in the image, and d represents the dimension
of the patch. Next Transformer Encoder includes SRA and Feed Forward. SRA is a
variant of MHA composed of multiple self-attentions. The modification of the multi-head
attention mechanism is mainly to reduce the amount of computation. Since the number
of image tokens in each layer is different, the higher the number, the more computation,
and the calculation amount of self-attention depends on the length of the input sequence.
The Attention function can be described as mapping a query and a set of key–value pairs
to an output, where the query Q, the key K, the value V, and the output are all vectors.
The output is computed as a weighted sum of values, where the weight assigned to
each value is computed by the query compatibility function with the corresponding key.
The output matrix is computed as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (2)

where dk is the number of columns for Q, K. Multi-Head Attention allows the model to
jointly focus on information from different representation subspaces at different locations,

Multihead (Q, K, V) = Concat( head 1, head 2, . . . , head h) (3)

headi = Attention
(

QWQ
i , KWW

i , VWV
i

)
(4)

where Concat is the concatenation operation, WQ
i ∈RCi∗dhead , WW

i ∈RCi∗dhead , WV
i ∈RCi∗ dhead ,

and WQ ∈ RCi∗Ci is a linear projection parameter, and its calculation amount is positively
correlated with the spatial scale of Q, K, and V. Spatial-Reduction Attention performs
spatial reduction operations on K and V before performing the attention operation to
reduce the dimensions of K and V. SRA details are as follows:

SR(X) = Norm
(

Reshape(X, Ri)WS
)

(5)

where X is the input sequence and Ri is the spatial reduction rate. WS ∈ RR2
i ci×Ci is a linear

projection, reducing the input dimension to Ci. Reshape(X, Ri) reshapes the input sequence
X dimension into HiWi

R2
i
×
(

R2
i Ci
)
. Therefore, the complexity of the computational inner

product of SRA entering Attention is reduced from HiWi to HiWi
R2

i
, and its computational

cost is lower than that of MHA. The larger the value of Ri, the lower the computational
cost is very obvious.



Sensors 2023, 23, 4261 7 of 18

Figure 3. Pyramid Vision Transformer. Pyramid structure with four levels, each with a Patch
Embedding and Transformer Encoder (PETE) module. Each layer replaces the convolution module
with a transformer to obtain the global features of the image.

Figure 4. Patch Embedding and Transformer Encoder (PETE) Patch Embedding is mainly used for
feature dimensionality reduction and Transformer Encoder for image feature encoding.

3.3. Improved FPN in the Model

Maintaining high image resolution and preserving global information in fine-grained
tasks such as image segmentation is critical to improving accuracy. Long distance infor-
mation transmission in deep networks with multiple downsampling leads to weakened
semantic information and reduced image resolution. This requires enhancement of the
input–output long-range dependency modelling of high-resolution images, and we there-
fore introduce a polarized self-attentive (PSA) as well as a feature fusion module (FFM) [39]
in the FPN module. The PSA emphasizes spatial and channel features, maintaining high
internal resolution in channel and spatial attention calculations while fully collapsing the
input tensor along the corresponding dimension; it also incorporates non-linearity in the
attention mechanism consistent with fine-grained regression outputs. The PSA module
uses the channel attention mechanism along the channel axis to highlight, as far as possible,
the classification in which the pixel is located. The spatial attention mechanism is used
from a spatial perspective to detect the location of the same semantic pixel and concatenate
them to generate a valid feature descriptor. The PSA module is instantiated in Figure 5.

Through these operations, the PSA module helps to clean the rubber ball images by
filtering the information to obtain salient features, which are then subjected to softmax
normalization to expand the dynamic range of attention. A sigmoid function is then used
for dynamic mapping and is capable of reducing the loss of detail.
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Figure 5. The polarized self-attention block under the parallel layout. The input features are passed
through the spatial attention module and the channel attention module, which are placed in parallel,
and finally multiplied linearly with the input feature map to output the result.

In the FPN model, feature maps are extracted at different scales. The lower level
feature maps have less semantic information but rich spatial features; the higher level
features are rich in semantic information but weak in spatial information. We use the
FFM fusion of deep and shallow feature information to enhance the semantic information
at the lower levels as well as the resolution at the higher levels. Thus, the segmentation
performance is better improved. We combine the PSA module at the output of the FPN
module to compensate for the loss of features at different scales. The highest resolution
feature maps have the richest feature information, and the PSA module reduces redundant
complex background information and false positives. This improvement can highlight the
large amount of spatial and channel information in multi-level feature maps, which can
improve prediction accuracy. The structure diagram of improved FPN module is shown in
Figure 6.

Figure 6. Improved FPN. Improved FPN based on feature fusion module and attention mechanism
module PSA.

3.4. Prediction Head in Model

The Yolact prediction head generates three types of output, namely category confi-
dence, position offset, and mask coefficients. In the experiments, the mask accuracy was
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much lower than the target recognition accuracy, resulting in poor segmentation results.
Therefore, we separate the mask coefficient branch on its basis and add dynamic convolu-
tion to improve the accuracy of the mask coefficients, slightly sacrificing the computational
effort to improve the mask accuracy. Its structure is shown in Figure 7.

Figure 7. Prediction head architecture and dynamic convolution. In contrast to the Yolact prediction
head, we separate the mask coefficient branch separately and use dynamic convolution to improve
their accuracies.

Dynamic convolution is the fusion of multiple convolution kernels in a deep network
to improve model representation without increasing the depth and width of the network.
Dynamic convolution pays attention to the convolution kernel, generates different weight
coefficients for multiple convolution kernels, multiplies the weight coefficients with the
corresponding convolution, and sums them to obtain the final convolution weight, which
is then matrix multiplied with the input to obtain the output. The mathematical expression
for dynamic convolution is as follow:

y = g
(

W̃T(x)x + b̃(x)
)

W̃(x) =
K

∑
k=1

πk(x)W̃k, b̃(x) =
K

∑
k=1

πk(x)b̃k

0 ≤ πk(x) ≤ 1,
K

∑
k=1

πk(x) = 1

(6)

where dynamic convolution outputs: y, πk: indicate attention weights; aggregate weights:
W̃(x); and aggregation bias: b̃(x). In addition, we increase the number of upsampling layers
and connect the penultimate layer to the second layer feature map to achieve detection of
smaller images with larger feature maps and improve the accuracy.

3.5. SIoU Loss Function in Model

The loss functions in the instance segmentation task are generally classification loss, de-
tection loss, and segmentation loss. In the Yolact network, the loss function adds mask loss
and prototype loss. IoU is the intersection ratio of candidate bounding boxes and ground
truth bounding boxes, representing the overlap of the generated candidate bounding boxes
with the original ground-truth bounding boxes. The conversion of the loss function of the
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bounding box from smooth L1 loss to IoU loss is a process of directly using the metric as
the loss function. The mathemaatical expression of IoU in the model is as follows:

IoU =
|B ∩ Bgt|
|B ∪ Bgt|

(7)

where B is the prediction box and Bgt is the true box. Corresponding loss function:
LIoU = 1− IoU. However, if the predicted frame and the real frame do not intersect,
the loss function is always one, the loss function is not controllable, and the gradient cannot
be returned. Second, the sizes of the two predicted frames are the same, the two IoUs are
also the same, and the IoU loss function cannot distinguish between them. The intersection
situation is different. GIoU [40] introduces a penalty cost by adding a minimum circum-
scribed rectangle to wrap any two rectangular boxes; DIoU [41] considers the overlap area
and center point distance, and CIoU [41] increases the aspect ratio factor of the prediction
box. However, the orientation mismatch between the detection box and the ground truth
box may cause the prediction box to fail to match the ground truth box during the training
process, resulting in a worse model. The SIoU loss function [18] we use takes into account
the angle vector between the bounding box regressions, making the predicted box move to
the nearest axis fairly quickly. Subsequent methods only require a regression of coordinates
X or Y, effectively reducing the total number of degrees of freedom. In order to obtain angle
perception, the LF component is introduced, which is defined as follows:

Λ = 1− 2 ∗ sin2
(

arcsin(x)− π

4

)
x =

ch
σ

= sin(α)

σ =

√(
bgt

cx − bcx

)2
+
(

bgt
cy − bcy

)2

ch = max
(

bgt
cy , bcy

)
−min

(
bgt

cy , bcy

)
(8)

where σ is the distance from the center point, α is the lower angle between the real frame
bgt and the predicted frame b; bcx , bcy are the predicted frame center coordinates; bgt

cx , bgt
cy are

the real frame center coordinates.
In this training model, we use a target box regression loss function SIoU that takes into

account the distance between box centers, overlapping regions, aspect ratios, and angles,
effectively reducing degrees of freedom, faster convergence, and more accurate inference
in the training phase.

4. Experiments and Results
4.1. Dataset and Experimental Environment

The dataset used in our experience was the images randomly collected during the
running process of the rubber ball to reflect the running state of the rubber ball and
the volume change. The dataset was collected during the operation of the rubber ball
cleaning system of the large condenser. The main equipment used are the special tube
at the inlet end of the ball collector in the rubber ball cleaning device, which is easy to
collect. The ball data were designed by CAD drawing. High-speed line scan cameras and
lighting equipment were also used. The data collected by the camera had a frame rate of
approximately 154 frames per minute. The frame rate collected by the camera must not
be less than the flow rate of the water. Otherwise, the rubber balls in the collected images
will be deformed. The dataset established in this paper has a total of 1000 images of size
2048 × 2000, including images with water environment and without water environment.
After adaptive scaling, the images are unified into 550× 550. Some sample images are
shown in Figure 8.

LabelMe software was used to label the images. Since the rubber balls had the same
appearance and were spherical, they were labelled with circles. On the collected data
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images, the labelling target is a rubber ball with a shape larger than a semicircle, which is
convenient for the counting of the rubber balls. The dataset is in the COCO dataset format.
The experiments were conducted using an NVIDA 1080Ti accelerated graphics card and
the network development framework was Pytorch. The experiments were evaluated using
the COCO dataset evaluation metric, which focuses on IoU, average accuracy mAP, AP,
and fps to evaluate the network performance. In our experiments, we used the k-means
clustering method to preset the size of the anchor box for the dataset to improve the
detection performance.

Figure 8. Sample image of cleaning rubber ball, with blisters, impurities etc.

4.2. Generate Anchor Box

In the object detection segmentation algorithm, the manually designed anchor may
not fit the dataset well; thus, in this article, we used the k-means algorithm clustering based
on the genetic algorithm instead of the manual method to cluster the bounding box of the
training set. We used the maximum IoU mean value of anchor and box as the index to
automatically and vividly fit the anchor of the dataset and improve the network detection
accuracy. We set five clusters and calculated the distance of each sample to the cluster
centre. We updated the cluster centres several times to obtain the best clustering result,
i.e., the most appropriate anchor. The clustering results are shown in Figure 9.

Figure 9. Clustering results. The horizontal and vertical axes represent the width and height of the
rectangular box, respectively. The center of the cluster of five colors represents the anchor that fits the
dataset better.
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4.3. Ablation Experiment

In order to illustrate the advantages of the proposed algorithm, we compare its seg-
mentation accuracy and speed with other modules. The dataset used in this paper is a
continuous frame, which meets the requirements of the tracking algorithm. We set the
batch size to 8 and the learning rate to 0.001, using equal intervals to adjust the learning
rate and a decay multiplier of 0.1. The PVT module used in this paper improves the feature
representation while reducing the loss of semantic information. To verify the capacity of
the module, ablation experiments were performed to demonstrate this. The experimental
results for different backbone networks in the rubber dataset are shown in Table 1. We
compared the Mask R-CNN, BlendMask, SOLOv1, and SOLOv2 instance segmentation
networks with this model in terms of training accuracy and segmentation speed. The
comparison metrics are mAP and segmentation frame rate FPS for different target sizes are
shown in Table 2.

Table 1. Comparison of the performance of different module segmentation. A network model based
on different modules is compared with the base model to highlight the advantages of this model.

Model
Box (%)

APall mAP FPS

Yolact + VGG 61.97 28.2 33.1

Yolact + Darknet 62.53 28.7 34.4

Yolact + Resnet 68.02 29.3 35.7

Yolact + PVT 71.99 32.5 35.3

Yolact + PVT + PSA_FPN 73.14 33.2 34.3

Final model 79.30 36.7 33.6

Table 2. Performance comparison of different model segmentation. The improved model of this
paper is compared with some classical instance segmentation models under the same experimental
conditions.

Model Box Mask

Mask R-CNN 35.7 4.8

BlendMask 41.3 22.3

SOLOv1 30.8 32.5

SOLOv2 33.1 35.7

Yolact 28.2 37.1

final model 36.7 35.2

As can be seen from the table above, our network has approximately 10% better
accuracy than the base network, while the segmentation speed is slightly reduced. This
leads to the conclusion that the module we used can further improve the segmentation
performance. Figures 10 and 11 also give a more visual comparison of the images. From the
visualization of the segmentation results and the segmentation mask results, our model has
a higher segmentation accuracy, the mask edges are more detailed, and the segmentation
exceeds that of the base model.
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Figure 10. Visualization of segmentation results. (a), (b), (c) and (d), respectively, represent the
segmentation results of different network improvements. The first column shows three different
sample images, and the second, third, and fourth columns show the segmentation results under
different modules. Each row represents the segmentation results of the model based on different
modules for the same sample.

Figure 11. Visualization of mask results. (a) is the original rubber ball images, (b) is ground truth
(GT), (c) is the result of the yolact network segmentation mask, (d) is the results of our model
segmentation mask.
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4.4. Analysis of Network Model Test Results

In order to qualitatively analyze the network segmentation performance, based on
the characteristics of the studied data and the correlation between the evaluation metrics,
we chose the PR curve, Dice coefficient, and Jaccard similarity coefficient for quantitative
evaluation. A PR curve is a curve that represents the relationship between Precision

and Recall. Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. The performance of the network

model can be judged by the area under the PR curve: the larger the area, the better the
network performance. As can be seen in Figure 12, our network performs better than the
base network.

Figure 12. Comparison of PR curves. The green curve corresponds to the PR curve of the yolact
network, the blue curve corresponds to the PR curve of Yolact + PVT; the red curve corresponds to
the PR curve of Yolact + PVT + PSA_FPN; and the orange represents the PR curve corresponding to
the model in this paper.

Another metric, the Dice coefficient, is used to evalute the effectiveness of the image
segmentation method. It is the degree of overlap between the foreground pixels of the
segmented image and the region of the ground truth foreground pixels, which is calculated
as follows:

Dice =
2× Recall × Precision

Precision + Recall
(9)

The higher the value of the Dice coefficient, the better the performance of the model.
The Jaccard similarity coefficient, used in this paper to compare the similarity and

difference between a finite set of samples, indicates the similarity between the foreground
pixels of the segmented image and the ground truth foreground pixel region. The higher
the Jaccard coefficient, the better the performance of the model segmentation. The Jaccard
coefficient is calculated as follows:

Jaccard(R, G) =
R ∩ G

R + G− R ∩ G

=
TP

TP + FP + FN

(10)

R indicates the actual predicted outcome and G indicates the true truth. True Positives (TP),
False Positives (FP), and False Negatives (FN) are used in this paper to calculate Jaccard
coefficients.



Sensors 2023, 23, 4261 15 of 18

As can be seen from Figure 13, the PETE-based PVT module we used improved the
Dice score of the base network by about 3.3% and the Jaccard coefficient by about 3.4%. Our
overall improved network improved the Dice score of the base network by about 4.4% and
the Jaccard coefficient by about 4.5%. In addition, we also verified the average prediction
accuracy under different IoU thresholds, and the results are shown in Table 3. Experimental
results show that our network has a significant performance improvement in rubber
dataset segmentation. The PETE module used in the paper, an improved FPN module
based on the attention mechanism, and enhanced mask branches improve the segmentation
performance of the base network. A backbone network based on the PETE module extracts
image features at different scales to reduce feature loss; an improved FPN module better
fuses multi-scale features and uses an attention mechanism to improve output resolution;
an enhanced mask prediction branch provides further improvements in mask accuracy;
an improved prediction head improves prediction accuracy. We propose these improved
modules to enable the overall model segmentation performance to be improved.

Figure 13. Jaccard coefficients and Dice scores for different models. The Jacobi coefficients and Dice
scores for the three models were calculated and compared in a histogram format, with the specific
values indicated.

Table 3. The average prediction of different IOU thresholds. The average precision rates of the
prediction frame and segmentation mask were calculated for ten IoU thresholds in the experiment.

IoU
AP Box Mask

all 78.11 72.74

0.50 92.10 92.10

0.60 90.11 90.11

0.65 90.11 90.11

0.70 90.11 90.11

0.75 89.10 89.10

0.85 86.07 81.71

0.90 68.61 51.44

0.95 29.24 9.65
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5. Discussion

In the article, the backbone network uses the transformer module, which is demanding
on the dataset and suffers from stability; thus, we use pre-trained weights. Our model
increases the number of parameters compared to the base model, and although the seg-
mentation accuracy is improved, the speed is slightly reduced.

6. Conclusions

A multi-scale feature fusion instance segmentation model based on the attention
mechanism is proposed to address the problems of industrial condenser descaling rubber
ball images with impurity, bubbles, and low real-time segmentation. The PETE module
of the backbone network has multi-scale global feature extraction capability, and the FFM
module fuses deep and shallow features to better extract image features; the improved
FPN module integrates the PSA attention mechanism, which combines spatial and channel
attention to further improve the network performance without increasing the number
of parameters; the prediction head separates the mask branches separately. Combined
with dynamic convolution, it improves the accuracy of the mask coefficients, increases the
number of upsampling layers, and connects the penultimate layer with the second layer
feature map to achieve detection of smaller images with larger feature maps to improve
the accuracy; in the feature fusion module, we increase the number of sampling layers on
the pyramid to improve the resolution of the feature map, increase the ability to extract
small target features, and improve the accuracy of small target segmentation. According
to the experimental comparison, our model can achieve 79.3% segmentation accuracy
and 33.6 segmentation speed in the descaling rubber ball image segmentation task. The
average precision of Box and Mask can also meet the requirements under different IOU
thresholds. Combining real-time segmentation performance and segmentation accuracy,
the proposed model outperforms Yolact, DeepMask, Mask R-CNN, BlendMask, SOLOv1
and SOLOv2. From the above, it can be concluded above that our proposed model has
better segmentation effect in the real-time detection of rubber balls for condenser descaling,
and there is room for further research in this work. For example, the model can also be
applied to other segmentation tasks with the potential to further improve the accuracy.
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