
Citation: Ayanoglu, M.B.; Uysal, I.

ML Approach to Improve the Costs

and Reliability of a Wireless Sensor

Network. Sensors 2023, 23, 4303.

https://doi.org/10.3390/s23094303

Academic Editor: Chase Wu

Received: 11 March 2023

Revised: 18 April 2023

Accepted: 24 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

ML Approach to Improve the Costs and Reliability of a Wireless
Sensor Network
Mehmet Bugrahan Ayanoglu *,† and Ismail Uysal *,†

Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
* Correspondence: ayanoglu@usf.edu (M.B.A.); iuysal@usf.edu (I.U.)
† These authors contributed equally to this work.

Abstract: Temperature-controlled closed-loop systems are vital to the transportation of produce.
By maintaining specific transportation temperatures and adjusting to environmental factors, these
systems delay decomposition. Wireless sensor networks (WSN) can be used to monitor the temper-
ature levels at different locations within these transportation containers and provide feedback to
these systems. However, there are a range of unique challenges in WSN implementations, such as
the cost of the hardware, implementation difficulties, and the general ruggedness of the environ-
ment. This paper presents the novel results of a real-life application, where a sensor network was
implemented to monitor the environmental temperatures at different locations inside commercial
temperature-controlled shipping containers. The possibility of predicting one or more locations inside
the container in the absence or breakdown of a logger placed in that location is explored using combi-
natorial input–output settings. A total of 1016 machine learning (ML) models are exhaustively trained,
tested, and validated in search of the best model and the best combinations to produce a higher
prediction result. The statistical correlations between different loggers and logger combinations are
studied to identify a systematic approach to finding the optimal setting and placement of loggers
under a cost constraint. Our findings suggest that even under different and incrementally higher
cost constraints, one can use empirical approaches such as neural networks to predict temperature
variations in a location with an absent or failed logger, within a margin of error comparable to the
manufacturer-specified sensor accuracy. In fact, the median test accuracy is 1.02 degrees Fahrenheit
when using only a single sensor to predict the remaining locations under the assumptions of critical
system failure, and drops to as little as 0.8 and 0.65 degrees Fahrenheit when using one or three
more sensors in the prediction algorithm. We also demonstrate that, by using correlation coefficients
and time series similarity measurements, one can identify the optimal input–output pairs for the
prediction algorithm reliably under most instances. For example, discrete time warping can be used
to select the best location to place the sensors with a 92% match between the lowest prediction error
and the highest similarity sensor with the rest of the group. The findings of this research can be used
for power management in sensor batteries, especially for long transportation routes, by alternating
standby modes where the temperature data for the OFF sensors are predicted by the ON sensors.

Keywords: machine learning; wireless sensor networks; time series; cold chain; transportation;
convolutional neural networks

1. Introduction

The wireless environmental monitoring applications in today’s cold chain present a
range of challenges, including the cost of the hardware implementation, limitations due to
the high power consumption of sensors, and the general ruggedness requirements of the
environment [1,2]. There is a common thread when it comes to tackling both challenges
using data-driven approaches, including statistical analysis and machine learning. The
underlying assumption of this study is that the physical dynamics and environmental fac-
tors of the transport container remain relatively unchanged during the training and testing

Sensors 2023, 23, 4303. https://doi.org/10.3390/s23094303 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23094303
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094303?type=check_update&version=2

Sensors 2023, 23, 4303 2 of 16

process. However, in a real-life application, the wireless network first must be trained on
the specifics of the transportation container without making too many modifications. The
volatility of the estimation models in wireless networks itself is a different kind of research
question which is not in the scope of this paper. This paper presents a detailed study of a
novel real-life dataset where a sensor network is implemented to monitor environmental
temperatures at different locations inside a temperature-controlled shipping container
across different scenarios.

Specifically, the possibility of predicting one or more locations inside the container in
the absence or breakdown of a logger placed in that location is explored using combinatorial
input–output settings where 1016 algorithms are exhaustively trained, tested, and validated.
The statistical correlations between different loggers and logger combinations are studied
to identify a systematic approach to finding the optimal setting and placement of loggers
under a cost constraint.

At its core, wireless sensor analytics represent a form of multivariate time series
analysis, as the data being collected by the sensor are represented temporally across one
or more dimensions. Yang et al. [3] suggest that the time series analysis presents unique
challenges compared to more static data analytics problems such as image and pattern
recognition. These challenges are represented both at the algorithm level as well as the
hardware level, where malfunctioning sensors can generate incorrect or missing data.

In this paper, we concentrate on a specific dataset that represents temperature distri-
butions inside shipping containers for perishable food products (in this case strawberries).
It has been demonstrated that 50% of harvested strawberries are wasted due to inadequate
temperature monitoring and control [4]. An intelligent setup of a wireless temperature
sensor network can alleviate some of this waste with smart distribution practices such as
first-expired-first-out instead of first-in-first-out. Nevertheless, the cost of installation is
prohibitive to most industries, including fresh produce, which limits the number of sensors
that can be utilized in a shipping container [4,5].

There are benefits to replacing node data in unexpected situations of such a sensor
network through the use of machine learning and artificial intelligence methods. These
benefits include improving monitoring accuracy and resolution, preemptively recovering
from sensor malfunctions, and intelligent power management to reduce regular battery
maintenance. Time series prediction and analysis have been discussed and articulated in the
literature for many decades across different field applications [6]. Methods including Auto-
Regressive Moving Average (ARMA) [7], Auto-Regressive Integrated Moving Average
(ARIMA) [8], Seasonal ARIMA [9], exponential smoothing [10], and Vector Autoregression
(VAR) [11] are parametric models which require prior statistical knowledge on the time
series data, which may not be feasible for practical applications. Non-parametric methods
for time series modeling and prediction including neural networks [12,13] have been
successfully applied to different time series modeling and forecasting applications [14–17].

A popular modification of neural networks for time series analysis is the recurrent
neural network (RNN) topology [18,19]. Specifically, long short-term memory (LSTM) [20]
and gated recurrent unit (GRU) [21] networks build upon the conventional RNN to address
the drifting gradient problem [22,23] and have been applied to both univariate [24] and
multivariate time series applications [25,26].

The main architecture used in our study utilizes convolutional neural networks
(CNNs), more commonly used in the image processing field. LeCun et al. used images
of hand-written numbers to learn the convolution kernel coefficients [27]. This approach
became the foundation of modern computer vision. However, CNNs are not limited to
handling images. Although CNNs for deep learning applications were developed for
two-dimensional image data, they can be used to model univariate time series forecasting
problems. CNNs [28] have successfully been implemented across many domains, includ-
ing time series forecasting [29,30] and classification [31,32]. In this research, we use a
single-dimensional univariate system for the given time series prediction problem.

Sensors 2023, 23, 4303 3 of 16

To capture and understand the multiple related time series specifications of this novel
data, before training in our neural network model, we analyze the dataset using algo-
rithms, such as Pearson’s correlation coefficient and dynamic time warping, to determine
indications of the time series to be used in subsequent time series applications.

Our findings show that even under different and incrementally higher cost constraints,
one can use empirical approaches such as neural networks to predict temperature variations
in a location with an absent or failed logger within a margin of error comparable to the
manufacturer’s specified sensor accuracy. Our findings also show that using correlation
coefficients and time series similarity measurements, one can identify the optimal input–
output pairs for the prediction algorithm reliably under most instances.

This study has four different contributions to the science of using wireless sensor
networks in practical settings which are as follows:

1. This study presents a real-life application of a wireless sensor network used to monitor
different locations inside temperature-controlled shipping containers during both
short- and long-distance travels.

2. This study explores the possibility of sensor replacement for either power-management
or cost-reduction purposes using the complete combinatorial analysis across the sen-
sor network by exhaustively training, testing, and validating 1016 different machine
learning models to search for the best model.

3. This study finds that even under incrementally higher cost and power constraints,
prediction within the margin of error for sensor accuracy is not only possible but
readily achievable.

4. Finally, this study introduces a systematic approach to find the optimal setting and
placement of sensor nodes using statistical and temporal similarity measures such as
correlation coefficients and discrete time warping.

The paper is organized as follows: Section 2 describes the procedure of the collection of
the data and the novel univariate time series. A brief explanation of univariate time series
and the novel data is also presented in this section. Section 3 introduces the approach of
the research in detail. Statistical methods to capture meaning out of the data are described
in Section 3.1, followed by the processes to prepare the data for the neural network model
in Section 3.2. Sections 3.3 and 3.4 detail the generation and application of the model. The
results are presented in Section 4, followed by the conclusions in Section 5.

2. Datasets: Cold Chain Univariate Temperature Time Series

Formation of the dataset: the temperature and humidity levels of the goods in cold
chain transportation are monitored via cold chain data loggers for quality insurance pur-
poses. In our project, DeltaTrak’s Reusable Real-Time-Logger (RTL) was used to monitor
and log the temperature, timestamp, and corresponding location data. The data were
collected from five different shipments that have nine sensors placed in different locations
within the transportation medium, the container. Three pallets are placed in the container,
one up front, one in the middle, and one towards the rear side. Each of these pallets has
three sensors placed vertically, one at the bottom of the pallet, one toward the middle, and
one on the top of the pallets, which is expected to have a higher airflow. The data loggers
record the data at 15-min intervals for the duration of the transportation route. Although
the ideal transportation and storage temperatures are in the range of (32 ◦F), due to issues
such as insulation problems, doors opening and closing during the loading and unloading
stages, and irregular air circulation, sudden, unexpected variations in the temperature
profiles occur. These variations can be seen in Figure 1, the representation of the univariate
dataset used in this research, which is formed by combining data from the five different
transportation routes.

A time series Xt of size n is defined as a collection of data points measured sequentially
over equally spaced time intervals. i.e., Xt = (x1, x2, . . . , xn), where xt ∈ R is an observation
at time t. The novel data presented are a univariate time series since observations are
recorded over a single variable. In total, our novel dataset consists of 40 time series (from

Sensors 2023, 23, 4303 4 of 16

eight sensor locations within the containers of each of the five shipments). The lengths of
the time series vary due to the number of observations recorded for different lengths of the
transportation routes and the sensor start/stop times. Table 1 displays the transportation
routes and collected data lengths accordingly.

Table 1. Length of temperature time series profiles for all sensors and across all the shipments.

Data Source Abbr. Transportation Route Data Length

S2 Plant City, FL—Florida 72
S3 Salinas, CA—Virginia 616
S4 Salinas, CA—South Carolina 388
S5 Salinas, CA—Maryland 522
S6 Plant City, FL—Georgia 322

0 10 20 30 40 50 60 70

33

34

35

36
S2 Front Top
S2 Mid Top
S2 Rear Top

0 100 200 300 400 500 600

32

34

36

38

40

S3 Front Top
S3 Mid Top
S3 Rear Top

0 50 100 150 200 250 300 350 400

32

34

36

38

40 S4 Front Top
S4 Mid Top
S4 Rear Top

0 100 200 300 400 500

34

36

38

40
S5 Front Top
S5 Mid Top
S5 Rear Top

0 50 100 150 200 250 300
32

34

36

38

40

42 S6 Front Top
S6 Mid Top
S6 Rear Top

0 100 200 300 400 500 600

34

36

38

40 S3 Front Top
S4 Front Top
S5 Front Top

Figure 1. Temperature profiles of multivariate time series data from pre-cooling to the end of
transportation, S2–S6. Comparison of front top sensors of S3–S5 transportations to represent the
different characteristics of transportation route data.

Sensors 2023, 23, 4303 5 of 16

3. Materials and Methods

An overview, block diagram of the project is shown in Figure 2. First, the collected
data need to be processed to create sequences to generate the necessary input structure to
be fed into our model architecture. After generating the sequences for datasets collected
from each of the transportation routes, the sequences were concatenated. At this point, we
had generated 9 input matrices—created by concatenated sequences—and 9 output arrays
that correspond to the sensor locations. The goal was to train and test the ML algorithms,
depending on the number of sensors, with combinations of different sensor locations used
to predict the values of other sensor locations in case of a faulty sensor or missing data.

Figure 2. Flowchart of the research approach.

We tested and compared the performance of different neural network models to
their loss functions. Once the model was selected, we used the sensor data with different
amounts of sensors used as inputs, and used different sensor locations to create a variety
of combinations to test and predict the temperature levels of the rest of the sensors which
were not used in training.

3.1. Sensor Data Correlations

The generations of the individual models, model training, and testing phases can be
time- and memory-expensive. Before we applied deep learning methods, to give us a better
understanding of the univariate data, their distribution, and correlations within the sensor
data depending on locations, we decided to apply statistical techniques. We generated
Pearson’s correlations matrix and also looked at the dynamic time warping—the statistical
distances between data from each of the sensors.

Pearson’s correlation coefficient provides a measure of linear similarity between two
variables by simply attempting to plot a function to best fit the data of these two variables.
The coefficient of correlation dictates the relativity of the data points to this function plot.
Our correlation matrix is given in Figure 3, which displays Pearson’s correlations between
the sensor location temperature values data. The correlations can take a range of values
between −1 and 1. Negative numbers indicate a negative correlation, while positive
numbers indicate a positive. A value of 0 indicates there is no correlation between the
variables, and a value of 1 indicates that the variables are simply the same. Using Pearson’s
correlation coefficients, we looked at the similarities and differences between different
sensor locations’ temperature series inside different transportation containers. For instance,
X_MB and X_MM have a correlation value of 0.87. This could be explained by the locations
of these sensors being close to each other. For these two locations, since they are highly
correlated in data, we can simply say that X_MB and X_MM can be used to represent
one another. On the other hand, the correlation between X_FT and X_RB is 0.2, which is
also expected since the two locations are further apart from each other. Table 2 tells us
that if one was to use Pearson’s correlation matrix method to understand, expect, or try
to predict the temperature levels of the other sensor locations, only depending on data
from a single sensor, X_MM, and secondly X_FM, provide the best results, since these are
the most correlated to the rest of the sensors in summation. It should be pointed out that,
according to Pearson’s correlation results, the data from the middle sensors (X_MM, X_FM,

Sensors 2023, 23, 4303 6 of 16

and X_RM) seem to have more correlation, providing better information on the rest of
the data.

X_FT X_FM X_MT X_MM X_MB X_RT X_RM X_RB

X_FT

X_FM

X_MT

X_MM

X_MB

X_RT

X_RM

X_RB

1.00 0.36 0.08 0.03 0.15 0.14 0.07 0.20

0.36 1.00 0.60 0.75 0.50 0.43 0.63 0.73

0.08 0.60 1.00 0.80 0.75 0.02 0.32 0.34

0.03 0.75 0.80 1.00 0.87 0.38 0.73 0.66

0.15 0.50 0.75 0.87 1.00 0.22 0.52 0.42

0.14 0.43 0.02 0.38 0.22 1.00 0.87 0.75

0.07 0.63 0.32 0.73 0.52 0.87 1.00 0.85

0.20 0.73 0.34 0.66 0.42 0.75 0.85 1.00

0.2

0.4

0.6

0.8

1.0

Figure 3. Pearson’s correlation heat map.

Table 2. The sensor location correlations to the rest of the sensors summed.

Sensor Location Data Summation of Correlations

X_MM 5.2236
X_FM 5.0009
X_RM 4.9718
X_RB 4.9524
X_MB 4.4288
X_MT 3.9051
X_RT 3.8180
X_FT 2.0529

The dynamic time warping (DTW) algorithm considers two sequences that are usually
temporal, and provides us with a similarity measure between the sequences. DTW mainly
warps the time axis of the profiles to be compared, to achieve a better alignment by creating
a matrix where the matrix elements are the Euclidean distances between the temperature
data points. DTW has been introduced for speech applications by Vintsyuk et al. [33].
The DTW table given in Table 3 represents the average DTW distance of each sensor
location’s data to the data from the rest of the sensor locations. As we can see, the sensor
locations that have the smallest DTW distance from the rest of the sensor data values
are the sensors placed in the middle of the pallets. Sensors X_MM and X_FM have the
smallest DTW distance and are the best sensors to give us information on the rest of the
sensors. Again, similar to the results we have observed using Pearson’s correlation method,
it should be pointed out that according to DTW results, as seen in Table 3, the data from
the middle sensors (X_MM, X_FM, and X_RM) seem to have less distance to the rest of the
data collected from other sensor locations, hence providing better information on the rest
of the data.

Sensors 2023, 23, 4303 7 of 16

Table 3. The sensor location DTW distance averages to the rest of the sensors.

Sensor Location Data Avarage DTW Distance

X_MM 1147.557
X_FM 1228.157
X_RM 1279.843
X_RB 1396.029
X_MT 1606.057
X_RT 1859.757
X_FT 1903.729
X_MB 2084.629

3.2. Dataset Preprocessing

The training of the univariate CNN model requires sequences of temperature readings
as input. The model then maps these input sequences to corresponding output observations.
For this purpose, we needed to create the input sequences of temperature observations and
transform these into multiple samples or instances from which the model could learn.

Figures 4–6 show the concatenated temperature readings from all of the transportation
routes. This is presented to display the relationship between the closely located sensors.
The temperature values in Fahrenheit are represented on the Y-axis and the X-axis has the
observations (a total of 1920 observations) recorded in 15-min intervals.

0 250 500 750 1000 1250 1500 1750
32

34

36

38

40

42
Top Sensors

y_FT
y_MT
y_RT

Figure 4. Output arrays: sequenced temperature profiles of top sensors data from all transporta-
tions concatenated.

0 250 500 750 1000 1250 1500 1750

32

34

36

38

40
Middle Sensors

y_FM
y_MM
y_RM

Figure 5. Output arrays: sequenced temperature profiles of middle sensors data from all transporta-
tions concatenated.

Sensors 2023, 23, 4303 8 of 16

0 250 500 750 1000 1250 1500 1750

32

34

36

38

Bottom Sensors
y_FB
y_MB
y_RB

Figure 6. Output arrays: sequenced temperature profiles of bottom sensors data from all transporta-
tions concatenated.

Sequencing is performed by creating an input array of seven consequent temperature
readings as instances. Figure 7 displays the creation of the first three sequences. The
first sequence starts from the observation at t = 0, and the next sequence starts from the
observation at t = 1, and so on. By adding the consecutive sequences in row form, we start
forming our input matrix.

Figure 7. The formation of X_FT and y_FT from the front-top location sensor data time series.

The third data point of each of the sequences created is isolated and then appended to
another array to form the output vector. Similarly, for the very first output, the label of the
first sequence is the third temperature value, and the next one is the fourth. As the input
sequence set iterates, the first data and the output label of the sequence shift.

Algorithm 1, Sequence Creation, generates the matrix of X (input) sequences and Y
(output) arrays for each of the sensor locations.

To create one input matrix for each of the sensor locations across the 5 different
transportation batches, we needed to concatenate these time series. Concatenating the
univariate time series data of each sensor location from different transportation batches
before forming sequences would have created problems. Incorrect sequences would have
been created at the time instances where we switched from one time series to another.
Simply, the last observations of one time series and the first observations of the next would
combine and create an artificial, incorrect sequence. Therefore, we created 7 input sequences
for 5 individual transportation dataset batches for the particular sensor location, and then
combined the sequences to form overall data matrices.

Sensors 2023, 23, 4303 9 of 16

Algorithm 1 Sequence Creation

1: for Univariate Temp Data, i = 0,1,2,. . . Sequence Length do
2: if i + Sequence Length = Temp Data length (End of Data?) then
3: Break
4: end if
5: X = Array; i, i + 1,. . . i + Sequence Length
6: Y = Value; i + 3
7: X data; append to matrix formation
8: Y data; append to column formation
9: end for

3.3. Model Generation

The CNN used in the research is a sequential model that consists of a Conv1D layer,
MaxPooling, flattening functions, and multiple dense layers. The Keras libraries API (Ap-
plication Programming Interface) was used in the generation of the neural network model,
and Scikit-learn API was used for statistical executions, predictions, and evaluation metric
functions. Multiple models with different architectures have been tested and compared in
the search for the lowest mean absolute error. For instance, a network model with 64 filters
at the first convolutional layer and 50 nodes at the dense layer provided a test MAE result
of 1.54. Another model, with 64 filters at the first convolutional layer and 25 nodes at the
dense layer, provided an MAE of 2.31. The nodel with 64 filters at the first convolutional
layer and 100 nodes at the dense layer provided a 2.08 MAE, the model with 32 filters at
the first convolutional layer and 50 nodes at the dense layer provided a 2.24 MAE, and
another model with 32 filters at the first convolutional layer and 25 nodes at the dense layer
provided an MAE of 3.46. Many models have been trained and tested for this intuitive
research to optimize the performance of our dataset and its application. Each of the models
were run ten times and MAE performances have been averaged.

To create models with different input shapes, we defined a function called ModelG.
The ModelG function uses the parameter “inp_shp” to define the size of the input shape of
the first convolutional layer, Conv1D. The purpose of this is to use the defined function
to call, create, and fit the model, even if the number of sensors used to train the model
varies. In our model, we used the Adam optimizer of the Keras optimizers, with a learning
rate of 0.01 [34]. Adam is a gradient-based stochastic optimization method that is readily
available in the Keras library. As our cost function, we used the loss function formulated
by the mean absolute error.

MAE =
∑n

i=1 |yi − xi|
n

(1)

Once the model was created, we saved the initial weights in order to have an average
of the cost function value acquired for each training and testing pair run of the model,
given the fact that we start from the same weights as a base. Algorithm 2 details the
generation of the individual models, initialization of the weights, fitting, and evaluation of
the architectures.

3.4. Model Fitting and Evaluation Metrics

The goal of the project is to predict missing sensor data or to be able to come up with
a temperature monitoring system that requires the use of fewer sensors. Therefore, we
need to define an optimal cost efficiency ratio to determine the number of sensors and the
corresponding locations to be used for a robust temperature monitoring system. For this
purpose, we generated our input matrix—using the sequences created—depending on the
number of sensors that will be used in the training of the network.

To assist the reader in understanding how exactly the input is formed and the model
is evaluated, the steps of the process for a given number of sensors used (n = 2) can be
described as follows.

Sensors 2023, 23, 4303 10 of 16

- Number of Sensors = 2. When using two sensors as an input we have 28 combinations
of sensors out of eight different sensor locations, C(8,2), (Comb1, Comb2, . . . Comb28),
to make predictions on each of the six remaining sensor location data values.

- Input Dataset = A sample Comb1 input would be the sequences of two sensors
concatenated on columns, forming an n × 14 matrix, Comb1 = [X_FT, X_RB], where
each sensor data matrix is n × 7.

- Output Vectors = To introduce the output to the network so that the model can be
trained for a prediction algorithm, we iterated through each of the remainder sensor
locations that were not used in the input combination and evaluated the results
for each prediction value. As discussed before, the output vectors are formed by
appending the third value of the sequences created, with the size n × 1. For a Comb1
input provided above that uses X_FT, X_RB as inputs, the output vectors would be
[y_FM, y_FB, y_MT, y_MM, y_MB, y_RM]. These output vectors are individually
predicted, and evaluation MAE values are obtained.

Each of the models has an epoch number of 10. An averaging of prediction results is
necessary for a better comparison of different ML models. After running each of the models
multiple times and seeing an insignificant fluctuation in the prediction results, we decided
to keep the number of runs minimal for averaging purposes, 10 runs. Data were split in
the ratios of 60%, 20%, and 20% for training, validation, and testing purposes, respectively.
The models were separately trained for one, two, three, four, five, six, and seven sensors,
combinatorially. Meaning, for instance, that the combinations of two sensors are used to
train the model, and prediction performances on the values of the rest of the six sensor
locations are compared. For a number of two sensors, each of the two combinations of eight
sensor locations C(8,2) were matched to six output labels, resulting in a total of 168 models
trained and tested.

Algorithm 2 Model Generation and Evaluation

1: Generate the CNN Model
2: Input: Ωinput = { X n[0]

i , X n[1]

i , . . . , X n[k]

i }
3: Output: Time series signal that represents sensor data to be predicted.
4: Save CNN weights
5: for Each Combination in C(X of each sensor, # of sensors) do
6: for Y of each sensor do
7: for i = 0, 1, 2 . . . # of runs to average do
8: Compute Model Fit
9: Compute Train, optimize (ADAM)

10: Evaluate MAE = ∑n
i=1 |yi−xi |

n
11: end for
12: Compute avg(MAE, train), avg(MAE, test)
13: Load CNN Weights
14: end for
15: end for

Similarly, combinations of three sensors were evaluated based on prediction results of
the rest of the five sensor location temperature values, 56 (C(8,3)) input combinations, five
output labels for each, a total of 280 models trained and tested.

For all of the combinations of the seven sensor locations used for training and pre-
diction for the remainder of the sensor locations, a total of 1016 models were trained and
evaluated. The overall loss results, MAE, have been grouped to the inputs sensors used for
the model, and the distributions of the prediction results on the rest of the sensors’ values
have been graphed accordingly as shown in Figures 8–13.

Sensors 2023, 23, 4303 11 of 16

Figure 8. Prediction Loss Distributions—1 to 1 Sensor.

Figure 9. Prediction Loss Distributions—2 to 1 Sensor.

Figure 10. Prediction Loss Distributions—3 to 1 Sensor.

Figure 11. Prediction Loss Distributions—4 to 1 Sensor.

Sensors 2023, 23, 4303 12 of 16

Figure 12. Prediction Loss Distributions—5 to 1 Sensor.

Figure 13. Prediction Loss Distributions—6 to 1 Sensor.

4. Results

From the cost efficiency graph, Figure 14, we interpret that as the number of sensors
used to predict the values of missing data increases, the prediction loss decreases. On
the X-axis, one can see the sensor count which indicates the number of sensors used in
monitoring the temperature distribution. For instance, 1 indicates using a single sensor
to monitor all locations whereas 7 indicates having a sensor in seven locations (and thus
effectively having a minimal error). If we look at the derivation of the loss function with the
increment in the number of sensors, the largest drop in the loss function values occurred in
the first three increments of the sensor count. This means that the return on investment
has its biggest margins up until the usage of four sensors. The loss function continues to
improve as the number of sensors increases, which is expected, but the improvement in the
loss function is much less significant.

Figure 15 shows the comparison of the results of the statistical techniques used to
describe the data and the CNN architecture test loss results. First, comparing the values we
gathered from the statistical approaches, Pearson’s correlation and dynamic time warping,
we observe a negative correlation, meaning as the DTW values increase, the Pearson’s
correlation values decrease. This can be intuitively explained: if two variables have less
DTW distance in between, they are more correlated. The loss function results of the CNN
model represent a similar trend. As the data sequence becomes less correlated and more
distanced from the sensor data of the other sensors, we obtain a larger MAE.

Figures 8–13 display the order of the most efficient sensors that provide more accurate
prediction performances for the number of sensors used, one, two, three, four, five, and six,
respectively. The X-axis has the combinations of the sensors used as training to predict the
values of the sensors that are not used in training. The box plots display the mean, min,
and max values of the MAE results gathered from the testing phases. The vertical lines
outside the boxes in each column of the figure represent the outliers for that particular

Sensors 2023, 23, 4303 13 of 16

distribution. The order of the plots is from the smallest minimum MAE values obtained to
the largest minimum MAE values obtained for each combinatorial training input.

Figure 14. Cost Efficiency Graph.

Figure 15. Pearson’s Correlation, DTW, and Test Loss Comparison.

Table 4 gives a summary of the results of the training and testing combinations. For
instance, if we were to use one sensor per transportation, the rear-bottom or the middle-
middle sensor locations would provide the best results, 1.17 and 1.25, respectively. If we
were to use two sensors, the combinations middle-top and rear-bottom or middle-top and
rear-middle would give the best prediction results, 0.933 and 0.939 MAE, respectively.

Sensors 2023, 23, 4303 14 of 16

Table 4. Sensor locations with the best performance for a given number of sensors.

Number of Sensors Sensor Location Data Mean Absolute Errors

1 X_RB 0.9898
1 X_MM 1.0046
2 X_MT X_RB 0.9332
2 X_MT X_RM 0.9390
3 X_FT X_MT X_RM 0.7459
3 X_FT X_MM X_RM 0.7872
4 X_FT X_MT X_MB X_RT 0.6591
4 X_FT X_MT X_MB X_RM 0.6615
5 X_FT X_FM X_MT X_MB X_RM 0.6477
5 X_FT X_FM X_MT X_MM X_RT 0.6599
6 X_FT X_FM X_MT X_MB X_RT X_RB 0.6099
6 X_FT X_FM X_MT X_MB X_RM X_RB 0.6457

5. Discussion and Conclusions

This paper presents a holistic approach to sensor node replacement in wireless sen-
sor networks using statistical time series analysis with Pearson’s correlation or dynamic
time warping coupled with a data-driven algorithm in convolutional neural networks.
More than a thousand input–output combinations were analyzed and trained method-
ically to create a cost efficiency curve in a sensor network used to monitor commercial
temperature-controlled shipping containers. We demonstrated how computationally inex-
pensive statistical methods can be used to identify the best sensors for prediction prior to
the computationally intensive training of complex machine learning models. With predic-
tion errors as low as 0.98 when using a single sensor to predict the other seven locations,
which is less than the manufacturer-reported temperature accuracy, one can utilize the
proposed approach for improving the monitoring accuracy and resolution, preemptively
recovering from sensor malfunctions and intelligent power management to reduce regular
battery maintenance.

Future work will focus on two different trajectories: The first is the automated selection
of the best algorithm based on the failure or low-power detection on the wireless sensor
networks, defining the ideal power consumption vs. accuracy, and choosing the best
number of sensors and the best combination to be used to provide a prediction result to
the temperature-control closed-loop system. By this approach, the algorithm can also be
incorporated to detect a faulty sensor by comparing predictions, depending on the rest
of the sensors, with the actual data the suspected sensor provides. Secondly, it will also
investigate other kinds of time series prediction models such as RNN and LSTM, which are
more time-intensive to train, but with the help of statistical pre-calculations, this may be
accelerated and could potentially yield better results. Furthermore, the algorithm can also
be incorporated to detect a faulty sensor by comparing prediction—depending on the rest
of the sensors—and the actual data of the suspected sensor.

Author Contributions: Conceptualization, I.U.; Methodology, M.B.A. and I.U.; Software, M.B.A.;
Writing—original draft, M.B.A.; Writing—review and editing, I.U.; Supervision, I.U. All authors have
read and agreed to the published version of the manuscript.

Funding: A portion of the results presented in this paper are from a research grant funded by the
United States Department of Agriculture (USDA) and the Florida Department of Agriculture and
Consumer Services (FDACS) under the Specialty Crops Block Grant (SCBGP) Program (FDACS
Award Number 25792). The sponsors had no other role other than providing the research funding.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors) and do not necessarily reflect the views of the USDA or FDACS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2023, 23, 4303 15 of 16

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://data.mendeley.com/v1/datasets/nxttkftnzk/draft?a=7d8b1fed-c1c3-4aa3-8
cf3-5b385d221237.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
WSN Wireless Sensor Network
ARMA Auto-Regressive Moving Average
ARIMA Auto-Regressive Integrated Moving Average
VAR Vector Autoregression
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
CNN Convolutional Neural Network
DTW Dynamic Time Warping
RTL Real Time Logger
API Application Programming Interface
MAE Mean Absolute Error

References
1. Guo, W.; Healy, W.; Zhou, M. Power Supply Issues in Battery Reliant Wireless Sensor Networks: A Review. J. Intell. Control. Syst.

2014, 19, 15–23.
2. Pantazis, N.A.; Vergados, D.D. A survey on power control issues in wireless sensor networks. IEEE Commun. Surv. Tutor. 2007,

9, 86–107. [CrossRef]
3. Yang, Q.; Wu, X. 10 Challenging Problems in Data Mining Research. Int. J. Inf. Technol. Decis. Mak. 2006, 5, 597–604. [CrossRef]
4. Badia-Melis, R.; Carthy, U.M.; Uysal, I. Data estimation methods for predicting temperatures of fruit in refrigerated containers.

Biosyst. Eng. 2016, 151, 261–272. [CrossRef]
5. Carthy, U.M.; Uysal, I.; Badia-Melis, R.; Mercier, S.; O’Donnell, C.; Ktenioudaki, A. Global food security—Issues, challenges and

technological solutions. Trends Food Sci. Technol. 2018, 77, 11–20. [CrossRef]
6. Gooijer, J.; Hyndman, R. 25 years of time series forecasting. Int. J. Forecast. 2006, 22, 443–473. [CrossRef]
7. Hannan, E. Multiple Time Series; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2009; Volume 38, pp. 1–536.
8. Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier: New York, NY, USA, 1994;

Volume 45, p. 1013.
9. Box, G.E.P.; Jenkins, G. Time Series Analysis, Forecasting and Control; Wiley: Hoboken, NJ, USA, 1990.
10. Gardner, E.S. Exponential smoothing: The state of the art—Part II. Int. J. Forecast. 2006, 22, 637–666. [CrossRef]
11. Stock, J.; Watson, M. Vector Autoregressions. J. Econ. Perspect. 2001, 15, 101–116. [CrossRef]
12. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65

6, 386–408. [CrossRef]
13. Bourlard, H.; Kamp, Y. Auto-association by Multilayer Perceptrons and Singular Value Decomposition. Biol. Cybern. 1988,

59, 291–294. [CrossRef]
14. Kihoro, J.; Wafula, C. Seasonal time series forecasting: A comparative study of ARIMA and ANN models. Afr. J. Sci. Technol.

2006, 5, 41–49. [CrossRef]
15. Fulcher, J.; Zhang, M.; Xu, S. Application of higher-order neural networks to financial time-series prediction. In Artificial Neural

Networks in Finance and Manufacturing; IGI Global: Hershey, PA, USA, 2006; pp. 80–108. [CrossRef]
16. Sapankevych, N.I.; Sankar, R. Time Series Prediction Using Support Vector Machines: A Survey. IEEE Comput. Intell. Mag. 2009,

4, 24–38. [CrossRef]
17. Cortez, P. Sensitivity analysis for time lag selection to forecast seasonal time series using Neural Networks and Support Vector

Machines. In Proceedings of the the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23
July 2010; pp. 1–8. [CrossRef]

18. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

19. Elman, J. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
20. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

https://data.mendeley.com/v1/datasets/nxttkftnzk/draft?a=7d8b1fed-c1c3-4aa3-8cf3-5b385d221237
https://data.mendeley.com/v1/datasets/nxttkftnzk/draft?a=7d8b1fed-c1c3-4aa3-8cf3-5b385d221237
http://doi.org/10.1109/COMST.2007.4444752
http://dx.doi.org/10.1142/S0219622006002258
http://dx.doi.org/10.1016/j.biosystemseng.2016.09.009
http://dx.doi.org/10.1016/j.tifs.2018.05.002
http://dx.doi.org/10.1016/j.ijforecast.2006.01.001
http://dx.doi.org/10.1016/j.ijforecast.2006.03.005
http://dx.doi.org/10.1257/jep.15.4.101
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1007/BF00332918
http://dx.doi.org/10.4314/ajst.v5i2.15330
http://dx.doi.org/10.4018/978-1-59140-670-9.ch005
http://dx.doi.org/10.1109/MCI.2009.932254
http://dx.doi.org/10.1109/IJCNN.2010.5596890
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Sensors 2023, 23, 4303 16 of 16

21. Chung, J.; Gülçehre, Ç.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

22. Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-term Dependencies with Gradient Descent is Difficult. Trans. Neur. Netw. 1994,
5, 157–166. [CrossRef]

23. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International
Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 28, pp. 1310–1318.

24. Siami-Namini, S.; Tavakoli, N.; Siami Namin, A. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings
of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20
December 2018; pp. 1394–1401. [CrossRef]

25. Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing
Values. Sci. Rep. 2018, 8, 1–12. [CrossRef]

26. Ma, K.; Leung, H. A Novel LSTM Approach for Asynchronous Multivariate Time Series Prediction. In Proceedings of the 2019
International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–7. [CrossRef]

27. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

28. LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a
back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2.

29. Borovykh, A.; Bohte, S.; Oosterlee, C.W. Conditional Time Series Forecasting with Convolutional Neural Networks. arXiv 2017,
arXiv:1703.04691.

30. Koprinska, I.; Wu, D.; Wang, Z. Convolutional Neural Networks for Energy Time Series Forecasting. In Proceedings of the 2018
International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [CrossRef]

31. Kashiparekh, K.; Narwariya, J.; Malhotra, P.; Vig, L.; Shroff, G. ConvTimeNet: A Pre-trained Deep Convolutional Neural Network
for Time Series Classification. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest,
Hungary, 14–19 July 2019; pp. 1–8. [CrossRef]

32. Yang, R.; Feng, L.; Wang, H.; Yao, J.; Luo, S. Parallel Recurrent Convolutional Neural Networks-Based Music Genre Classification
Method for Mobile Devices. IEEE Access 2020, 8, 19629–19637. [CrossRef]

33. Vintsyuk, T.K. Speech discrimination by dynamic programming. Cybernetics 1968, 4, 52–57. [CrossRef]
34. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/ICMLA.2018.00227
http://dx.doi.org/10.1038/s41598-018-24271-9
http://dx.doi.org/10.1109/IJCNN.2019.8851792
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1109/IJCNN.2018.8489399
http://dx.doi.org/10.1109/IJCNN.2019.8852105
http://dx.doi.org/10.1109/ACCESS.2020.2968170
http://dx.doi.org/10.1007/BF01074755

	Introduction
	Datasets: Cold Chain Univariate Temperature Time Series
	Materials and Methods
	Sensor Data Correlations
	Dataset Preprocessing
	Model Generation
	Model Fitting and Evaluation Metrics

	Results
	Discussion and Conclusions
	References

