A Vicarious Technique for Understanding and Diagnosing Hyperspectral Spatial Misregistration
Abstract
:1. Introduction and Background
1.1. Hyperspectral Imaging
1.2. Imaging Performance and Spatial Misregistration
1.3. HSI Application-Based Errors
2. Methodology
2.1. Field Experiment Overview
2.2. Sparc Target Overview
2.3. Data Processing and Spatial Analysis Techniques
3. Results and Discussion
3.1. Multispectral Imaging Results—Example
3.2. Estimation of Keystone—Hyperspectral
3.3. Estimation of SPSF Width Variability—Hyperspectral
3.4. Estimation of Spatial Coregistration Error—Hyperspectral
3.5. Ortho-Rectification Impacts—Hyperspectral
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SPSF | Sampled Point Spread Function |
HSI | Hyperspectral Imaging |
MSI | Multispectral Imaging |
HS | Hyperspectral |
m | meters |
cm | centimeter |
nm | nanometers |
mrad | milliradians |
GSD | Ground Sampling Distance |
IFOV | Instantaneous Field-of-View |
FWHM | Full Width at Half-Maximum |
FOV | Field-of-View |
1D | One Dimensional |
2D | Two Dimensional |
3D | Three Dimensional |
VNIR | Visible Near-Infared |
CMOS | Complementary Metal–Oxide–Semiconductor |
SPARC | SPecular Array for Radiometric Calibration |
RMSE | Root Mean Square Error |
GPS | Global Positioning System |
IMU | Inertial Measurement Unit |
B, G, R | Blue, Green, Red |
References
- Ientilucci, E.J.; Conran, D.N.; Soffer, R.J.; Perry, D.L.; Skauli, T.; Gilchrist, J.R.; Durell, C. Development of test methods for hyperspectral cameras characterization in the P4001 standards development. In Proceedings of the Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXVIII; Velez-Reyes, M., Messinger, D.W., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2022; Volume PC12094, p. PC1209402. [Google Scholar] [CrossRef]
- Høye, G.; Fridman, A. Spatial misregistration in hyperspectral cameras: Lab characterization and impact on data quality in real-world images. Opt. Eng. 2020, 59, 084103. [Google Scholar] [CrossRef]
- Qian, S.E. Optical Satellite Signal Processing and Enhancement; SPIE: Bellingham, WA, USA, 2013. [Google Scholar] [CrossRef]
- Skauli, T. Quantifying coregistration errors in spectral imaging. In Proceedings of the Imaging Spectrometry XVI; Shen, S.S., Lewis, P.E., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 8158, p. 81580A. [Google Scholar] [CrossRef]
- Skauli, T. An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging. Opt. Express 2012, 20, 918–933. [Google Scholar] [CrossRef] [PubMed]
- Torkildsen, H.E.; Skauli, T. Full characterization of spatial coregistration errors and spatial resolution in spectral imagers. Opt. Lett. 2018, 43, 3814–3817. [Google Scholar] [CrossRef] [PubMed]
- Mouroulis, P.; Thomas, D.A.; Chrien, T.G.; Duval, V.; Green, R.O.; Simmonds, J.J.; Vaughan, A.H. Trade Studies in Multi/Hyperspectral Imaging Systems Final Report; Technical Report; Jet Propulsion Laboratory: La Cañada Flintridge, CA, USA, 1998. [Google Scholar]
- Casey, J.T.; Kerekes, J.P. Misregistration impacts on hyperspectral target detection. J. Appl. Remote Sens. 2009, 3, 033513. [Google Scholar]
- Russell, B.J.; Soffer, R.J.; Ientilucci, E.J.; Kuester, M.A.; Conran, D.N.; Arroyo-Mora, J.P.; Ochoa, T.; Durell, C.; Holt, J. The Ground to Space CALibration Experiment (G-SCALE): Simultaneous Validation of UAV, Airborne, and Satellite Imagers for Earth Observation Using Specular Targets. Remote Sens. 2023, 15, 294. [Google Scholar] [CrossRef]
- Conran, D.; Ientilucci, E.J. Interrogating UAV Image and Data Quality Using Convex Mirrors. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4525–4528. [Google Scholar]
- Hedler, D.; Maddox, E.; Mann, J.; Leigh, L.; Raqueno, N.; Gerace, A.; Rehman, E.; Conran, D.; Bauch, T.; Falcon, L.; et al. Landsat Surface Product Validation Instrumentation: The BigMAC Exercise. Remote. Sens. Environ. 2023. in review. [Google Scholar]
- Schiller, S.J.; Silny, J. The Specular Array Radiometric Calibration (SPARC) method: A new approach for absolute vicarious calibration in the solar reflective spectrum. In Proceedings of the Remote Sensing System Engineering III; Ardanuy, P.E., Puschell, J.J., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7813, p. 78130E. [Google Scholar] [CrossRef]
- Schiller, S.J. Specular Array for Radiometric Calibration and Method. U.S. Patent 8158929 B2, 17 April 2012. [Google Scholar]
- Silney, J.F.; Schiller, S.J. Method and System for Vicarious Spatial Characterization of a Remote Image Sensor. WO Patent 2013/019180 AL, 7 February 2013. [Google Scholar]
- Schiller, S.; Silny, J. Using Vicarious Calibration to Evaluate Small Target Radiometry; CALCON; Raytheon Company: Waltham, MA, USA, 2016. [Google Scholar]
- Ortiz, J.D.; Avouris, D.; Schiller, S.; Luvall, J.C.; Lekki, J.D.; Tokars, R.P.; Anderson, R.C.; Shuchman, R.; Sayers, M.; Becker, R. Intercomparison of Approaches to the Empirical Line Method for Vicarious Hyperspectral Reflectance Calibration. Front. Mar. Sci. 2017, 4, 296. [Google Scholar] [CrossRef]
- Bentley, J.; Olson, C. Field Guide to Lens Design; Field Guides; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
25 mm | 22.9 mm | 108.8o | 0.11 mm |
50 mm | 22.9 mm | 52.9o | 0.22 mm |
100 mm | 45.7 mm | 52.9o | 0.44 mm |
1.09 ± 0.57% | 1.12 ± 0.57% | 1.34% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conran, D.N.; Ientilucci, E.J. A Vicarious Technique for Understanding and Diagnosing Hyperspectral Spatial Misregistration. Sensors 2023, 23, 4333. https://doi.org/10.3390/s23094333
Conran DN, Ientilucci EJ. A Vicarious Technique for Understanding and Diagnosing Hyperspectral Spatial Misregistration. Sensors. 2023; 23(9):4333. https://doi.org/10.3390/s23094333
Chicago/Turabian StyleConran, David N., and Emmett J. Ientilucci. 2023. "A Vicarious Technique for Understanding and Diagnosing Hyperspectral Spatial Misregistration" Sensors 23, no. 9: 4333. https://doi.org/10.3390/s23094333
APA StyleConran, D. N., & Ientilucci, E. J. (2023). A Vicarious Technique for Understanding and Diagnosing Hyperspectral Spatial Misregistration. Sensors, 23(9), 4333. https://doi.org/10.3390/s23094333