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Abstract: Recent advancements in deep learning techniques have accelerated the growth of robotic
vision systems. One way this technology can be applied is to use a mobile robot to automatically
generate a 3D map and identify objects within it. This paper addresses the important challenge of
labeling objects and generating 3D maps in a dynamic environment. It explores a solution to this
problem by combining Deep Object Pose Estimation (DOPE) with Real-Time Appearance-Based
Mapping (RTAB-Map) through means of loose-coupled parallel fusion. DOPE’s abilities are enhanced
by leveraging its belief map system to filter uncertain key points, which increases precision to ensure
that only the best object labels end up on the map. Additionally, DOPE’s pipeline is modified to enable
shape-based object recognition using depth maps, allowing it to identify objects in complete darkness.
Three experiments are performed to find the ideal training dataset, quantify the increased precision,
and evaluate the overall performance of the system. The results show that the proposed solution
outperforms existing methods in most intended scenarios, such as in unilluminated scenes. The
proposed key point filtering technique has demonstrated an improvement in the average inference
speed, achieving a speedup of 2.6× and improving the average distance to the ground truth compared
to the original DOPE algorithm.

Keywords: semantic SLAM; Deep Object Pose Estimation; Real-Time Appearance-Based Mapping;
precision enhancement; object recognition

1. Introduction

A common task required of autonomous mobile robots is the ability to generate a
semantic map of the environment it is navigating through. The map itself can be created
through means of simultaneous localization and mapping (SLAM), which can be either
LiDAR-based [1,2], visual-based [3,4], or both [5,6]. While there are many approaches
towards implementing SLAM, certain methods make it easier than others to semantically
label objects found within the map. Visual SLAM approaches allow for the convenient
evaluation of labeled objects by inspection, as the pixel color can be matched with the
detected object. The advantage of LiDAR SLAM, however, is that because LiDAR has
better ranging accuracy, the localization coordinates are more reliable than visual SLAM on
its own [7]. This highlights the significance of using a combination of LiDAR and visual
SLAM to retrieve accurate localization coordinates while retrieving point cloud RGB values,
which are useful for object labeling. To complement SLAM in creating a semantic map,
a reliable object detection algorithm is necessary. While many algorithms exist, there are
several important qualities to consider, such as pose estimation, computation cost, and
detection range. Because the map is a 3D representation of the surroundings, the pose of the
identified objects is particularly important. While there have been advances in one-stage
object detectors to include monocular depth estimation such as in [8], most algorithms
that estimate depth are two-stage detectors, which have considerably increased compu-
tation times that can hinder real-time performance when tracking multiple classes [9,10].
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However, real-time object labeling is not necessarily required if the goal is to achieve a
high-accuracy semantic map and if it is not relied upon for navigation. There are several
options available to combine semantic labels with mapping, though they come with vastly
different implementation considerations. These methods include direct fusion as well as a
loose-coupled or tight-coupled parallel fusion [11]. In direct fusion, the SLAM-generated
3D structure, which can take the form of a point cloud, mesh, or volumetric display, is used
as the input to an object detection algorithm that outputs the annotated map. A constraint
on this method is that the object detector must be able to accept a 3D structure as the input.
Tight-coupled parallel fusion, on the other hand, extracts features from the environment,
which are then used to identify objects and perform loop closure for mapping simultane-
ously. This has the benefit of using semantic information in a more significant role. While
this approach has the potential to improve the robustness of SLAM, more research in this
area is needed before it can be used effectively; great potential has been shown by methods
that use a deep learning approach [11]. Finally, loose-coupled parallel fusion allows SLAM
and object detection to be performed independently, and as such has no real-time require-
ments for implementation. This makes it convenient to perform SLAM during autonomous
navigation, allowing it to be used for path planning in real-time, then the objects can be
labeled in post-processing when more computation power is available. The semantic SLAM
system presented in this paper, dubbed DOPESLAM, uses the Robot Operating System
(ROS) to fuse Deep Object Pose Estimation (DOPE) [9] with Real-Time Appearance-Based
Mapping (RTAB-Map) [5] through means of loose-coupled parallel fusion. The quality of
DOPE’s depth estimation is evaluated experimentally while simultaneously determining
the ideal size of a training dataset comprised of around 100,000 images. Furthermore, a
method of precision enhancement through false positive reduction (FPR) is introduced,
and a novel means of quantification is used to find the precision, recall, and F-score of a
modified version of DOPE. The modification enables object recognition using a depth map
as input, which allows for shape-based object recognition in darkness or other low-visibility
conditions. FPR prioritizes precision by maintaining it between 99.5% and 85.7% while
reducing the size of DOPE’s neural network from 86 to 21 layers, promoting an increase in
frame rate from 8.6 Hz to 22.6 Hz. Additionally, FPR’s performance is compared with the
performance of the original version while using the manually selected best detections as
a baseline along with the worst detections to put DOPE’s effective range in perspective.
Experimental results show that FPR achieves an average distance of 30.5 cm from the
labeled objects to the ground truth, compared to 79.8 cm achieved by the original version,
while the best detections had an average distance of 12.3 cm and the worst detections had
an average distance of 184.8 cm.

In this paper, we present a solution to semantic SLAM systems; specifically, we propose
a solution to tackle the crucial task of object labeling and 3D map generation in a dynamic
environment. The main contributions of the paper are:

1. We propose an integration of Deep Object Pose Estimation (DOPE) and Real-Time
Appearance-Based Mapping (RTAB-Map) through loose-coupled parallel fusion to gener-
ate and annotate 3D maps.

2. We present a solution that enhances the precision of the system by leveraging DOPE’s belief
map system to filter out uncertain key points when predicting bounding box locations.

3. We propose an enhancement to the original DOPE algorithm to enable shape-based
object recognition using depth maps, which can identify objects in complete darkness.

4. Finally, we apply a range of experiments to evaluate and quantify the overall perfor-
mance of the proposed solution.

2. Related Work

There are many different implementations of semantic SLAM. One such approach
is that of Kimera [2,12]. Kimera is a modular system that performs visual-based SLAM
using up to four different modules to create a semantic map. It can use visual-inertial
odometry (VIO), robust pose graph optimization (RPGO), meshing, and semantic modules.
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Because it has its own semantic module, there is no need to fuse it with an object recognition
algorithm. While it is convenient to not require the use of LiDAR, its absence is somewhat
noticeable in its performance. Kimera offers an average distance from object labels to
the ground truth of between 35 and 48 cm during experiments [12]. This value is offered
as a range, as it generates a mesh of the environment. Another attempt at semantic
SLAM can be seen in [13]. This method restructures the semantic SLAM problem as
an optimization problem involving the sensor states and landmark position estimates.
It combines spatial positioning with semantic probabilities through data association. It
uses simple landmarks with an estimate of the robot’s pose to navigate through various
environments. As such, this is an example of an attempt at tight-coupled parallel fusion,
with the semantic information used for localization. Experimental results showed that
the estimated position of the landmarks was an average of 25 cm from the ground truth
[13]. In [14], McCormac et. al proposed SemanticFusion, which is a method for building
dense 3D semantic maps of indoor environments using a CNN-based approach. This
approach takes as input a sequence of RGB-D frames from a handheld or mobile depth
camera and outputs a dense 3D semantic map of the environment, with each voxel in
the map labeled with a semantic category. The authors evaluated the SemanticFusion
system on several datasets and demonstrated that it achieves state-of-the-art performance
in terms of accuracy and efficiency. In [15], the authors proposed a method for incrementally
building a model of a scene in real-time using both SLAM-based scene understanding
and techniques for identifying objects and their positions within the scene. This approach
uses a probabilistic method to predict which objects are in the scene at each new frame
of video. The system then uses this information to incrementally build a model of the
scene over time. In [16], Zheng et al. proposed a SLAM approach for robot-operated active
understanding of unknown indoor scenes. Their algorithm is built on top of a volumetric
depth fusion framework and performs real-time voxel-based semantic labeling over the
online reconstructed volume. The authors showed through extensive evaluation that their
method achieves efficient and accurate online scene parsing during exploratory scanning.
Finally, in [17], the authors proposed an extension to a surfel-based mapping approach that
integrates semantic information to facilitate the mapping process. Their algorithm deploys
a fully convolutional neural network to extract important semantic features. Evaluations
were carried out on the KITTI dataset with multiple static and dynamic objects.

3. System Components

To implement the proposed system, there are several factors that need to be considered.
First, DOPE needs to be trained to look for objects. After the model is trained to look for
objects, the output coordinates provided by DOPE must be fused with the point cloud
generated by RTAB-Map. The predictions from DOPE can then be further enhanced by
implementing a false positive reduction (FPR) method. Furthermore, to enhance DOPE’s
abilities and to support a novel method used to quantify precision, a modification allowing
the use of depth maps as input for shape-based object recognition is introduced. Finally,
the poses of all objects can be stored along with their locations relative to the 3D SLAM-
generated map using a persistent state observation technique. This combination of elements
is designed to produce a highly accurate 3D semantic map that is capable of operating in low
visibility conditions. Figure 1 illustrates the overall architecture of the proposed algorithm.

Figure 1. Flowchart illustrating the operation of the proposed DOPESLAM algorithm.
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3.1. Semantic Annotation

One of the most important abilities of an object recognition algorithm used to annotate
a 3D map is the ability to accurately estimate the depth of the object. This is crucial in
order to be able to place a label correctly within the scene. In addition to depth estimation,
the range, frame rate, and simultaneous classes are important considerations; however,
a fast frame rate and the ability to identify many objects at once are more important
for a system designed to operate in real time. If real-time operation is not required, the
focus can remain on depth estimation and detection range. These factors can immediately
eliminate many algorithms when deciding on a suitable candidate for this application.
While DOPE borders on the real-time operation and can identify multiple objects at once,
its core strength lies in its depth estimation, and it has a reasonable detection range of
approximately 150 cm. DOPE was trained using synthetic images generated by Nvidia’s
Deep Learning Dataset Synthesizer (NDDS) [18], which is a plugin for Unreal Engine 4.
It uses do-main randomization [19] and a 3D model to bridge the simulation-to-reality
gap [20], and can generate any number of images. The images are varied in ways such as
position, orientation, background, and lighting. NDDS introduces distraction objects to
produce a robust dataset of labeled images that are perfect for training a model. NDDS can
generate RGB, 8-bit, and 16-bit depth maps, as well as segmentation images, all of which
can be useful for training a model. DOPE’s convolutional neural network (CNN) consists
of 86 layers. It uses the first ten layers of VGG-19 [21] (trained on ImageNet) to generate
the features used for object recognition. Following that, the features are dimensionally
reduced from 512 to 128 using two 3 × 3 convolutional layers [9]. The remaining 74 layers
are modularized into six stages. The first stage consists of nine convolutional layers with
ReLU activation functions, while the remaining five stages have thirteen convolutional
layers with ReLU activation functions. The output of each stage produces belief and
affinity maps, which are used for correlating the eight bounding box vertices with their
respective centroids. The belief maps contain the nine key points, while the affinity maps
contain the vectors from every corner to every centroid. Because DOPE is trained with
labeled images, including knowledge of the bounding box dimensions, simple trigonometry
can determine the expected angles from the bounding box corners to the corresponding
centroids. Combined with an angular threshold, this knowledge enables the affinity maps
to successfully pair key points while being able to identify multiple objects at once. The
matched key points are then passed to a Perspective-n-Point (PnP) [22] solver, which
estimates the 6-DoF pose of the objects relative to the camera used to acquire the images.
While it is possible to use fewer stages to increase the speed of inference, more ambiguities
are resolved when the feature vector is passed through the network at a deeper level,
resulting in better predictions.

3.2. Simultaneous Localization and Mapping

There are many viable options when considering SLAM algorithms to pair with object
recognition to produce labeled maps. However, due to its wide range of abilities and
versatility, RTAB-Map was chosen to be paired with DOPE to generate the 3D maps to
be labeled. Because it can be used as both LiDAR and visual-based SLAM, it has the
benefits of accurate localization from LiDAR and an RGB point cloud from an RGB-D
camera. This provides DOPE with accurate localization while making it easy to check the
placement of the resulting labels inside the RGB point cloud. RTAB-Map is designed to
perform in real-time under large-scale and long-term operating conditions. It does this
using a working memory (WM) that tracks the most frequently observed locations and
then transfers everything else to long-term memory (LTM) [23]. After matching observed
locations with those in the WM, the LTM is updated to preserve the locations in storage.
This process is continuously repeated until the entire map is stored in LTM. This method
effectively solves the problem of more processing time being required as the number of
stored locations increases, which could cause delays that would render the map obsolete
during real-time operation [23,24]. This memory management technique allows the system
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to function independently of the map being generated; thus, large-scale maps are not an
issue and DOPE can maintain a real-time operating constraint. The performance of RTAB-
Map makes it stand out when compared with other SLAM algorithms. It offers precise
odometry estimation by combining the LiDAR data, cameras, and other exteroceptive
sensors through sensor fusion as long as there are enough environmental features to use
as a reference [5]. Odometry is further improved by mixing in available proprioceptive
sensors to complement the shortcomings of the other sensors. This synergy between the
acquired sensor data improves RTAB-Map’s ability to perform loop closure and enables it
to provide accurate localization data, which is ideal when passing the coordinates to DOPE
for labeling identified objects.

3.3. Semantic SLAM Fusion

To combine DOPE and RTAB-Map, it is necessary to perform a coordinate transforma-
tion to unify the coordinate system of the local camera frame where objects are identified
with the coordinate system of the global frame, where the map is generated. This is achieved
using a homogeneous transformation matrix (HTM). An HTM combines a rotation matrix
with the translation of an object in a particular frame, then combines the coordinates of an
object in a second frame to provide a bridge between the two. An HTM is intended to be
used when the object location remains constant while the coordinate system changes. This
scenario is visualized in Figure 2. In this case, the HTM is linking the pose of the robot with
the relative position of an identified object in the camera frame. First, the angle between
the robot in the global frame and the y-axis must be calculated as in Equation (1), then the
localization pose of the robot is combined with the 3D coordinates of the object provided by
DOPE using an HTM as in Equation (2). The pose of the robot extracted from RTAB-Map
is provided by Φ, xJackal , yJackal , and zJackal , where Φ is the yaw angle; as the ground is
assumed to be flat, this is the only important angle. The object coordinates from DOPE
are represented by xcam, ycam, and zcam, while d is the camera offset to the center of the
robot that allows the angles to be synchronized. Note that d is not a necessary parameter
when using a Unified Robot Description Format (URDF) file in ROS, as the transforms
between all components on the robot can be defined. While Figure 2 is a demonstration
of how a single camera can be used with an HTM, it is possible to use multiple cameras
as well. However, θ from Equation (1) would need to be appropriately adjusted to align
with the z′ axis of each camera. Because RTAB-Map and DOPE can run independently and
combine their results afterwards, this is a loose-coupled parallel fusion approach. Using
a rosbag file, raw data can be collected from a robot passing through a given area. The
raw data can either be used by RTAB-Map to perform SLAM and generate the point cloud
while recording the localization coordinates separately, or RTAB-Map can be used while
gathering the raw data initially, as it is capable of real-time operation. In any case, a rosbag
is created that stores the SLAM-generated map. Finally, DOPE can use the SLAM rosbag
to label objects found within the map, which afterwards produces a fully annotated 3D
map. When using this method the system is easy to implement, the computation cost is low
because the algorithms are running independently, and the SLAM algorithm can easily be
swapped out if desired. This embedded flexibility is one of the greatest strengths of using
loose-coupled parallel fusion for this task.

θ =
3π

2
−Φ (1)


xmap
ymap
zmap

1

 =


cos θ sin θ 0 xJackal
− sin θ cos θ 0 xJackal

0 0 −1 zJackal
0 0 0 1




xcam
zcam + d

ycam
d

 (2)
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Figure 2. Local camera frame within global map frame.

3.4. Depth Map Object Recognition

While the original version of DOPE performs well in extremely bright light [9], its
ability to recognize objects in darkness is non-existent. By modifying DOPE’s pipeline
to accept depth maps as an alternative input to RGB images, it can leverage the ability
of infrared cameras used in active triangulation [25] to identify objects based on their
shape in absolute darkness, under camouflage, or in other low-visibility conditions. This
modification was inspired by the real-world need to identify objects in complete darkness
inside floating-lid fuel tanks for an industrial partner.

A raw depth map is an inherently noisy image; because it is in essence a compressed
point cloud, there are several challenges that need to be overcome in order for it to be
an effective input to an object recognition algorithm. An important distinction between
a depth map and an RGB image is that the pixel intensities in a depth map represent
distance rather than color. This quality can be leveraged to remove most of the noise that
would otherwise inhibit object recognition. By removing the high intensities in a depth
map, a high-contrast background can be established, making an object’s shape more easily
identifiable. Furthermore, by removing the low intensities, artifacts that appear due to the
interaction between the two infrared cameras that create the depth map, which appear
as shadows, are removed. By removing both the high and low intensities simultaneously,
any saturation effects from reflections in the environment are removed. This effectively
slices the depth map and leaves a detection window of a size determined by the intensity
thresholds that have been replaced with uniform values. It is imperative that the detection
window is within the maximum observable range of the algorithm, which for DOPE is
useful up to approximately 150 cm. The result of performing this operation can be seen in
Figure 3 in a side-by-side comparison in complete darkness, with an RGB image used as
input to DOPE on the left and a sliced depth map used as input on the right.

While slicing the depth map removes most of the noise and enables object recognition,
the image quality of the depth map can be further improved. As seen in Figure 3, after
slicing the depth map there is high-frequency noise remaining in the image, visible as
small holes or white dots. This high-frequency noise can be removed using a low-pass
filter. While there are many filters to choose from, using a median filter is the ideal choice
because edges can be preserved, which is important because object recognition is entirely
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shape-based when using a depth map as input. In this case, five median filters with a
3 × 3 kernel are used to remove the high-frequency noise while preserving the edges. A
single sharpness filter is applied to the depth map to further improve the edge quality
before the map is passed to the CNN. While edge detection can be built into a CNN [26],
a CNN uses a weighted sum of neighboring values, meaning that the effects of a median
filter cannot be learned in an end-to-end model. For this reason, median filtering needs to
be applied before being passed to the network in order to fully realize the benefits. Figure 4
shows the input depth map and the modified depth map after filtering.

Figure 3. Comparison of RGB (left) and depth map (right) used as input to DOPE in darkness.

Figure 4. Input depth map and modified depth map after filtering.

3.5. Precision Enhancement

The precision enhancement method, called FPR, leverages the belief map system that
DOPE uses to identify the key points of the bounding boxes. As previously mentioned, after
each stage a set of belief and affinity maps are used as the output to respectively estimate
the pose of the bounding box and connect the points to the centroid. After each stage, the
belief and affinity maps are used as input in the following stage. As they progress through
the CNN, ambiguities are resolved and confidence in the results increases. However, even
after all six stages there may not always be high confidence in the results. If the confidence
in the results is high, this represents well-defined points with few ambiguities.

If all the values of the input tensor are added together during a prediction with well-
defined points, it is possible to establish a threshold that would be seen during a correct
prediction. If, on the other hand, the tensor is added together and the value is much higher
than the threshold, this means one of two things: either there are multiple objects being
identified, or the confidence in the results is low. When filtering out all predictions that are
above the established threshold, only those predictions with high confidence are permitted.
This means that precision can be drastically increased while sacrificing recall, as many
predictions are ignored. Another side effect of this method is that only one object can be
identified at a time, as even if there are two sets of well-defined points this is considered
an uncertain detection. However, if the appropriate threshold is used it is possible to
maximize precision while maintaining balance, while keeping recall at a level that is ideal
for semantic labeling of a 3D map.

3.6. Persistent State Observation

An important function that neither RTAB-Map, RViz, nor DOPE has is the ability to
store the locations of the labeled objects on the final map. By saving the state of an identified
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object (such as its position, orientation, mesh marker, bounding box, and time stamp) to an
Excel file, it can be stored for later use. This is achieved by storing the information in a data
structure converted to Excel format using the Pandas Python library.

Each object stored has a unique ID number. If the same object is found, the state is
updated; if a new object is found, a new entry is added. This is a crucial component of
the entire system, as otherwise the results of running RTAB-Map and performing object
recognition on the point cloud cannot be stored in a final annotated map. After all the
objects have been saved in the Excel file, they can be launched simultaneously using a
roslaunch file custom-made for this purpose. Alternatively, the point cloud of the map can
be loaded alongside the pose markers of the stored objects into a program such as Blender
and converted into a single 3D object, allowing it to be used in any other desired software.

Another benefit of saving the state of all identified objects in an Excel file is that the
labels can be manually edited. While it may seem that this is duplicitous or bypassing
the point of the system, allowing manual adjustment is a major improvement to what
previously existed. While it may not be autonomous, this ability allows the final map to
have near-perfect labels, as seen in Figure 5. If the system is fully autonomous, manual
adjustment can be ignored, and will have no impact on the rest of the mapping system; this
is purely an optional post-processing step for fine-tuning of the labels on the resulting map.

Figure 5. Manually adjusted labeled map with object mesh and pose markers from DOPE fused with
RTAB-Map point cloud.

4. Methodology

The proposed semantic SLAM system was evaluated through three different exper-
iments. First, DOPE’s ability to provide accurate depth estimation was evaluated while
determining the ideal size of the dataset to use for training. The optimal weights found
during the first experiment were then used in a second experiment in which the depth map
object recognition modification was used to determine the precision, recall, and F-score.
These values were quantified as the number of layers in DOPE’s network was reduced
from 86 to 21 while observing the resulting increase in frame rate. Finally, after validating
FPR it was used in the final experiment, in which the overall performance of the proposed
semantic SLAM system was tested. The results when using FPR were compared with the
original version as well as with the best detections, which were used as a baseline, and the
worst detections, which were to place the range in perspective.
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4.1. Hardware

Four main pieces of hardware were used to implement the proposed semantic mapping
system. Both RTAB-Map and DOPE rely on the use of an RGB-D camera, in the first instance
for generating the RGB point cloud and in the second for placing the labels on the objects
found within it. Additionally, the depth channel of the RGB-D camera is used as input
to DOPE’s modified pipeline for depth map object recognition. The RGB-D camera used
for this purpose was an Intel RealSense D435i. Additionally, RTAB-Map uses a Velodyne
32MR LiDAR for determining the localization coordinates that are eventually passed to
DOPE for converting object coordinates to the map frame. Clear-Path’s Jackal mobile robot
was used as the platform that each sensor was mounted to while navigating through the
environment. The Jackal has an onboard computer equipped with an Nvidia RTX 1080 Ti
GPU, and uses an Ubuntu 18.04 operating system running ROS Melodic for communication
and control. Finally, for training the weights used in DOPE’s CNN and for measuring the
frame rate in the second experiment, an Nvidia Titan RTX GPU was used on a dedicated
computer using the Ubuntu 18.04 operating system.

4.2. Depth Estimation and Dataset Size

The first experiment was designed to evaluate the performance of DOPE’s depth
estimation while determining the optimal size of the dataset to use when training a model.
This experiment is similar to one performed in [9], although it takes a more practical
approach in that it uses a physical grid instead of the average distance metric outlined
in [27], which uses incremental tolerances overlayed on a simulated 3D grid. The ground
truth in this experiment is obtained by creating a grid on a flat surface that spans from
−30 cm to 30 cm horizontally in the x direction and 170 cm into the image in the z direction,
with the origin at the center of the D435i RGB lens. These distances were chosen based
on DOPE’s effective range. As the vertical position was held constant throughout the
experiment, only the x and z directions were tested.

To evaluate the accuracy of each model, five different points on the grid were tested
for a given dataset. A test object was 3D printed and used as the subject for the test, and
its 3D model was used to generate the training images with NDDS. The object had an
“E” shape, which was chosen for its distinct shape and ease of printing. When the object
was identified, the output coordinates from DOPE were recorded and compared with the
ground truth obtained from the grid, then the accuracy was found relative to the origin of
the grid.

The models used for experimentation were trained with five different datasets ranging
from 50 k to 400 k images, and were trained over 60 epochs with a batch size of 32 to
produce five different sets of weights. Each dataset was generated using NDDS and was
populated with synthetic RGB, depth maps, and segmentation images. The model was
validated with a dataset that was 20% the size of a given dataset which was generated the
same way using NDDS. Brightness and contrast were randomized during training, and
Gaussian noise was added to the images. A learning rate of 0.0001 was used in each case,
along with the ADAM optimizer, which uses adaptive learning rates [28]. Furthermore,
an L2 loss function was used to avoid the vanishing gradient problem [9] during training.
Several different learning rates and epochs were tested and evaluated based on the average
loss, which was ultimately used to determine the selection of these values. The performance
of each model is evaluated experimentally in Section 5.1.

4.3. Precision Quantification

The second experiment evaluated the effectiveness of FPR using a novel method
to quantify the improvement that it offers. This experiment used the depth recognition
module, and used weights that were retrained to exclude the RGB images using the 100 k
dataset determined to be the optimal size in Section 5.1.

FPR was applied to the sliced and filtered depth maps, and was first compared with the
sliced and filtered depth maps on their own for use as the baseline. By reducing the number
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of stages from six to one, the network was reduced from 86 to 21 layers, meaning that
there were twelve different configurations; these are represented as Di,j, where i represents
the number of stages being used and j represents whether FPR is enabled (F) or not (0).
The changes in precision, recall, and F-score and the resulting increase in frame rate were
recorded at each stage.

To determine how many successful predictions were made, the number of False
Positives (FP) was first determined. To find this number, the same test object from the
previous experiment was placed in a static location 80 cm from the D435i camera with
a 30 cm detection window; when a correct prediction from DOPE was observed, the
coordinates were recorded as the ground truth. During the test, if the output location
provided by DOPE was greater than 5 cm in any direction from the ground truth this was
considered to indicate a false positive, and a counter was incremented to this effect; the
FP value was found after 60 s. The total number of True Positive (TP) predictions was
recorded at the same time. Then, the number of Correct Predictions (CP) was found by
subtracting FP from TP. Additionally, the average frame rate was recorded. By multiplying
the frame rate by 60 s, the total number of frames and the Total Instances (TI) of the
object could be found, as it was in every frame and in a static location. Based on this, the
number of False Negatives (FN) was found by subtracting CP from TI. The relationships
between these values were then used to calculate the precision and recall values with
Equations (3) and (4), respectively.

Precision(P) =
CP

CP + FP
=

CP
TP

(3)

Recall(R) =
CP

CP + FN
=

CP
TI

(4)

To determine the overall performance of an object recognition algorithm, the balance
between precision and recall can be measured with the F-score, as in Equation (5). The
F-score is calculated as the harmonic mean between the precision and recall [29]. The
harmonic mean is used rather than the arithmetic mean in order to punish extreme values.
Because FPR forcibly reduces recall in order to maximize precision, it is expected that
the F-score will be impacted accordingly. It is important to maximize precision for this
application because false positives have a detrimental impact on the quality of the final
map. While it is important to maintain a reasonable recall, we want to ensure that the best
possible map is produced in the end; thus, the focus is to maximize precision and not to
optimize the F-score.

F-score(F) =
2PR

P + R
=

2CP
2CP + FP + FN

=
2CP

TP + TI
(5)

One downside of the depth map recognition module introduced to DOPE is that
false positive predictions are even more prevalent than with RGB images. However,
this experiment leverages this weakness and turns it into a strength for the purpose of
quantifying FPR. Under the same conditions, using RGB images would result in consistent
correct bounding box placement even when only using a single stage. Contrarily, when
using a depth map for object recognition, it is more challenging to identify the object, and
as such DOPE is often unable to place the bounding box in the correct location. This makes
it possible to quantify the improvement that FPR offers. FPR can then be used to offer a
similar improvement when in motion and using RGB images, which are cases where false
positives are more frequent.

4.4. Object Localization

The third and final experiment used the results from the previous two experiments to
evaluate the performance of the overall system by combining DOPE, FPR, and RTAB-Map
using an HTM. Six different objects were placed in two columns at various heights, creating
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a path for the Jackal to drive as it labeled the objects and placed them in a final map. The
performance metric used in this experiment was the distance between the output from
DOPE and the approximate centroids of the objects within the RGB point cloud generated
by RTAB-Map. Because the ground truth was extracted from RViz, the precise locations
of the objects were not required when physically placing them. To remove any bias, the
Jackal passed between the objects in one continuous motion and the last bounding box
location was used as the label for the object even if it was a false positive. Each object
tested the system’s ability by comparing DOPE’s default settings to those with FPR enabled,
which was then compared against the manually selected best labels used as a baseline.
Additionally, the worst labels were recorded to provide greater perspective on the available
range in which an object could be incorrectly placed, which can highlight the importance
of FPR. In addition to the custom-trained object from the previous experiments, DOPE
was supplemented by five items from the HOPE dataset [30], which is a collection of toy
household objects with pre-trained weights. The objects used in the experiment were
orange juice, yogurt, mustard, raisins, and cookies. Similar to the custom-trained object,
each set of weights were trained with 120 k images [30] to ensure a fair comparison among
all tested objects.

To ensure maximum precision when labeling objects, all six stages were used for
every test, as determined by the results in Section 5.2 Furthermore, the threshold was
calibrated for FPR before testing; however, it was adjusted through trial and error and was
not necessarily optimal.

Each object was tested individually. To guarantee the test was the same for each run, a
rosbag file was used to store the sensor data and was replayed each time. A 60-s recording
was used for each test, of which only 30 s involved motion from the Jackal and the other
30 s was used to generate the initial map for updating the localization pose before the Jackal
started moving.

5. Results and Discussion

As described in the previous section, the results from each experiment were succes-
sively used in the following experiment, culminating in the final experiment that evaluated
the overall performance of the system. Using the ideal dataset size determined in the first
experiment, a model for the depth recognition module was trained and used to quantify
FPR. Finally, after quantifying the improvement that FPR provided when using depth
maps for object recognition, FPR was used with RGB images as the input while the robot
was in motion. The output coordinates from DOPE were then unified with RTAB-Map
through the use of an HTM, and the resulting distance from the ground truth was used as
the performance metric for the overall system.

5.1. Depth Estimation and Dataset Size

The results from testing all five points for each of the five different datasets from 50 k
to 400 k can be found in Table 1. The difference between the x-axis ground truth Tx and
the output from DOPE Dx is represented by ∆x. Similarly, ∆z represents the difference
between Tz and Dz. Using these values, the distance between the ground truth and DOPE’s
output is found with Equation (6), and the accuracy relative to the origin is found with
Equation (7). Finally, the average and standard deviation of all five tested points are used
to evaluate the performance of a given dataset.

Distance =
√
(∆x)2 + (∆z)2 (6)

Accuracy =

(
1−

∣∣∣∣∣
√

T2
x + T2

z −
√

D2
x + D2

z√
T2

x + T2
z

∣∣∣∣∣
)

(7)

From Table 1, the largest source of error is the depth estimation, while the horizontal
error is relatively stable across all datasets. This is expected, as the x-coordinate is relatively
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easy to determine in the frame; it is perpendicular to the camera, while the depth estimation
is dependent on DOPE’s estimation of the key points and subsequent PnP output into
the image.

The depth estimation along the z-axis has a high degree of variance. The convention of
the data is such that a negative number indicates that a result is on the far side of the ground
truth and a positive number indicates that a result is towards the origin. The average error
in the z-coordinate ranges from 0.65 cm away from the ground truth on the 400 k dataset
to 3.98 cm away from the ground truth on the 200 k dataset, and the standard deviation
reaches a maximum of 7.45 cm on the 400 k dataset. Even though the 400 k dataset has the
smallest average depth estimation error, the large standard deviation suggests that further
analysis is required before the best dataset can be selected.

An alternative perspective is shown when observing the average distance from the
ground truth in each test. After the 100 k dataset with an average distance of 3.47 cm
the average distance from the ground truth begins to rise, ultimately reaching 6.36 cm on
the 400 k dataset. This result contradicts the results when observing the average depth
estimation error alone. Even though the depth estimation error appears to decrease, the
overall accuracy tells a different story as the dataset moves beyond 200 k.

The accuracy describes how close the estimated position of the test object is relative to
the origin. The highest accuracy was achieved on the 100 k dataset, reaching a maximum
of 96.8%, and steadily decreased to 94.8% on the 400 k dataset. Even though the average
∆z is the smallest for the 400 k dataset, suggesting that it should see the best performance,
this is not the case. This is confirmed by the average distance from the ground truth,
which increases as more images are added to the dataset. This is likely due to overfitting;
extrapolating from these data, larger datasets would be expected to decrease the accuracy
even further. Though the accuracy on all of the datasets is relatively close, the differences
in training time are significant, making this an important consideration when selecting a
dataset along with efficient use of time and optimal performance.

This experiment reached a similar conclusion to that found in [9]. Though they found
the best results with 300 k images, the improvement was minor over 100 k and 200 k,
showing that all three datasets are viable options in practice. While the error along the
x-axis was close to negligible, the error along the z-axis suggested that more images lead
to better results. However, additional datapoints would likely refute this assertion, as
overfitting begins to become apparent on the 400 k dataset and the accuracy starts to drop.
Similarly, the average distance from the ground truth suggests that more images do not
necessarily result in better prediction quality. This is corroborated by the average accuracy
from each test, where the highest accuracy of 64.8% was achieved with the 100 k dataset.
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Table 1. Results from the dataset size and depth estimation experiment; D. is distance in cm and Acc. is accuracy as a percentage.

50 K 100 K 200 K 300 K 400 K

∆x ∆z D. Acc ∆x ∆z D. Acc ∆x ∆z D. Acc ∆x ∆z D. Acc ∆x ∆z D. Acc

P1 0.2 −4.7 4.7 93.3 0.1 −4.6 4.6 93.4 −0.2 −6.1 6.1 91.2 −0.1 −5.7 5.7 91.8 −0.2 −5.5 5.5 92.2
P2 1.4 −4.6 4.8 95.4 1.9 −3.2 3.7 96.5 0.2 −1.0 1.0 99.0 −0.2 −2.2 2.2 98.0 0.2 0.8 0.9 99.3
P3 0.2 0.4 0.5 99.6 0.3 −0.5 0.6 99.7 −1.3 −5.7 5.8 95.3 −1.0 −5.5 5.6 95.5 −1.3 −7.1 7.3 94.1
P4 0.0 −4.9 4.9 96.5 0.1 −4.9 4.9 96.5 0.1 −5.5 5.5 96.0 0.1 −4.7 4.7 96.6 0.2 −4.8 4.8 96.6
P5 −0.8 6.8 6.8 95.8 −1.1 3.4 3.5 97.9 0.1 −1.6 1.6 99.1 −0.9 3.8 3.9 97.6 −2.4 13.3 13.5 91.7

Avg. 0.2 −1.4 4.3 96.1 0.3 −2.0 3.5 96.8 −0.2 −3.9 4.0 96.1 −0.4 −2.9 4.4 95.9 −0.7 −0.7 6.4 94.8
Std. 0.7 4.6 2.1 2.1 1.0 3.1 1.6 2.1 0.6 2.2 2.3 2.9 0.4 3.6 1.3 2.2 1.0 7.5 4.1 2.8
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5.2. Precision Quantification

Each of the twelve configurations was tested five times, for a total of sixty tests. The
total number of predictions along with the number of false positives and the total number
of frames were used to calculate the precision, recall, and F-score using Equations (3)–(5),
respectively. The averaged results for the precision and recall are shown in Figure 6, in
addition to the highest and lowest values of each test, which are shown as error bars.

From Figure 6a, using FPR clearly offers a significant increase in precision. This allows
the depth of the network to be reduced, allowing inference to be realized at a faster rate
while maintaining high precision. When using all 86 layers, the configuration with the
highest average precision is D6,F at 99.5%, which has a frame rate of 8.6 Hz; when reduced
to one stage with 21 layers, D1,F has an average precision of 85.7% and a frame rate of
22.6 Hz. Comparatively, D6,0 has an average precision of 93.5% at 8.3 Hz, and drops
to 81.8% at 22.1 Hz in D1,0. However, the recall of D6,F is 25.2%, which is considerably
lower than the 91.5% of D6,0. In Figure 6b, D4,F shows a rather substantial increase in
recall to 59.7%, which suggests that the FPR thresholds in both D6,F and D5,F were likely
too aggressive and could be increased to allow more predictions while maintaining high
precision. In contrast, D6,0 reached an average recall of 91.5%, which demonstrates how
many potential predictions are being ignored when FPR is enabled.

When comparing the variance for each configuration, there is a noticeable deviation
when FPR is used. FPR has a much lower variance in precision in almost all cases, as shown
in Figure 6a. In the most extreme case, D3,0 ranges between 80.6% and 98.1%, while D3,F
has a much tighter range between 94.1% and 97.9%. This is due to the nature of FPR, in that
it forcibly removes uncertain predictions to increase the ratio of correct to total predictions.
This consistency, demonstrated here when using FPR, is ideal when labeling objects on
a map.

(a) (b)
Figure 6. Averaged results from the precision enhancement experiment using twelve configurations,
comparing the filtered depth map on its own and with FPR applied against the resulting frame
rates, with error bars displaying the maximum and minimum from each test. (a) Precision vs. frame
rate from stage six (left) to stage one (right). (b) Recall vs. frame rate from stage six (left) to stage
one (right).

The overall performance of each configuration can be evaluated with the F-score,
as calculated in Equation (5). Figure 7 plots the F-score for each configuration. When
compared to Figure 6b, the curve appears to be very similar in shape. This characteristic is
due to the F-score being the harmonic mean between precision and recall. When the recall
drops sharply, the F-score does as well. The same would be true for precision, however, as it
is the value that is to be maximized here it has less of an impact on the shape of the F-score
curve. Ideally, one would expect the F-score to be trending downward as the number of
layers decreases; however, this does not appear to be the case during this test. Again, this
is confirmation that the threshold used in D6,F and D5,F was too stringent and should be
increased. This could potentially be improved by using an automated thresholding system
to remove any human error that is introduced when manually selecting the threshold.
However, even with this inconsistency the experiment proves that adding FPR to DOPE’s
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pipeline offers a measurable improvement that can be applied to the mapping system to
produce a better final product. The superior precision of FPR is ideal for label placement,
even though recall is reduced.

Figure 7. F-score vs. frame rate from stage six (left) to stage one (right).

5.3. Object Localization

The results from the object localization experiment can be seen in Table 2. All six
stages were used to ensure maximum precision. The magnitude of the difference between
DOPE’s output and the ground truth obtained from RViz is isolated in rows for each of
the three-dimensional coordinates. This helps to highlight the largest sources of error.
Additionally, the total distance of the object from the ground truth, calculated by finding
the Euclidean norm, is found using Equation (8) and shown in row one. Furthermore,
an additional row that indicates whether the most recent detection was a false positive
or not is recorded in the FP row. Finally, the average difference of each coordinate along
with the average distance from the ground truth is displayed to help evaluate the overall
performance of each method. The comparison here is between the original version of DOPE
after applying the HTM, DOPE with enhanced precision using FPR, and the best and worst
detections, which were manually selected during testing and are included to provide more
perspective on how the system can perform.

l =
√
(∆x)2 + (∆y)2(∆z)2 (8)

From Table 2, it can be seen that FPR clearly offers a considerable improvement over
the original version of DOPE. With FPR there was only one false positive out of the six
objects, while the original version had four. This results in a dramatic effect on the average
distance between both methods; FPR had an average distance of 30.5 cm from the ground
truth, while the original version had an average distance of 79.8 cm. Similarly, the average
distance for the best detections was only 12.3 cm, while the average distance for the worst
detections was 184.4 cm. When comparing the results from Kimera, which had an average
distance of 35 to 48 cm [12], and the probabilistic data association method shown in [13],
which had an average distance of 25 cm, the 30.5 cm result for the proposed system using
FPR is very comparable. If the result for the cookies, which was the only false positive
detected with FPR, were to be excluded, the results would be even better,with an average
distance of only 19.1 cm. The results from the cookies for the original version of DOPE
and the version with FPR enabled are noticeably present among the worst detections,
suggesting that this was a challenging object for the methods using the pre-trained weights
as well.
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Table 2. Object localization experimental results using the average Euclidean norm as the metric for the overall performance of the system. Bold values represent the
best results. (N) denotes No, and (Y) denotes Yes.

Original FPR

Orange Juice Yogurt Mustard Raisins Cookies Custom Average Orange Juice Yogurt Mustard Raisins Cookies Custom Average

∆x 15.1 53.2 22.4 66.5 87.3 141.5 64.3 9.8 24.4 15.3 7.1 87.3 19.2 27.2
∆y 7.4 63.7 4.0 73.1 7.6 79.2 39.2 5.2 16.4 0.4 1.3 7.6 4.1 5.8
∆z 9.6 8.8 10.6 6.8 2.1 26.8 10.8 5.4 9.7 9.4 10.6 2.1 8.3 7.6
l 19.4 83.5 25.1 99.1 87.6 164.4 79.8 12.4 31.0 18.0 12.8 87.6 21.3 30.5

FP N Y N Y Y Y N N N N Y N

Best Worst

Orange Juice Yogurt Mustard Raisins Cookies Custom Average Orange Juice Yogurt Mustard Raisins Cookies Custom Average

∆x 4.0 9.8 15.1 4.2 2.7 5.8 6.9 111.6 214.5 214.3 171.1 87.3 141.5 156.7
∆y 1.2 11.8 0.3 1.9 3.8 1.0 3.3 101.5 161.8 56.7 129.3 7.6 79.2 89.4
∆z 6.1 5.9 9.5 9.9 9.2 9.3 8.3 6.7 14.4 9.1 6.4 2.1 26.8 10.9
l 7.4 16.4 17.8 10.9 10.3 11.0 12.3 151.0 269.1 221.9 214.5 87.6 164.4 184.4

FP N N N N N N Y Y Y Y Y Y
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One noticeable observation congruent across all methods is that the average error in
the z-coordinate does not have much variance; the best possible detections have an average
error in the z-coordinate of 8.3 cm, while the worst possible detections have an error of
10.9 cm, all of which were false positives. This result suggests that DOPE struggles with
vertical placement. Unlike its horizontal range, DOPE’s vertical range is limited by the
edges of the camera frame, and the variance in the z-coordinate is noticeably inhibited.
However, even with this impediment it remains the case that using FPR with DOPE is
comparable to other semantic SLAM methods on the same metric.

Overall, the system has two main limitations. First, it lacks an adaptive threshold
to tune the false positive rate (FPR) in order to increase the recall while maximizing the
precision. An adaptive threshold would allow the system to achieve the best trade-off
between correctly identifying true positives and minimizing false positives. Second, the
range of the depth maps that the system can process is limited to 110 cm. This means that
any objects beyond this range may not be accurately detected, or even detected at all. This
limitation can impact the overall effectiveness of the system, particularly in applications
where it is necessary to detect objects at greater distances.

6. Conclusions and Future Work

This research integrated DOPE with RTAB-Map through loose-coupled parallel fusion,
using ROS to create a fully functional high-precision semantic SLAM system that can
generate and annotate a 3D map. First, the precision was enhanced by leveraging DOPE’s
belief map system to filter out uncertain key points when predicting bounding box locations.
DOPE and RTAB-Map were fused together using a homogeneous transformation matrix to
unify the local and global coordinate systems to generate the map and correctly position the
labels within it. This solution outperforms existing alternatives by promoting an increase in
DOPE’s inference speed using the precision enhancement method, allowing the number of
layers in the network to be reduced to facilitate object recognition at real-time frame rates.
Second, a new perspective for object recognition was added to DOPE’s pipeline in the form
of infrared-generated depth maps for use in low-visibility conditions, which further made
it possible to quantify the proposed precision enhancement method. Third, the optimal
size of the dataset for use in training was determined experimentally. Finally, a method for
storing and loading the state of each object was implemented to alleviate the shortcomings
of both RViz and DOPE in this area.

The proposed method is designed to enhance the labeling of objects and the generation
of 3D maps in dynamic environments by combining DOPE with RTAB-Map. While a
quantifiable comparison of the proposed method with all the existing approaches must be
subjective in that each technique may be more powerful and practical in certain scenarios
and not directly comparable to others, the experiments demonstrated in this paper show
that the modifications applied to the algorithms lead to improvements in accuracy and
precision when annotating 3D maps in dynamic environments. However, this method’s
unique feature of identifying objects in darkness comes with the trade-off of reduced range
and reliability due to noisy single-channel depth maps.

In conclusion, the proposed solution allows for autonomous mapping, and addition-
ally makes it possible to manually adjust the location of the labels. Near-perfect labels can
be produced for every map in cases where the system does not need to be autonomous.
The combination of these elements produces a viable semantic SLAM system that can
generate 3D annotated maps that are comparable with and potentially able to outperform
existing methods.

Future work that could further improve the performance of the proposed system
includes an adaptive thresholding system to automatically tune the threshold needed for
FPR, which would allow recall to be increased while maximizing precision. Additionally,
the range of depth map object recognition could be increased by sliding the detection
window through the entire available range rather than keeping it at a fixed location. In its
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current state, depth map object recognition has significant limitations; however, it has great
potential for certain applications.
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