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Abstract: Colocated multiple-input multiple-output (MIMO) radar can transmit a group of distinct
waveforms via its colocated transmit antennas and the waveform diversity leads to several advantages
in contrast to conventional phased-array radar. The performance depends highly on the degrees
available, and element spacing can be deemed as another source of degrees of freedom. In this paper,
we study the joint waveform and element spacing optimization problem. A joint waveform and array
optimization criterion is proposed to match the transmit beampattern, the suppression range, and
the angular sidelobes, under the constraints of minimal element spacing and total array aperture.
Meanwhile, the effect of receive beamforming on suppressing mutual correlation between returns
from different spatial directions is also incorporated into the optimization criterion. The optimization
problem is solved by the sequential quadratic programming algorithm. Numerical results indicate
that with more degrees of freedom from array spacings, colocated MIMO radar achieves a better
transmit beampattern matching performance and a lower sidelobe level, compared with a fixed
half-wavelength spaced array, but the benefits from additional degrees of freedom from array spacing
optimization have a limit.

Keywords: colocated MIMO radar; waveform optimization; array optimization; sparse array; range
sidelobe suppression

1. Introduction

Space-borne radar can search for targets in a greater volume from space and thus
always receives intensive attention from researchers in many countries. Unlike radar
systems on other platforms, space-borne radar systems [1] put higher standards on stability,
robustness, and survivability in space. At the end of the 20th century, techniques regarding
space-borne radar grew rapidly, and smart satellites provided another solution for space-
borne radar. Just like unmanned aircrafts, such smaller satellites may fly together stably in
space; they could be considered distributed antennas of a novel radar system with high
stability, robustness, and survivability.

The antenna array may operate in the developed phased-array radar mode, but now
multiple-input multiple-output (MIMO) radar [2], with more degrees of freedom and better
performance in many aspects, is a better choice. According to the distance between radar
antennas, MIMO radar can be classified into two kinds, i.e., distributed MIMO radar [3]
and colocated MIMO radar [4]. Both kinds of MIMO radar have several advantages over
their conventional counterparts [4,5]. The former has widely separated radar antennas
to observe different aspects of radar targets, whereas the latter has colocated antennas
in space to observe only one aspect of targets. The criterion to determine whether two
signals are received by two diversity channels can be found in [6]. The distributed MIMO
radar is generally incoherent, i.e., the phase differences between transmit/receive antennas
are either not coordinated or not exactly known, because with widely separated radar
antennas, independent target returns and independent interference are often obtained and
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the optimal processing algorithms are incoherent in most situations. The colocated MIMO
radar is coherent on both the transmit and the receive ends and can operate in a much more
flexible mode than phased-array radar. The coherence between antennas can achieve a
much longer detection distance with numerous coherent antennas; thus, this type of radar
is more suitable for space-borne radar to detect targets at a long distance.

Well-designed waveforms are critical to realize claimed advantages, and therefore,
radar waveform optimization is a hot topic in the MIMO radar field [7–10]. For distributed
MIMO radar, waveform optimization just needs to suppress auto and mutual correlation
sidelobes of transmit waveforms [4] and thus is less sophisticated than that for colocated
MIMO radar [11]. For colocated MIMO radar, however, waveform optimization can make
colocated MIMO radar operate in a complicated mode, e.g., to steer multiple transmit beams
one at a time into multiple spatial directions [12] (Phased-array radar can also illuminate
multiple beams into multiple directions within one transmission, but the interference
performance is worse than that for colocated MIMO radar). Therefore, the MIMO radar
scheme may be an interesting choice for space-borne radar.

Waveform optimization for colocated MIMO radar mainly has two goals, i.e., matching
a desirable transmit beampattern [4] and suppressing auto and cross-range sidelobes [10,11].
These two goals are often expressed in different forms. First, two different pursuits should
be combined together in optimization and thus a trade-off is required. Second, it is difficult
to match a directional transmit beampattern together with range sidelobe suppression.
Third, there are different measures of the sidelobe level in existence, so nearly orthogonal
waveforms designed for distributed MIMO radar are unsuitable to colocated MIMO radar
even with an omnidirectional transmit beampattern because their sidelobe level measures
are different [13].

If one ignores range sidelobes and concentrates on the transmit beampattern, the opti-
mization problem may be convex, and then a global optimal point may be found [12]. A
major difficulty for radar waveform optimization lies in range sidelobe suppression with
the constant-modulus constraint, which comes from the fact that radar transmit circuits
often operate in saturation mode. The saturation operation mode can circumvent the
demand for accurate inner-pulse power control required by amplitude-modulated wave-
forms. For waveform optimization, however, the constant-modulus constraint would make
range sidelobe suppression suffer from numerous local minima to reach the global optimal
point. Therefore, we have to use optimization algorithms such as the genetic algorithm [9],
simulated annealing algorithm [14,15], and sequential quadratic programming (SQP) algo-
rithm [16,17]. For such optimization algorithms, the final performance relies on a subtle
optimization function, but sufficient degrees of freedom are also critical. Rich degrees of
freedom from signal diversity are the source of advantages of colocated MIMO radar and
the key to yield better flexibility compared with its phased-array counterpart. However,
in waveform optimization with range sidelobe suppression, the degrees of freedom are still
insufficient in some situations. Smart antenna swarms in space can set the element spacing
more flexibly and thus the element spacing can be considered as another kind of degrees of
freedom for optimization.

In this paper, we consider waveform design for colocated MIMO radar with a sparse
transmit array in the background of space-borne radar. The spacing of elements is optimized
together with transmit waveforms. Meanwhile, an attenuation factor is introduced to
measure how much the receive beamforming would affect cross-correlation sidelobes in
spatial receive channels and then is incorporated into our waveform design criterion. We
define three groups of quantized angular frequencies to match a transmit beampattern,
to represent spatial receive channels, and to simulate target returns from various spatial
directions. Unlike [12], who matches the transmit beampattern through the waveform
covariance matrix, we directly squeeze the difference between the desirable transmit
beampattern and real transmit beampattern. Meanwhile, an offline parameter is used to
balance two pursuits and an offline parameter is used to control the total transmit aperture
after optimization.
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The sparse array in radar can achieve a large aperture with a given number of elements
and the element positions should be optimized to avoid grating sidelobes [18]. For colocated
MIMO radar, the sparsity of the transmit array can improve range resolution without
introducing grating sidelobes in the receive end. That is different from phased-array
radar, whose angular resolution is determined merely by the aperture of the receive array.
Meanwhile, in a sparse array, the locations of elements may be optimized, which is also
a source of degrees of freedom and has the potential to improve performance. In [19,20],
transmit aperture optimization is addressed in the background of a low-cost lightweight
antenna array and orthogonal waveforms are illuminated through antennas. In [21],
a sparse circular array and its advantages are introduced. In [12], waveform covariance
matrix optimization is addressed in transmit beampattern matching, but range sidelobes
and array optimization are not addressed. In [22], waveforms for colocated MIMO radar
have been optimized to enhance the anti-jamming performance, provided that an electronic
attack device operates only in saturation mode, but the element spacing is not optimized
for more degrees of freedom.

More performance improvement can be achieved by addressing the receive end pro-
cessing. We notice that colocated MIMO radar needs to suppress sidelobes of angular
waveforms [11], i.e., waveforms illuminated into different spatial directions, termed as
angular waveforms in [23], and the receive beamforming operation [24] can make us im-
pose slighter weights on suppressing cross-correlation of angular waveforms [16,25]. In
nature, cross-correlation sidelobes of angular waveforms represent how much a spatial
receive channel suffers from target returns from various spatial directions. In the receive
end, the receive beamforming operation for array radar has the same function and is
often more efficient in suppressing this kind of interference. Notwithstanding that, one
has to suppress such cross-correlation sidelobes by waveform optimization [11], but the
number of cross-correlation sidelobes is often greater than that of auto-correlation side-
lobes; thus, many degrees of freedom are consumed on suppressing cross-correlation
sidelobes. If we incorporate the effect of receive beamforming, less attention may be placed
on cross-correlation sidelobes, and then some degrees of freedom can be released for better
use. An extreme case is addressed in [16], where only auto-correlation sidelobes are sup-
pressed through waveform optimization for a receive array with a larger aperture, leaving
cross-correlation sidelobes suppressed at the receive beamforming stage. Huge sidelobe
performance improvement is achieved.

Numerical results are given to show waveform optimization results. We find that
additional degrees of freedom result in better sidelobe level and a better transmit beam-
pattern performance, without grating sidelobes present in the receive end. Aided with
receive beamforming, the overall sidelobe level reaches a much lower level. Meanwhile,
a numerical simulation is also performed to examine the sidelobe level improvement,
indicating that as the total aperture increases, the benefits have a limit.

The rest of this paper is organized as follows. In Section 2, the sidelobes and transmit
beampattern of the sparse MIMO transmit array is formulated, the attenuation factor of the
receive beamforming is introduced, and the waveform optimization criterion is presented.
In Section 3, numerical results are given to show how much the additional degrees of
freedom from spacing optimization affect transmit beampattern matching performance
and the sidelobe level output. In Section 4, some discussions about parameter settings are
given and some conclusions about their applications are drawn.

2. Waveform and Array Optimization for Sparse MIMO Array

For simplicity, we consider a group of smart satellites flying in line at the same speed
and carrying antennas in the same orientation. That is, a colocated MIMO radar system
with a linear sparse Nt-element transmit array and a linear half-wavelength spaced receive
array with Nr elements. A system diagram is shown in Figure 1. Assume that the satellites
can maneuver to construct a given distribution in space if needed; no position error is
considered in this paper.
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Figure 1. The system diagram of colocated MIMO radar array in space.

For the sparse transmit array, the distance between the ith element and the (i + 1)th
element is denoted by di, i = 1, 2, · · · , Nt − 1. The transmit steering vector can then be
written as

at(θ) =

[
1, exp(j2π f0d1 sin(θ)/c), · · · , exp(j2π f0

Nt−1

∑
i=1

di sin(θ)/c)

]T

(1)

where f0 denotes carrier frequency, j denotes the imaginery symbol, exp(·) denotes the
exponential function, θ is the spatial direction of interest, c is the speed of light, and [·]T is
the transpose operator.

To be concise, the directions are treated as a frequency term in the linear array configu-
ration, and we define a normalized angular frequency by

fc = 0.5 sin(θ). (2)

The element spacing between elements is normalized by the wavelength as

βi = 2di/λ, (3)

where λ = c/ f0 denotes the wavelength. In particular, for a half-wavelength array,
di = λ/2 for i = 1, · · · , Nt − 1.

With βi, we can express the transmit steering vector in another form as

at( fc) = exp(j2πLβ), (4)

where the matrix

L =



0 0 · · · 0 0

1 0
. . .

... 0
... 1

. . . 0
...

1
...

. . . 0 0
1 1 · · · 1 0


Nt×(Nt−1)

(5)

translates element spacings to element positions, and β = [β1, β2, · · · , βNt−1]
T is a vector

of element spacings. For a uniform linear array, β is a vector of identical members. It is
more convenient to run the optimization process over βk which all have the same range.
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To control the overall aperture of the transmit array, we define the total aperture by

D =
Nt−1

∑
i=1

βi, (6)

for which the real array aperture is Dλ/2.
In order to make a fair comparison with the aperture of a uniform half-wavelength

spaced array, for which D = Nt − 1, we define a measure of array aperture extension by

η = D/(Nt − 1). (7)

For the half-wavelength spaced linear array, η = 1. As real antenna spacing often has
a lower bound λ/2, we set η ≥ 1, and it would increase with total aperture D.

2.1. Angular Waveform and Transmit Beampattern

Assume that the colocated MIMO radar system under concern has a transmit wave-
form matrix denoted by S = [s1, s2, · · · , sNt ] ∈ CNs×Nt , where si is the waveform transmit-
ted by the element on the ith satellite, and Ns is the number of codes of each waveform.

After transmitted waveforms S are transmitted from transmit antennas into surveil-
lance, they will constructively or destructively interfere with each other to form different
waveform signatures in different spatial directions, subsequently termed as angular wave-
forms. For a spatial direction θ, a coherent combination of S would yield an angular
waveform as

s( fc) = Sat( fc) (8)

The transmit beampattern is defined as the power of angular waveforms in different
spatial directions, i.e.,

p( fc) = sH( fc)s( fc)/Ns

= aH
t ( fc)R0at( fc),

(9)

where (·)H denotes the conjugate transpose operator, and

R0 = SSH/Ns (10)

denotes the transmit waveform covariance matrix of S.

2.2. Attenuation Factor of Receive Beamforming

We assume that the transmit waveforms are narrow-band. In this case, the waveform
covering a target is an angular waveform and target returns also bear the same waveform
signature, to which the receive end would match. There is often a Doppler modulation and
we do not address this issue here. At the receive end, there are various signal processing
algorithms, which differ mainly in the method of suppressing background interference [23].
In [24], several signal processing algorithms for colocated MIMO radar are proposed,
for which the receive beamforming components all have the following form [26]:

wr( fc) =
R−1

r ar( fc)

aH
r ( fc)R−1

r ar( fc)
, (11)

where Rr is an estimate of the interference covariance matrix and the receive steering vector
is denoted by

ar( fc) = [1, exp(j2π fc), · · · , exp(j2π(Nr − 1) fc)]
T. (12)

The receive steering vector indicates that the receive array is a uniform array with a
half-wavelength spacing.
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Adaptive interference suppression algorithms, such as the MIMO–Capon algorithm [24],
involve samples received online. Since interference circumstances may be different at different
range cells and online waveform optimization involving range sidelobe suppression is difficult
to implement, we do not concern ourselves with such adaptive algorithms at the current stage;
rather, we formulate a simple and classical MIMO signal processing algorithm, i.e., the MIMO
least square (LS) algorithm, for which Rr = I and the receive beamforming weight is

wr( fc) = ar( fc)/Nr. (13)

In [23], the implementation of the MIMO LS algorithm is addressed; it is mainly
composed of three operations, i.e., receive beamforming, range compression, and transmit
synthesis. The latter two operations are realized by a concise unit called space-time range
compressors, which follows a receive beamforming filter and is actually a matched filter
regarding returns in directions associated with the beamforming filter. If a spatial receive
channel regarding a spatial direction fc uses this receive beamforming weight, target returns
from other spatial directions would be attenuated first by the beamforming filter before
they pass the space-time range compressor. Cross-correlation sidelobes measure how they
are attenuated in the space-time range compressor, whereas the precedent beamforming
filter has attenuated them first. Therefore, a good combination of the suppression terms
can make better use of the degrees of freedom.

It can be found that target return from f ′c is attenuated in the beamforming filter by a
factor

ρr( fc, f ′c) = aH
r ( f ′c)ar( fc)/Nr = aH

r ( f ′c − fc)1Nr /Nr, (14)

which is termed as the attenuation factor.
In particular, if fc = f ′c then ρr = 1, standing for no attenuation; otherwise, ρr is

generally less than one and the value indicates the degree of attenuation. If fc deviates
far from f ′c, ρr is generally very small. In this case, if receive beamforming can attenuate
angular sidelobes efficiently, it is unnecessary to put too many degrees of freedom on
mutual correlation sidelobe suppression in waveform optimization.

2.3. Sidelobes of Angular Waveforms

Notwithstanding target absolute amplitude, for target return s( f ′c), the space-time range
compressor intended to match angular waveform s( fc) would output sidelobes given by

ρk
(

fc, f ′c
)
=

aH
t ( fc)SJkSHat

(
fc
′)

aH
t ( fc)SSHat( fc)

=
1

p( fc)
aH

t ( fc)Rkat
(

fc
′), (15)

where k denotes mutual range shift, and

Rk = SJkSH/Ns (16)

denotes the shifted waveform covariance matrix. The shift matrix is defined by

Jk = JT
−k =

[
0(Ns−k)×k INs−k

0k×k 0k×(Ns−k)

]
, (17)

where 0 denotes an all-zero matrix with subscripts indicating its sizes, and I denotes the
identity matrix.

In particular, if fc = f ′c, then we obtain auto-correlation sidelobes as

ρk( fc) = aH
t ( fc)Rkat( fc)/p( fc). (18)
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From (17), we have

R−k = SJ−kSH/Ns = SJT
k SH/Ns = RH

k , (19)

and then
ρ−k( fc) = ρ∗k ( fc), (20)

where (·)∗ denotes the conjugate operator. In waveform design, it means that we can
suppress only one side of range sidelobes, say, those for k > 0.

Meanwhile, for cross correlation sidelobes, we have

ρ−k
(

fc, f ′c
)
=

p
(

fc
′)

p( fc)
ρ∗k
(

fc
′, fc
)
. (21)

With this relationship, we can reduce the number of values to minimize as well.

2.4. Sidelobes after Range Compression

For a directional transmit beampattern with two peaks, the receive end generally de-
ploys at least two space-time range compressors to deal with returns from those directions.
Target returns from two directions would have nonzero outputs in both compressors and
the mutual interference can be measured by cross-correlation sidelobes, which should thus
be suppressed. As angular waveforms with two peaks also have conjugate symmetric
sidelobes, we can suppress only one side of both auto- and cross-correlation sidelobes of
two angular waveforms.

Such a range compressor may receive target returns from any spatial direction. Targets
or clutter patches from other spatial directions may also have sufficient power to spoil the
range compressors. In this case, we intend to suppress the outputs in the range compressors,
but we need to suppress both sides of range sidelobes.

Here we focus on sidelobe outputs after receive beamforming and space-time range
compression. In addition to the attenuation factor, the sidelobe outputs have a form as

ρ̄−k
(

fc, f ′c
)
= ρr( fc, f ′c)× ρ−k

(
fc, f ′c

)
. (22)

As ρr( fc, fc) = 1, receive beamforming does not alter auto-correlation sidelobes.

2.5. Transmit Beampattern Matching

Transmit beampattern matching has mainly two approaches. One approach is to
optimize a waveform covariance matrix that bears a certain beampattern; given such a
waveform covariance matrix, transmit waveforms are optimized to match it [12]. Here we
choose the other method, i.e., to directly squeeze the mismatch between the desirable trans-
mit beampattern and real transmit beampattern. As the angular frequency is a continuous
value, we need to quantize it first and then optimize it at selected angular frequencies.

Given a group of Nd selected representative angular frequencies denoted by fb =
[ fb(1), · · · , fb(Nb)], we assume that desirable transmit beampattern responses are bd. The
real transmit beampattern at fb can be expressed as

bR = [p( fb(1)), p( fb(2)), · · · , p( fb(Nb))]
T

= diag
(

At
HR0At

)
,

(23)

where diag(·) denotes a vector of its diagonal elements, and At is the matrix of transmit
steering vectors, i.e., At = [at( fb(1)), · · · , at(Nb)].

A straightforward measure of the transmit beampattern mismatch is given by

bv = |bd − γbR|, (24)
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where |·| denotes a matrix of absolute values of the matrix/vector entry. Here a parameter
γ > 0 is introduced to avoid amplitude ambiguity between expected transmit beampattern
and real transmit beampattern.

In practice, the accuracy demanded is often different and this method can control the
mismatch flexibly by adjusting the number of elements in fb and the relative weight in
contrast to the sidelobe level.

2.6. Sidelobe Level Measure

In the receive end, there would be multiple space-time range compressors, each
following a receive beamforming filter regarding a spatial direction. We intend to suppress
sidelobe outputs in the range compressors, so we first define a group of angular frequencies
regarding those range compressors or beamforming filters, by fa = [ fa(1), · · · , fa(Na)],
where Na denotes the number of such a space-time range compressor in the receive end and
fa(k) denotes the spatial direction regarding the kth range compressor. In practice, a peak
of the transmit beampattern may need to deploy more than one such range compressor,
depending on the width of the peak and system requirement.

Both auto- and cross-correlation sidelobes of angular waveforms regarding fa should
be suppressed. Meanwhile, it has been shown in (20) that auto-correlation sidelobes are
conjugate symmetric in the range shift dimension, so we need to suppress only one side
of range sidelobes. For cross-correlation sidelobes, here we assume that the directional
transmit beampattern to match has peaks with the same amplitude, and then from (21),
there is also a conjugate symmetric property. Therefore, we define a measure of one-side
sidelobe level to suppress by

PSLa = max
k=1,2,··· ,Ns−1

fa(m)∈fa

|ρ̄k( fa(m))|. (25)

Although other spatial directions have low power allocation, returns in those directions
may still have high power and then we should suppress them. It should be kept in mind
that the interference of interest is one-way, i.e., only the interference to those spatial receive
channels is of interest. In order to represent target returns from all other spatial direction,
we define another group of angular frequencies by fm = [ fm(1), · · · , fm(Nm)] to represent
Nm such attenuated spatial directions. To avoid duplicated sidelobes, we assume that fm
and fa have no element in common. We define another PSL measure by

PSLm = max
k=−Ns,··· ,−1,1,··· ,Ns−1

fm(m)∈fm, fa(i)∈fa

|ρ̄k( fm(m), fa(i))|. (26)

2.7. Joint Waveform Optimization Criterion

Now we have defined two PSL measures, PSLa and PSLm, as well as a transmit beam-
pattern measure. They are combined to form the following waveform optimization criterion:

min
γ,β,P

max[αbv, PSLa, PSLm]

s.t.
Nt−1

∑
i=1

βi = D

βi ≥ 1, i = 1, · · · , Nt − 1

γ > 0,

(27)

where P = −j log(S) denotes a matrix of phases of S, log(·) denotes the logarithm function,
and α is a trade-off parameter between transmit beampattern matching and sidelobe level.
In practice, the spacing of transmit antennas has a minimal limit, typically a half wavelength,
so we impose a constraint over spacing for all antennas by βi ≥ 1. It is unnecessary to put
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a constraint on phase matrix P, whose elements have a period 2π. The optimization result
of P would be shifted within the domain [0, 2π].

Our optimization method can trade off between transmit beampattern matching
performance and range sidelobe level. The trade-off parameter α is set offline, according to
the interest of the designer. A high α would emphasize transmit beampattern performance
and thus may sacrifice the sidelobe level. In practice, we do not agree with wasting too
many degrees of freedom on transmit beampattern matching, because even though we
match a beampattern accurately in theory, a real transmit array would be difficult to
reproduce for array error and mutual coupling. Too accurate a transmit beampattern is not
always necessary in some situations. Therefore, we advise relaxing transmit beampattern
matching accuracy properly for a better PSL. The degree is key, and the weight should be
tuned properly. In practice, sidelobes may be imposed by different weights for a desirable
property and the extension is straightforward, so we do not show it explicitly here.

The problem in (27) is constrained, nonlinear, and NP-hard; the global minimum is
difficult to reach and for such a problem, there are numerous optimization tools to use.
Here we resort to the minimax algorithm based on the SQP, which is found to be efficient
and robust [17].

3. Numerical Results
3.1. Optimization Configurations

The optimization is concerned with the background of a sparse MIMO transmit array.
The transmit array has Nt = 12 transmit elements, for which Nt = 128 codes will be
designed according to (27). The receive array deployed in the same direction has Nr = 12
receive elements, all spaced by a half wavelength. As the SQP-based optimization algorithm
is sensitive to the initial value, we run the optimization processing 20 times and select the
best one as the final result for all the following numerical experiments.

For transmit beampattern matching, fb is quantized over [−0.5, 0.5] Hz with interval
0.01 Hz, as shown in Figure 2. The directional transmit beampattern would have two
peaks, located at fc = −0.2 Hz and 0.2 Hz, so fa = [−0.2, 0.2]T Hz. For each peak, we
use four angular frequencies to represent target returns from other spatial directions and
set fm = [−0.23,−0.2,−0.17, 0, 0.17, 0.2, 0.23]T Hz. The desirable transmit beampattern bd
equals one for fc ∈ [−0.25,−0.15] ∪ [0.15, 0.25] and equals zero elsewhere.

(a)

Figure 2. Cont.
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(b)

Figure 2. Results with P1: transmit beampatterns (a) and element locations (b).

Two simulations will be considered. The first aims at verification of the benefits
induced by optimizing array spacing. The second aims at studying the impact of array
aperture on optimization performance.

3.2. Benefits of Spacing Optimization

In [25], a waveform optimization algorithm without array spacing optimization is
addressed, wherein there is also a trade-off parameter like α. To make a fair comparison
with it, we set the trade-off parameter α = 0.01 for both of them. Here the average element
spacing is η = 3.5, corresponding to a total aperture D = 38.5 for the 12-element array.
The transmit beampattern matching performance is shown in Figure 1, where the desirable
transmit beampattern and that designed with η = 1, corresponding to the half-wavelength
and no-spacing-optimization case, are shown together.

Figure 2a indicates that the advantage of spacing optimization is obvious. The array spac-
ing optimization gives rise to a better transmit matching performance than the method without
spacing optimization. Meanwhile, additional degrees of freedom result in a lower sidelobe
level of the transmit beampattern. Figure 2b shows the element positions after optimization,
indicating that both the minimal spacing and the total aperture meet the prescribed settings.

Auto-correlation sidelobes are shown in Figure 3, where the upper two figures are results
with spacing optimization and the lower two are with the method without spacing optimization,
both for two spatial directions corresponding to −0.2 Hz (left two) and 0.2 Hz (right two).

Figure 3. Auto-correlation sidelobes of angular waveforms in different configurations.
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From Figure 3, the spacing optimization leads to a −24.4 dB auto-correlation PSLa,
whereas no spacing optimization has only −20.2 dB. Therefore, additional degrees of
freedom provide approximately a 4.2 dB reduction of PSLa.

Two spatial receive channels would receive returns from directions other than fa.
To evaluate the effect, sidelobe outputs of returns from fm in the spatial receive channels
are shown in Figure 4a,b, for our method and that in [25], respectively.

(a)

(b)

Figure 4. Mutual correlation sidelobes between angular waveforms for (a) our results and (b) another
method in [25].
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In Figure 4a,b, all sidelobe outputs are lower than −30 dB, much lower than auto-
correlation sidelobes. Such a significant performance improvement is mainly caused by
the receive beamforming operation, which has efficiently suppressed cross-correlation
sidelobes of angular waveforms. Their difference is insignificant in this measure. For
the 12-element receive array, the attenuation factors for the correlation pairs are shown
in Table 1. The attenuation factor depends on the interval, i.e., a larger distance of two
directions tends to have a lower attenuation factor. More attenuation factors regarding
other correlation pairs can be computed through (2).

Table 1. Attenuation factors for correlation pairs.

Correlation Pairs (−0.2, 0) (−0.2, 0.17) (−0.2, 0.2) (−0.2, 0.23)

Attenuation coefficient 0.13 0.09 0.05 0.04

It can also be seen that those cross-correlation sidelobes are not as plain as auto-
correlation sidelobes. That is because the waveform design criterion has equal weights
on auto-correlation sidelobes, but auto-correlation sidelobes are more difficult to suppress
through optimization than cross-correlation sidelobes. One can adjust the weight to meet
specific demands. In [16], if the receive aperture is sufficiently large, one can even totally
ignore cross-correlation sidelobes and focus on suppressing auto-correlation sidelobes for
better performance.

3.3. Impact of Array Aperture

Total transmit array aperture D determines the degrees of βi and thereby affects final
performance. To study quantity, we run the optimization process nine times for η increasing
from 1 to 5 with spacing 0.5 and show the PSL versus η in Figure 5. It can be seen that the
increase in spacing can indeed lead to a lower PSL. However, there is a limit; the bonus will
cease increasing after η reaches a point, approximately η = 3.5 for our parameter settings.

Figure 5. The PSL drop curve with the sparse degree.

The transmit beampattern matching performance would vary with the sparse degree
η as well and the variation is shown in Figure 6, where different η are grouped into four
figures to have a clear view. It can be found that the spacing optimization can enhance
transmit beampattern matching performance, but like the sidelobe level, the matching
performance will reach a limit. It will fluctuate after η reaches the limit.

In practice, different numbers of array elements may result in different turning points
of η. For the case at hand, it is η = 3.5, i.e., 3.5 times the half wavelength. It means that
the degrees of freedom that can be extracted from spacing optimization have a limit. The
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final PSL is proportional to the transmit beampattern mismatch, so the total aperture has a
similar effect on the PSL, which is not discussed here anymore.

Figure 6. Transmit beampatterns for different sparse degrees.

4. Conclusions

Waveform design for colocated MIMO radar involves optimization for various vari-
ables and with numerous elements to suppress. The success lies greatly in the degrees
of freedom available. In this paper, we study how to optimize transmit waveforms and
array spacing of sparse colocated MIMO radar transmit array for a desirable transmit
beampattern and a low sidelobe level output. We use array spacing optimization to exploit
more degrees of freedom and incorporate the receive beamforming effect to make better use
of existing degrees of freedom, so that both transmit beampattern matching performance
and sidelobe level are improved, without grating lobes typically present in a sparse array.
An attenuation factor is introduced to measure how much the receive beamforming would
suppress mutual correlation sidelobes of angular waveforms. The factor is incorporated
into our waveform design criteria and releases some degree of freedom that is originally al-
located to suppress cross-correlation sidelobes of angular waveforms. Better use of degrees
of freedom available reasonably brings a better performance output. The way to measure
transmit beampattern matching performance and to quantize the angular frequency is
also of interest to future waveform optimization. For simplicity, we consider a classical
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but simple receive beamforming algorithm, but this method can be generalized simply
to more general quiescent receive beamforming algorithms, which may have different
attenuations factors.

It is also revealed that the degrees of freedom that can be extracted from spacing
optimization have a limit, i.e., average sparsity over about twice the wavelength may
not reduce the PSL any more. Moreover, although spacing optimization enriches degrees
of freedom and yields better optimization results, the reproduction in real applications
depends heavily on the accuracy in controlling antenna locations. In practice, array spacing
is applicable only for radar systems operating in a few carrier frequencies. In this case, one
should extend our method to simultaneously suppress sidelobes over different frequencies.
If a radar system operates in several frequencies, the performance may become worse
for frequencies out of the optimization rule. An array spacing optimized for a carrier
frequency may not be suitable for another carrier frequency. In order to improve the array
manufacturing economy, some radar systems have a narrow operation bandwidth and this
algorithm can make them work better.
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