Establishment of an Electro-Optical Mixing Design on a Photonic SOA-MZI Using a Differential Modulation Arrangement
Abstract
:1. Introduction
2. SOA-MZI Module
3. The Principle of the Updated Electro-Optical Mixing
4. Performance of the Electro-Optical Mixing System for an Up-Mixed Signal
- A.
- Experimental Setup Characterization
- B.
- Optical Characterizations
- (a)
- Output Power Performance
- (b)
- Optical Conversion Gain
- (c)
- Power Stability
- (d)
- Signal to Noise Ratio
- (e)
- Noise Figure
- C.
- Electrical Characterizations
- (a)
- Electrical spectrum
- (b)
- Electrical Conversion Gain
- (c)
- Isolation
- (d)
- Error Vector Magnitude
5. The Performance Parameters of the Electro-Optical Mixing System for Simultaneous Two up Mixed Signals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWG | Arbitrary Waveform Generator |
ECG | Electrical Conversion Gain |
EVM | Error Vector Magnitude |
LNA | Low Noise Amplifier |
MZM | Mach–Zehnder Modulator |
OBPF | Optical Band Pass Filter |
OCG | Optical Conversion Gain |
OPS | Optical Pulse Source |
OSNR | Optical Signal to Noise Ratio |
PIN-PD | Positive-Intrinsic-Negative Photo Diode |
QAM | Quadrature Amplitude Modulation |
SOA-MZI | Semiconductor Optical Amplifier Mach–Zehnder Interferometer |
XGM | Cross Gain Modulation |
XPM | Cross Phase Modulation |
References
- Kleine-Ostmann, T.; Nagatsuma, T. A Review on Terahertz Communications Research. J. Infrared Millim. Terahertz Waves 2011, 32, 143–171. [Google Scholar] [CrossRef]
- Gomes, N.J.; Monteiro, P.P.; Gameiro, A. Next Generation Wireless Communications Using Radio Over Fiber; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Rouvalis, E.; Renaud, C.; Moodie, D.G.; Robertson, M.J.; Seeds, A.J. Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation. Opt. Express 2010, 18, 11105–11110. [Google Scholar] [CrossRef] [PubMed]
- Preu, S.; Döhler, G.H.; Malzer, S.; Wang, L.J.; Gossard, A.C. Tunable, continuous-wave Terahertz photomixer sources and applications. J. Appl. Phys. 2011, 109, 061301. [Google Scholar] [CrossRef]
- Thomas, V.A.; El-Hajjar, M.; Hanzo, L. Millimeter-Wave Radio Over Fiber Optical Upconversion Techniques Relying on Link Nonlinearity. IEEE Commun. Surv. Tutor. 2015, 18, 29–53. [Google Scholar] [CrossRef]
- Schilling, M.; Wünstel, K.; Idler, W.; Baums, D.; Laube, G.; Koerner, U.; Lach, E.; Daub, K. Wavelength converter based on integrated all-active three-port Mach-Zehnder interferometer. Electron. Lett. 1994, 30, 2128–2130. [Google Scholar] [CrossRef]
- Dong, H.; Sun, H.; Wang, Q.; Dutta, N.K.; Jaques, J. All-optical logic and operation at 80 Gb/s using semiconductor optical amplifier based on the Mach–Zehnder interferometer. Microw. Opt. Technol. Lett. 2006, 48, 1672–1675. [Google Scholar] [CrossRef]
- Dimitriadou, E.; Zoiros, K.E. On the design of reconfigurable ultrafast all-optical NOR and NAND gates using a single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J. Opt. 2012, 14, 105401. [Google Scholar] [CrossRef]
- Houbavlis, T.; Zoiros, K.; Kanellos, G.; Tsekrekos, C. Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach–Zehnder Interferometer. Opt. Commun. 2004, 232, 179–199. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Choi, J.; Byun, Y.; Jhon, Y.; Lee, S.; Woo, D.; Kim, S.H. All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers. In Proceedings of the 2005 Quantum Electronics and Laser Science Conference, Baltimore, MD, USA, 22–27 May 2005. [Google Scholar] [CrossRef]
- Dong, H.; Sun, H.; Wang, Q.; Dutta, N.; Jaques, J. 80Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme. Opt. Commun. 2006, 265, 79–83. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Lee, K.; Eom, D.; Lee, S.; Kim, J.H. All-optical exclusive NOR logic gate using Mach- Zender Interferometer. Jpn. J. Appl. Phys. 2002, 41, 1155–1157. [Google Scholar] [CrossRef]
- Kang, B.-K.; Kim, J.H.; Park, Y.H.; Lee, S.; Jhon, Y.M.; Woo, D.H.; Kim, S.H.; Park, S.-H. All-optical logic AND in a SOA-based Mach-Zehnder all-optical wavelength converter. In Proceedings of the 13th Laser and Electro-Optics Society, Rio Grande (Puerto Rico), Rio Grande, PR, USA, 13–16 November 2000; Volume 1, pp. 117–118. [Google Scholar]
- Pan, X.; Wiesenfeld, J.M.; Perino, J.S.; Koch, T.L.; Raybon, G.; Koren, U.; Chien, M.; Young, M.; Miller, B.I.; Burrus, C.A. Dynamic operation of a three-port, integrated Mach-Zehnder wavelength converter. IEEE Photon. Technol. Lett. 1995, 7, 995–997. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, Q.; Dong, H.; Dutta, N.K. XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer. Opt. Express 2005, 13, 1892–1899. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, G.; Chen, H.; Jaques, J.; Leuthold, J.; Piccirilli, A.; Dutta, N. Study of all-optical XOR using Mach-Zehnder Interferometer and differential scheme. IEEE J. Quantum Electron. 2004, 40, 703–710. [Google Scholar] [CrossRef]
- Termos, H.; Mansour, A. Real & Simulated QPSK Up-Converted Signals by a Sampling Method Using a Cascaded MZMs Link. Photonics 2022, 9, 34. [Google Scholar]
- Chul, S.P.; Choong, K.; Chung, G.L.; Dong-Hwan, K.; Chang-Soo, P.A. photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM. IEEE Photonics Technol. Lett. 2005, 17, 1950–1952. [Google Scholar] [CrossRef]
- Thouras, J.; Benazet, B.; Leblond, H.; Aupetit-Berthelemot, C. Photonic radio frequency down-converter based on parallel electro-absorption modulators in Ku/Ku band for space applications. In Proceedings of the 21st OptoElectronics and Communications Conference (OECC) Held Join, Niigata, Japan, 3–7 July 2016. [Google Scholar]
- Mohammad, A.W.; Shams, H.; Liu, C.-P.; Graham, C.; Natrella, M.; Seeds, A.J.; Renaud, C.C. 60-GHz Transmission Link Using Uni-Traveling Carrier Photodiodes at the Transmitter and the Receiver. J. Light. Technol. 2018, 36, 4507–4513. [Google Scholar] [CrossRef]
- Rouvalis, E.; Fice, M.J.; Renaud, C.C.; Seeds, A.J. Millimeter-Wave Optoelectronic Mixers Based on Uni-Traveling Carrier Photodiodes. IEEE Trans. Microw. Theory Tech. 2012, 60, 686–691. [Google Scholar] [CrossRef]
- Termos, H.; Mansour, A. Quadrature amplitude modulation frequency up- and down-conversions using a positive-intrinsic-negative photodiode sampling mixer. Opt. Eng. 2022, 61, 096103. [Google Scholar] [CrossRef]
- Kim, H.-J.; Song, J.-I. Simultaneous WDM RoF Signal Generation Utilizing an All-Optical Frequency Upconverter Based on FWM in an SOA. IEEE Photon-Technol. Lett. 2011, 23, 828–830. [Google Scholar] [CrossRef]
- Contestabile, G.; Presi, M.; Ciaramella, E. Multiple Wavelength Conversion for WDM Multicasting by FWM in an SOA. IEEE Photon-Technol. Lett. 2004, 16, 1775–1777. [Google Scholar] [CrossRef]
- Seo, Y.-K.; Choi, C.-S.; Choi, W.-Y. All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers. IEEE Photon-Technol. Lett. 2002, 14, 1448–1450. [Google Scholar] [CrossRef]
- Contestabile, G.; Maruta, A.; Sekiguchi, S.; Morito, K.; Sugawara, M.; Kitayama, K. 80 Gb/s multicast wavelength conversion by XGM in a QD-SOA. In Proceedings of the 36th European Conference and Exhibition on Optical Communication, Turin, Italy, 19–23 September 2010; pp. 1–3. [Google Scholar] [CrossRef]
- Song, H.-J.; Lee, J.S.; Song, J.-I. Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter. IEEE Photon-Technol. Lett. 2004, 16, 593–595. [Google Scholar] [CrossRef]
- Song, H.-J.; Song, J.-I. Simultaneous all-optical frequency downconversion technique utilizing an SOA-MZI for WDM radio over fiber (RoF) applications. J. Light. Technol. 2006, 24, 3028–3034. [Google Scholar] [CrossRef]
- Song, J.-I.; Song, H.-J. Simultaneous Frequency Conversion Technique Utilizing an SOA-MZI for Full-Duplex WDM Radio over Fiber Applications. IEICE Trans. Electron. 2007, E90-C, 351–358. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.H.; Song, J.I. Generation of a 100-GHz optical SSB signal using XPM-based all-optical frequency up-conversion in an SOAMZI. Microw. Opt. Technol. Lett. 2014, 57, 35–38. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, J.Y.; Choi, H.J.; Song, I.J. All-optical single sideband frequency up conversion utilizing the XPM effect in an SOAMZI. Opt. Express. 2016, 24, 20309–20317. [Google Scholar] [CrossRef]
- Termos, H.; Rampone, T.; Sharaiha, A.; Hamié, A.; Alaeddine, A. All-Optical Radiofrequency Sampling Mixer Based on a Semiconductor Optical Amplifier Mach–Zehnder Interferometer Using a Standard and a Differential Configuration. IEEE J. Light. Technol. 2016, 34, 4688–4695. [Google Scholar] [CrossRef]
- Termos, H.; Rampone, T.; Sharaiha, A.; Hamié, A.; Alaeddine, A. Up and down frequency conversion of a QPSK signal by an all-optical radiofrequency sampling mixer based on a semiconductor optical amplifier Mach-Zehnder interferometer. In Proceedings of the 2015 International Topical Meeting on Microwave Photonics (MWP), Paphos, Cyprus, 25–29 October 2015; pp. 1–4. [Google Scholar]
- Termos, H.; Rampone, T.; Sharaiha, A.; Hamié, A.; Alaeddine, A. OFDM signal up and down frequency conversions by a sampling method using a SOA-MZI. In Proceedings of the 2017 29th International Conference on Microelectronics (ICM), Beirut, Lebanon, 10–13 December 2017; pp. 1–5. [Google Scholar]
- Termos, H.; Rampone, T.; Sharaiha, A. Sampling rate influence in up and down mixing of QPSK and OFDM signals using an SOA-MZI in a differential configuration. Electron. Lett. 2018, 54, 990–991. [Google Scholar] [CrossRef]
- Termos, H.; Mansour, A.; Nasser, A. Simultaneous up- and down-frequency mixing based on a cascaded SOA-MZIs link. Appl. Opt. 2021, 60, 8336. [Google Scholar] [CrossRef] [PubMed]
- Termos, H.; Mansour, A.; Nasser, A. Simultaneous Up-Conversion Based on a Co- & Counter-Directions SOA-MZI Sampling Mixer with Standard & Differential Modulation Modes. Photonics 2022, 9, 109. [Google Scholar] [CrossRef]
- Termos, H.; Mansour, A. OFDM signal down frequency conversion based on a SOA-MZI sampling mixer using differential modulation and switching architectures. Optik 2021, 245, 167761. [Google Scholar] [CrossRef]
- Termos, H.; Mansour, A. Sampling Parallel SOA-MZIs Configuration for All-Optical Simultaneous Frequency Down-Conversion. Photonics 2022, 9, 745. [Google Scholar] [CrossRef]
- Termos, H.; Tharthar, A.; Mansour, A. All-Optical Simultaneous Frequency Metamorphose Con-tin-gent on a Three Parallel SOA-MZIs Copula. Optics 2022, 9, 745. [Google Scholar]
- Sales, S.; Pastor, D.; Ortega, B. Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator. Opt. Express 2002, 10, 183–189. [Google Scholar] [CrossRef]
- Bohe, C.; Sharaiha, A.; Rampone, T.; Khaleghi, H. Electro-optical radiofrequency mixer based on semiconductor optical amplifier. Electron. Lett. 2011, 47, 331–333. [Google Scholar]
- Rampone, T.; Zulma, R.; Sharaiha, A. Electro-optical radiofrequency up-converter based on a semiconductor optical am-plifier. Proc. IEEE Int. Top. Meet. Microw. Photon. 2011, 31, 145–148. [Google Scholar]
- Termos, H.; Mansour, A. Frequency Alteration Built on an Electro-Optical Sampling SOA–MZI Using a Differential Modulation Schema. Optics 2022, 3, 225–233. [Google Scholar] [CrossRef]
- Termos, H. Study of up and down Conversion Technique by All Optical Sampling Based on a SOA-MZI. Ph.D. Thesis, ED SICMA, Univ. de Bretagne Occidentale, Brest, France, 2017. [Google Scholar]
- Fernandez, A.; Chao, L.; Chi, J.W.D. All-Optical Clock Recovery and Pulse Reshaping Using Semiconductor Optical Amplifier and Dispersion Compensating Fiber in a Ring Cavity. IEEE Photon-Technol. Lett. 2008, 20, 1148–1150. [Google Scholar] [CrossRef]
- Stasyuk, V. Test Data and Operation Manual of Ultrafast Optical Clock; Pritel, Inc.: Napervilla, IL, USA. Available online: www.pritel.com (accessed on 11 April 2023).
- Vaughan, R.G.; Scott, N.L.; White, D.R. The theory of band pass sampling. IEEE Trans. Signal. Process. 1991, 39, 1973–1984. [Google Scholar] [CrossRef]
- VPI Transmission Maker/VPI Component Maker, User’s Manual, Photonic Modules Reference Manuals. VPI Photonics OfficialWebsite. Available online: http://www.vpiphotonics.com (accessed on 1 February 2023).
- Preliminary Datasheet 40G-2R2-ORP, “Twin 40G/s 2R Optical Regenerator”. Available online: www.ciphotonics.com (accessed on 11 April 2023).
- Nicholes, S.C.; Mašanović, M.L.; Lively, E.; Coldren, L.A.; Blumenthal, D.J. An 8 × 8 InP monolithic tunable optical router (MOTOR) packet forwarding chip. J. Lightw. Technol. 2010, 28, 641–650. [Google Scholar] [CrossRef]
- Stampoulidis, L.; Apostolopoulos, D.; Petrantonakis, D.; Zakynthinos, P.; Bakopoulos, P.; Zouraraki, O.; Kehayas, E.; Poustie, A.; Maxwell, G.; Avramopoulos, H. Enabling Tb/s photonic routing: Development of advanced hybrid integrated photonic devices to realize high-speed, all-optical packet switching. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 849–860. [Google Scholar] [CrossRef]
- Roelkens, G.; Liu, L.; Liang, D.; Jones, R.; Fang, A.; Koch, B.; Bowers, J. III-V/silicon photonics for on-chip and inter-chip optical interconnects. Laser Photon. Rev. 2010, 4, 751–779. [Google Scholar] [CrossRef]
- Stamatiadis, C.; Stampoulidis, L.; Vyrsokinos, K.; Lazarou, I.; Kalavrouziotis, D.; Zimmermann, L.; Voigt, K.; Preve, G.; Moerl, L.; Kreissl, J.; et al. A Hybrid Photonic Integrated Wavelength Converter on a Silicon-on-Insulator Substrate. In Proceedings of the Optical Fiber Communication Conference 2012, Los Angeles, CA, USA, 4–8 March 2012. [Google Scholar] [CrossRef]
- Seo, Y.-K.; Seo, J.-H.; Choi, W.-Y. Photonic frequency-upconversion efficiencies in semiconductor optical amplifiers. IEEE Photon-Technol. Lett. 2003, 15, 751–753. [Google Scholar] [CrossRef]
- Belkin, M.E.; Sigov, A.S. Circuit-level large-signal modeling of microwave bandwidth photodetector. In Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA 2015), Torino, Italy, 7–11 September 2015; pp. 1587–1589. [Google Scholar]
- Tulchinsky, D.A.; Boos, J.B.; Park, D.; Goetz, P.G.; Rabinovich, W.S.; Williams, K.J. High-Current Photodetectors as Efficient, Linear, and High-Power RF Output Stages. IEEE J. Light. Technol. 2008, 26, 408–416. [Google Scholar] [CrossRef]
- Shafik, R.A.; Rahman, S.; Islam, A.R. On the Extended Relationships among EVM, BER and SNR as Performance Metrics. In Proceedings of the 2006 International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 19–21 December 2006; pp. 408–411. [Google Scholar]
- Agrawal, G.P. Fiber-Optic Communications Systems; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Walker, G.; Steele, R.; Walker, N. Optical amplifier noise figure in a coherent optical transmission system. J. Light. Technol. 1990, 8, 1409–1413. [Google Scholar] [CrossRef]
- Crottini, A.; Salleras, F.; Moreno, P.; Dupertuis, M.-A.; Deveaud, B.; Brenot, R. Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme. IEEE Photon-Technol. Lett. 2005, 17, 977–979. [Google Scholar] [CrossRef]
- Boula-Picard, R.; Alouini, M.; Lopez, J.; Vodjdani, N.; Simon, J.-C. Impact of the gain saturation dynamics in semiconductor optical amplifiers on the characteristics of an analog optical link. J. Light. Technol. 2005, 23, 2420–2426. [Google Scholar] [CrossRef]
- Eriksson, P.A.; Tenhunen, H. The noise figure of a sampling mixer: Theory and measurement. In Proceedings of the 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357), Paphos, Cyprus, 5–8 September 2003. [Google Scholar] [CrossRef]
- Movassaghi, M.; Jackson, M.K.; Smith, V.M.; Young, J.F.; Hallam, W.J. Noise figure of saturated erbium-doped fiber amplifiers. In Proceedings of the Optical Fiber Communications Conference, Dallas, TX, USA, 16–21 February 1997; pp. 104–105. [Google Scholar]
- Schmogrow, R.; Nebendahl, B.; Winter, M.; Josten, A.; Hillerkuss, D.; Koenig, S.; Meyer, J.; Dreschmann, M.; Huebner, M.; Koos, C.; et al. Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats. IEEE Photon. Technol. Lett. 2011, 24, 61–63. [Google Scholar] [CrossRef]
- Mestre, M.A.; Mardoyan, H.; Caillaud, C.; Rios-Müller, R.; Renaudier, J.; Jennevé, P.; Blache, F. Compact InP-based DFB-EAM enabling PAM-4 112 Gb/s transmission over 2 km. J. Light. Technol. 2016, 34, 1572–1578. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Chen, G.; Huang, X. SOA-based AOWC of 128QAM using Gaussian pulse shaping for transmission system with 227 Gbps. Microw. Opt. Technol. Lett. 2018, 60, 2204–2216. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Termos, H.; Mansour, A.; Ebrahim-Zadeh, M. Establishment of an Electro-Optical Mixing Design on a Photonic SOA-MZI Using a Differential Modulation Arrangement. Sensors 2023, 23, 4380. https://doi.org/10.3390/s23094380
Termos H, Mansour A, Ebrahim-Zadeh M. Establishment of an Electro-Optical Mixing Design on a Photonic SOA-MZI Using a Differential Modulation Arrangement. Sensors. 2023; 23(9):4380. https://doi.org/10.3390/s23094380
Chicago/Turabian StyleTermos, Hassan, Ali Mansour, and Majid Ebrahim-Zadeh. 2023. "Establishment of an Electro-Optical Mixing Design on a Photonic SOA-MZI Using a Differential Modulation Arrangement" Sensors 23, no. 9: 4380. https://doi.org/10.3390/s23094380
APA StyleTermos, H., Mansour, A., & Ebrahim-Zadeh, M. (2023). Establishment of an Electro-Optical Mixing Design on a Photonic SOA-MZI Using a Differential Modulation Arrangement. Sensors, 23(9), 4380. https://doi.org/10.3390/s23094380