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Abstract: In this article, a microwave (MW)/millimeter wave (MMW) aperture-sharing antenna is
proposed. The antenna is constructed using two orthogonal columns of grounded vias from a 3.5 GHz
slot-loaded half-mode substrate-integrated waveguide (HMSIW) antenna. These vias are reused to
create two sets of 1 × 4 MMW substrate-integrated dielectric resonator antenna (SIDRA) arrays. With
this proposed partial structure reuse strategy, the MW antenna and MMW arrays can be integrated in
a shared-aperture manner, improving space utilization and enabling dual-polarized beam steering
capability in the MMW band, which is highly desirable for multiple-input multipleoutput (MIMO)
applications. The integrated antenna prototype was manufactured and measured for verification.
The 3.5 GHz antenna has a relative bandwidth of 3.4% (3.44–3.56 GHz) with a peak antenna gain of
5.34 dBi, and the 28 GHz antenna arrays cover the frequency range of 26.5–29.8 GHz (11.8%) and
attain a measured peak antenna gain of 11.0 dBi. Specifically, the 28 GHz antenna arrays can realize
dual-polarization and ±45◦ beam steering capability. The dual-band antenna has a very compact
structure, and it is applicable for 5G mobile communication terminals.

Keywords: steerable beam; dual polarization; millimeter-wave MIMO; aperture-sharing

1. Introduction

New spectrum resources have been introduced in 5G to increase data capacity, mainly
including the sub-6 GHz (450 MHz–6 GHz) and MMW bands (24.25–52.6 GHz) [1–3]. The
deployment of new spectra will undoubtedly lead to an increase in antenna components
in mobile terminals. Since mobile terminals already have very limited internal spaces,
designing new terminal antennas will present significant challenges [4,5]. In earlier studies,
the structure of adjacent placement of high- and low-frequency antennas was proposed [6].
However, this scheme has extremely low space utilization and cannot effectively reduce
the size of the integrated antenna. To improve space utilization, shared-aperture antenna
technology has been proposed, and it is considered to be a very promising technique. For
a MW/MMW aperture shared antenna, the size of its MW antenna part should be very
compact to fit the demand of terminal use. On the other hand, the MMW arrays with
steering beams and dual polarization are highly desirable for the applications of MIMO
due to their high gain, wide angle coverage (from steering beams), and enhanced channel
capacity (from dual polarization) [7–9].

Numerous novel and creative shared-aperture designs using various technologies have
been proposed. The first category is the stacked structure [10–13]. In [10], a high-frequency
magneto-electric dipole antenna was placed above a low-frequency patch antenna. The
second category is the embedded structure, in which the high-frequency antenna is em-
bedded into the low-frequency antenna [14–22]. For instance, in [17], the MMW DRA was
embedded in the MW patch antenna in a co-planar form. The mode composite transmission
line structure can be used for constructing MW/MMW shared-aperture antennas. With this
structure, the combinations of MW microstrip patch array and MMW SIW slot array antenna,
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MW patch and MMW SIW slot antenna, as well as MW patch antenna and MMW slotted cav-
ity antenna were proposed in [23–25], respectively, to realize shared-aperture antennas. The
reuse of metasurface is also proposed to achieve the aperture integration of multi-frequency
antennas [26,27]. In [27], the S-band radiating surface was reused as the frequency selective
surface (FSS) of the cavity-backed slot antenna array operating at K-band. Furthermore, some
other ingenious approaches were also investigated, such as the shared-aperture integration of
MMW transmit/reflect arrays and various MW antennas [28–30], as well as MMW Fabry-
Perot cavity (FPC) antenna and various MW antennas [31,32]. For example in [29], the
dual-band operation is realized through the combination of MMW reflectarray antenna and
MW patch antenna array. In [32], the shared-aperture antenna is constructed by integrating
MMW FPC antenna into sub-6 GHz patch antenna. It is worth noting that the isolation
between the two frequency bands is also studied in this literature. For some designs, such
as [14,22,24], cavity-backed antennas and SIW antennas which have natural high-pass
characteristics are chosen as MMW antenna schemes to achieve high isolation between
MW and MMW bands. In addition, the filter structures can be introduced in the feed lines
to improve the isolation; for example, in [6], a low-pass filter is introduced to block the
transmission of high-frequency signals.

In general, the current shared-aperture antennas still have some flaws: (1) the antenna
sizes are large, making them difficult to be applied to the mobile terminals; and (2) most
designs cannot support dual-polarized and wide-angle beam scanning in the MMW band.

In light of these issues, this article suggests a 3.5 and 28 GHz aperture-sharing antenna
that is based on partial structure reuse strategy. Figure 1a–c depict the concept of the
antenna. First, the HMSIW antenna is selected as the MW antenna due to its compact
size. It is built on a substrate with high permittivity for further miniaturization and easier
construction of MMW SIDRAs. The two orthogonal columns of grounded vias of the
HMSIW antenna are then reused as two sets of 1 × 4 MMW SIDRA arrays, which are
x-polarized and y-polarized arrays, respectively [33]. Since the array element spacing is
roughly maintained at 0.5λ02 (λ02 is the wavelength in free space at 28 GHz) and each
element can be fed independently, the MMW arrays can support ±45◦ beam steering [34].
To expand the bandwidth of the MW antenna, the slot-loading technique is further used
to shift the higher-order mode downward to combine with the fundamental mode. Since
the SIDRA antenna has natural high-pass characteristics, high isolation can be achieved
between the two bands. The proposed antenna might have a use in terminals such as
illustrated in Figure 1d.
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rays. (c) Slot-loading technique is used to enhance the bandwidth of HMSIW antenna. (d) Potential 
application in terminals. 

Figure 1. (a) HMSIW antenna. (b) Grounded vias of the HMSIW antenna are reused as SIDRA
arrays. (c) Slot-loading technique is used to enhance the bandwidth of HMSIW antenna. (d) Potential
application in terminals.

2. Geometry

Figure 2a depicts the three-dimensional overview of the presented aperture-sharing
antenna, which consists of two layers of Sub1 and Sub2. Sub1 is made of Rogers RT 6006
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material with a permittivity εr1 = 6.15 and a loss tangent of 0.002, while Sub2 is made of
Rogers 4003C with εr2 = 3.55 and tanδ = 0.0027. The coaxial probe numbered #1 excites the
3.5 GHz HMSIW antenna. The inner conductor of the probe is inserted into Via1, while the
outer conductor is soldered to the ground. Figure 2b illustrates the upper surface of the
HMSIW antenna, where two pairs of slots (Slot1 and Slot2) have been etched to enhance the
bandwidth. The HMSIW antenna’s two orthogonal columns of grounded vias are reused
as two sets of 1 × 4 28 GHz SIDRA arrays. The two linear arrays are evenly arranged along
the x- and y-directions, and the element interval is 0.51λ02. Two sets of 1 × 4 “H-shaped”
slots, which are used to feed the arrays with the microstrip line ports numbered #2~#9, are
etched on the ground plane. Proper array spacing and the individual feed of each element
enable the wide scanning angles of ±45◦ for the MMW arrays. Figure 2c presents the
exploded view of the SIDRA element. Two types of grooves are constructed in Sub1: the
internal non-metalized grooves are drilled to build the SIDRA, while the external metalized
grooves are connected with the upper surface and ground plane, constructing a metallic
cavity for the MMW antenna as well as a grounded via for the MW antenna.
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MW antenna. (c) The 28 GHz SIDRA element. (Design parameters: W = L = 40, a = 48, Lsiw = 21.1,
PL = 11.9, h1 = 2.54, h2 = 0.305, Lg = 8.8, Wg = 3.8, W3 = 0.7, Lc = 4.6, Lm = 1.6, Lb = 2.6, Wc = 0.5,
Wd = 0.2, Ls = 1.4, Ws = 1.25, W1 = 0.7, L2 = 2.4, W2 = 0.35. Units: mm).

All the antenna parameters are listed in the caption of Figure 2, and the following
simulation results are obtained with HFSS 18.9 [35].

3. Antenna Design

Since the proposed partial structure reuse strategy results in very little interaction
between MW and MMW antennas, the two parts can be designed separately.

3.1. Dual-Mode HMSIW MW Antenna at 3.5 GHz

The 3.5 GHz MW antenna design can be considered first. The preliminary dimension
of the antenna can be calculated according to the classical SIW antenna theory [36,37] by
setting the dominant mode of the TM11 mode to resonate at 3.5 GHz for potential 5G
applications. Figure 3 shows the electric field distribution corresponding to TM11, TM22,
and TM33 modes of the full-mode SIW (FMSIW) resonant cavity at 3.5 GHz, 7.4 GHz, and
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8.2 GHz. The electric field in the FMSIW resonant cavity is symmetrical at the central plane
along the x-direction in Figure 3. Hence, the plane can be equivalent to a virtual magnetic
wall. If the FMSIW is divided into two halves along the virtual magnetic wall, each half is
called the HMSIW, and it can support almost half of the original electric field distribution.
Figure 4a presents the initial model of the proposed HMSIW antenna. Figure 4b illustrates
the corresponding |S11|, which reveals three resonant modes in the 3–9 GHz frequency
range. Figure 5 shows the electric field amplitude distributions of the HWSIW. When
comparing with the field distribution of FMSIW modes, it can be concluded that the three
modes correspond to TM11 mode at 3.5 GHz, TM22 mode at 7.1 GHz, and TM33 mode at
8 GHz, respectively.
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The operating bandwidth of the TM11 mode is thoroughly narrow because of the
compact size of the antenna. The idea is to shift the higher-order mode TM22 mode
downward to combine with the TM11 mode in order to increase its bandwidth. The slot-
loading technique is used in the design to implement this idea. Figure 6 presents the current
distributions of the two modes to help investigate the slot-loading principle. The current
distribution reveals that when Slot1 is loaded, the TM11 mode will not be affected since the
current is parallel to the slot, but the TM22 will be significantly affected (shifted down) as
the current is cut by the slot (current path will be increased). Similarly, if Slot2 is further
introduced, the TM22 mode will continuously be affected because the current is still cut by
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the slot, and the TM11 mode will also be slightly affected since a small amount of current of
this mode is cut as well.
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A parametric study of the slot lengths is conducted to clearly verify the validity of
the proposed slot-loading technique. With reference to Figure 7a, we can recognize that
the frequency of the TM22 mode decreases rapidly while the frequency of TM11 roughly
remains constant with the increase in length (Lg). As can be learned through Figure 7b,
with the increase in the length of Slot2 (Wg), the frequency of the TM11 mode slightly shifts
down and the frequency of TM22 continues to decrease quickly. Finally, the two modes can
be merged, broadening the bandwidth from 1.3% to 3.4%.
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3.2. SIDRA at 28 GHz Band

The design of SIDRA has been well presented in [38]. Figure 8a shows the simulated
|S11| of a single SIDRA element and the gain of a 1× 4 array. The proposed slot-feed SIDRA
structure has two resonances, which are the lower-frequency resonance from the DRA mode
and the higher-frequency resonance from the feeding slot mode. The element has a relative
impedance bandwidth of 12.5% (26.1–29.6 GHz), while the peak antenna gain of the array
is 11.5 dBi. Figure 8b shows the electrical field distribution of the internal reference surface
at 27 GHz of the DRA, and it follows the TEx

111 mode distribution. Parametric studies
were conducted to further investigate the two resonant modes. As shown in Figure 9a, as
increasing the thickness h2 of the substrate, the lower resonant mode shifts down while the
higher one stays stable, which indicates that the lower resonance is affected mainly by the
DRA mode. Figure 9b illustrates that when the length of H-shaped slot Ls increases, the
higher resonant frequency shifts down while the lower resonant frequency remains almost
fixed. This confirms that the higher resonance is influenced mainly by the slot mode.
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The two sets of 1 × 4 SIDRA arrays can steer the beams along x-axis polarization
and y-axis polarization, respectively. Here, a 1 × 4 array along the x-axis is taken as an
example to demonstrate the beam scanning characteristic. Figure 10a shows the two-
dimensional diagram of the beam scanning array. The relative phase shift of ψ, 2ψ, and 3ψ
are implemented in the elements. The radiation angle θ can be calculated by

θ = sin−1 ·
(

ψc
ωRFd

)
(1)

where c is the velocity of light, ωRF is the center RF frequency of the system, and d is the
interval of the elements, which equals 0.51 λ02. The required phase shift ψ to generate the
given beam position θ is calculated by Equation (1), and the relative phase shifts of ψ, 2ψ,
and 3ψ are assigned to each excitation port [39]. Figure 10b shows the simulated steering
beams at 28 GHz. It can be observed that the MMW SIDRA array has the ability to achieve
beam scanning angles from −45◦ to +45◦ based on the standard of 3-dB scanning loss and
−5-dB sidelobe level [7].
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3.3. Design Guideline

Based on the above analysis, a brief design guideline can be concluded. First, a
substrate with high permittivity (εr1 > 6) should be chosen due to the need for a compact
size of MW antenna and the construction of MMW DRA. Considering the co-aperture of
MW and MMW antennas, the thickness of the substrate should be balanced with the planar
size of the MMW antenna. Then, several design steps are given as follows:

Determining the initial size of the MW antenna according to the following empirical
formula: Lsiw ≈ 0.5λg, λg = λ01/√εe f f , where εe f f = (εr1 + 1)/2 and λ01 is the wavelength
in the vacuum at 3.5 GHz [36,37].

Determining the initial size of the MMW antenna. The initial calculation can be
performed with the classical dielectric waveguide model (DWM) for the SIDRA [40]. The
size of the cavity Lm can be set to be around λ02/2.

Replacing the grounding vias of the MW HMSIW antenna with MMW SIDRA arrays
and introducing the slot-loading technique to expand the MW impedance bandwidth.

Optimizing the final structure to achieve good impedance and radiation performance.

3.4. Overall Integrated Structure Analysis

The two antennas can be combined to form a shared-aperture antenna once the inde-
pendent designs of MW and MMW antennas are complete. To testify the coupling between
the two different bands and the two polarizations in the MMW band, the S-parameters
between different feeding ports should be investigated. As is shown in Figure 11a, the
isolations between the MMW ports (ports 2–5) and MW port (port 1) are more than 50 dB
in the 3.5 GHz frequency band and more than 20 dB in the 28 GHz frequency band. In
Figure 11b, it is illustrated that the isolations between the two polarizations in the MMW
band are better than 25 dB.
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4. Simulation and Measurement Verification

To verify the viability of the presented concept, the co-designed antenna was fabricated
as shown in Figure 12. The upper substrate (Sub1) and lower substrate (Sub2) are made,
respectively, and tightly fixed with several M2 screws. A one-quarter Wilkinson power
divider is introduced for one 1 × 4 MMW antenna array to measure the radiation patterns
at a 0◦ scanning angle. The power divider consists of three equally divided power dividers,
which convert the input impedance at the antenna unit to Z0 = 50 Ω through a λg impedance
converter. The function of a resistor is to improve the isolation of the output port of the
power divider, with resistance R = 2 × Z0. The model of the resistor is a 100 Ω Panasonic
resistor packaged as 0402.
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Figure 12. Photograph of the antenna prototypes.

Figure 13 illustrates the schematic of the measurement setup for testing the radiation
patterns. The measurement was conducted in an anechoic chamber. An Agilent E8257D
signal generator generated the input RF signal of the standard gain horn. The proposed
antenna under test was used as the receiving end, and we used the spectrum analyzer
(Agilent E4447A) to monitor the signal spectrum.
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4.1. Measurement Results of 3.5 GHz MW Antenna

Figure 14a depicts the measured, simulated gains and |S11|s in the MW band. The
measured impedance bandwidth is 3.4%, covering 3.44–3.56 GHz. The measured and
simulated peak gains are 5.34 dBi and 5.72 dBi. As described in Figure 15, the measured
and simulated results of the radiation pattern at 3.46 GHz and 3.53 GHz are consistent
with each other. The measured cross-polarizations are better than −17.8 dB within the 3 dB
beamwidth. The measured front-to-back ratio is greater than 11 dB.
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4.2. Measurement Results of 28 GHz MMW Antenna

The measured, simulated gains and |S11|s for the MMW array are plotted in Figure 13b.
The measured impedance bandwidth is 11.8% (26.5 GHz–29.8 GHz). Within the bandwidth,
the simulated gain ranges between 9.7 and 11.5 dBi, while the measured gain is between
9.2 and 11.0 dBi. Figure 16 depicts the radiation patterns at 28 GHz of the MMW array at
a 0◦ scanning angle. At the 28 GHz frequency band, the sidelobe level of the H-plane is
better than −12.8 dB. The cross-polarization level is better than −21 dB.
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4.3. Comparison

Table 1 provides a comprehensive comparison between the presented antenna and
the reported aperture-sharing antennas. As can be seen from the table, the designs
in [9,10,24,28–30] cannot support MMW beam scanning, greatly limiting their applica-
tions. Although dual-polarization and beam scanning for the MMW band are both possible
in [17,20], the antenna in [17] is an end-fire design, whereas the antenna in [20] has a
much larger volume. Compared to the reported designs, the proposed antenna has a more
compact size. More importantly, it can simultaneously support wide-angle beam scanning
and dual-polarization for the MMW band.

Table 1. Performance comparison with the previous antenna designs.

Ref. Frequency
(GHz)

Relative BW
(%)

Peak Gain
(dBi) Size (λ2

01) Profile (λ01) MMW
Beam-Steering

MMW
Dual Polarization

[9] 2.4/60 6.3/3.5 8.0/27.8 0.29 0.19 No Yes

[10] 2.4/5/60 5.7/23.4/22.6 9.8/7.9/8.4 1.25 0.1 No No

[17] 0.85/28 21/16 -/12.6 0.08 0.017 ±37◦ (End-fife) Yes

[20] 3.5/28 50.31/33.91 10.67/14.85 1.96 0.26 ±20◦ (Broadside) Yes

[22] 3.5/28 20.7/20.5 7.07/11.31 0.02 0.003 ±25◦ (End-fife) No

[24] 3.5/60 2.6/6.4 7.3/24 0.13 0.02 No No

[28] 5.4/25 3.6/16.0 15.5/22.4 5.76 0.54 No No

[29] 3.5/25.8 6/20 13.7/27.65 18.60 0.05 No No

[30] 10/28 4.5/9.6 13.8/23.6 8.00 0.57 No Yes

Prop. 3.5/28 3.4/11.8 5.34/11.0 0.08 0.03 ±45◦ (Broadside) Yes

5. Conclusions

This article proposed, simulated, and measured a compact aperture-sharing antenna
operating at 3.5 and 28 GHz bands with dual-polarization and beam steering in the MMW
frequency band. The slot-loading technology is introduced in the 3.5 GHz HMSIW antenna
design to broaden the bandwidth with mode analysis and parametric study conducted.
The reuse of the orthogonally arranged grounded vias of the HMSIW antenna enables
the dual-polarized beam steering ability for 28 GHz SIDRA arrays. The measurement
results indicate that the MW and MMW antennas can work independently. The proposed
shared-aperture antenna could be an attractive competitor for wireless communication
terminal applications.
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