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Abstract: Hybrid models which combine the convolution and transformer model achieve impressive
performance on human pose estimation. However, the existing hybrid models on human pose
estimation, which typically stack self-attention modules after convolution, are prone to mutual
conflict. The mutual conflict enforces one type of module to dominate over these hybrid sequential
models. Consequently, the performance of higher-precision keypoints localization is not consistent
with overall performance. To alleviate this mutual conflict, we developed a hybrid parallel network
by parallelizing the self-attention modules and the convolution modules, which conduce to leverage
the complementary capabilities effectively. The parallel network ensures that the self-attention branch
tends to model the long-range dependency to enhance the semantic representation, whereas the local
sensitivity of the convolution branch contributes to high-precision localization simultaneously. To
further mitigate the conflict, we proposed a cross-branches attention module to gate the features
generated by both branches along the channel dimension. The hybrid parallel network achieves
75.6% and 75.4% AP on COCO validation and test-dev sets and achieves consistent performance on
both higher-precision localization and overall performance. The experiments show that our hybrid
parallel network is on par with the state-of-the-art human pose estimation models.

Keywords: human pose estimation; hybrid parallel model; cross-branches attention; complementary
capability; semantic conflict

1. Introduction

Human pose estimation methods devoted to localizing the pre-defined anatomical
keypoints of the person in the still images [1,2], which is a fundamental task in the field
of computer vision. It is widely applied to action recognition [3], action forecast [4],
human-computer interaction [5,6], etc. Over the past years, the deep convolutional neural
networks [1] have achieved impressive performance in the field of human pose estimation
and become the mainstream models. Although the prevailing deep convolutional neural
networks pre-trained on large ImageNet datasets are adapted as backbones for human
pose estimation [7–9], these methods still suffer from the large variance of human pose.
Due to the spatial locality of the convolutional neural network, increasing the depth of con-
volutional models solely is inefficient to mitigate the effect of large variances. Modeling the
internal dependency of data explicitly contributes to alleviating the large variances. More-
over, the human pose is a well-defined structure and possesses strong mutual dependency
on each keypoint.

To model the dependency of human pose, the transformer models [10,11], which
consist of self-attention modules, are customized to explicitly model the long-range de-
pendencies over the entire image space. The existing hybrid models [12,13] injected the
self-attention module into a pure convolutional neural network to model the long-range
dependency. These models conventionally stacked the self-attention modules after the
convolutional neural networks, and facilitate estimating human poses even with large vari-
ances. The TransPose [12] proposed a sequential model, which stacked the self-attention
blocks at the tail of the CNN-based model. The PET [13] proposed a fast sequential model

Sensors 2023, 23, 4425. https://doi.org/10.3390/s23094425 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094425
https://doi.org/10.3390/s23094425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9798-6480
https://doi.org/10.3390/s23094425
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094425?type=check_update&version=2


Sensors 2023, 23, 4425 2 of 18

with the same strategy. Although the hybrid models have achieved considerable im-
provement in human pose estimation, the high-precision localization is still unsatisfactory.
The TransPose [12] achieved decent 1.5% improvement on AP, but only gained 0.5% on
AP75. The reason is that hybrid sequential models leverage the dependency modeling
ability of the self-attention model but lack taking advantage of the property of convolution.

According to our observation, the convolutional module is sensitive to the local pattern
but ineffective in modeling long-range dependency, whereas the self-attention module
tends to model long-range dependency but is detrimental to high-precision localization.
The existing hybrid sequential models tend to cause mutual conflict, which amplifies the
property of self-attention to dominance and suppresses convolution. Thus, the long-range
dependency modeling capability is boosted by the self-attention module; nevertheless,
the local sensitivity is degraded. As a result, the average precision is improved, but the
AP75 is still unsatisfied. Exploring a new structure of hybrid models is a key role to mitigate
this mutual conflict and leverage both complementary capabilities.

To mitigate this mutual conflict, this paper presents a new hybrid model named
Hybrid Parallel network (HPnet) to leverage the complementary capability simultaneously.
In contrast to the previous hybrid sequential models, our model processes the features
separately throughout the pipeline, which encourages each branch to learn internal property
without interruption. Furthermore, we develop a cross-branches attention block to fusion
the two types of features, while it is contributing to mitigating the semantic conflict between
these two types of features. Compared to previous hybrid sequential models, our model
achieves consistent improvements on overall AP and AP at a high OKS threshold.

The contributions are summarized as follows:

• We propose a novel Hybrid Parallel network (HPnet) to localize the keypoints. The HP-
net leverages the capabilities of the self-attention-based model and CNN-based model.

• We develop a cross-branches attention block(CBA) to fusion the parallel features gen-
erated by both branches. The cross-branches attention mitigates the semantic conflict.

• We evaluate our model on the COCO keypoints dataset, and the performance is
comparable to the state-of-the-art methods.

2. Related Works
2.1. Human Pose Estimation

The convolution-neural-networks-based human pose estimation methods [1,14,15]
achieved remarkable performance. The Deeppose [14] model first adopted a fully convo-
lutional neural network to directly regress the locations of the human poses. To achieve
high-precision human pose estimation, the CPM [1] predicted the confidence heatmap of
human keypoints rather than the coordinates, which became the prevailing architecture in
HPE. The following methods [7,8,16] transferred the backbone model pre-trained on the
ImageNet and then designed a specific architecture to generate precision heatmaps of each
joint. Hourglass [16] designed a multi-stage hourglass-like network to refine the confidence
heatmap of the human pose. CPN [7] utilized multi-scale features and developed a re-
finer to produce high-precision heatmaps. HRNet [9] designed a new deep high-resolution
convolutional network for heatmap-based pose estimation, which utilize the multi-scale fea-
tures in each stage to maintain the resolution of features. The SimpleBaseline [8] proposed
a simple but efficient encoder–decoder network to facilitate localizing keypoints. Recent
research [17] revisited regression-based human pose estimation methods and proposed a
more powerful flow-based loss to facilitate the keypoints regression. All the CNN-based
models gradually enlarge the receptive field to model long-range relationships implicitly
and tend to model the local compact relations.

2.2. Hybrid Models

In recent years, the transformer [10,11]-based models which consist of stacked self-
attention blocks burst in the field of the natural language process and computer vision.
Differing from the CNN, the transformer models the arbitrary range of dependencies
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in the source space for each layer within the model, which extends the model capacity
even in the shallow model. In the NLP, the BERT [18] and GPT-2 [19] are devoted to
training a large transformer in a self-supervised way, which maximizes the model capacity.
In the computer vision tasks, the VIT [20] proposed the vision transformer for image
classification and transfer to pre-text vision task, and the PIT [21] is devoted to building a
common architecture for low-level image process. For human pose estimation, the hybrid
models [12,22–26] adapted a transformer into a convolution neural network architecture to
boost the semantic representation. SwinPose [25] adopted the swin-transformer [27] for
pose estimation. ToKenPose [26] employed a standard VIT architecture to detect keypoints.
These pure transformer-based models take the advantage of the large model capacity
without task prior knowledge, which tends to utilize huge models to localize the keypoints
accurately. The hybrid model, which combines self-attention and convolution, defines a
compromise solution for human pose estimation, while it leverages the model abilities
of both types of models. The TransPose [12] proposed a sequential model, which stacks
the self-attention blocks at the tail of the CNN-based model. The PET [13] proposed a
fast sequential model with the same strategy. The Poseur [28,29] adopted a ViT model to
directly regress the human pose. However, the hybrid sequential models do not leverage
the ability of both types of models effectively.

2.3. Attention Mechanism

The attention module [30] aimed to model the significance of features and mainly focused
on the channel dimension and spatial dimension. The SEnet [31] developed channel-wise
attention to enhance the representative features. The Fcanet [32] extended the channel attention
into multiple frequency domains. The CBAM [33] adopted spatial attention to filter unimportant
regions. The PSANet [34] proposed bi-direction spatial attention to relax the local neighbor
constraint. The STAT [35] adopted spatial-temporal attention to further catch the significant
regions in the video. For multi-branches models [36–40], these methods facilitated the feature
aggregation with simple addition. The PATN [4] proposed element-wise attention to fuse
features generated by the dual path network. The mechanism of feature aggregation of a
different branch of the network is still unclear, and the previous works generally utilized the
trivial addition to fusion.

3. Method
3.1. Overall Framework

The goal of this paper is to present a paradigm to construct a hybrid parallel network,
which typically involves self-attention blocks and variant CNN-based blocks. Differing
from the hybrid sequential models such as Transpose [12] which stack the self-attention
blocks after the CNN-based blocks, we adopted a parallel strategy to construct the model.
Inspired by ResNet [41], the hybrid parallel network consists of three parallel blocks,
and each block inherits the same structure.

As illustrated in Figure 1, we proposed a Hybrid Parallel network (HPnet), which
consists of a CNN-based shallow feature extractor and multiple parallel blocks. Each paral-
lel block consists of three elements: the self-attention branch which models the arbitrary
range dependency, the convolution branch which models the local dependency gradually,
and the fusion block which aggregates different ranges of dependencies. Compared to the
SimpleBaseline [8], we adopt the self-attention branch as a parallel branch and a fusion
module to aggregate both features. The convolution branch is following the conventional
ResNet [41], and the head for pose heatmaps is the same as the SimpleBaseline [8]. Differ-
ing from the transPose [12], we enforce the self-attention branch to learn complementary
features rather than modeling one type of dependency in the sequential model.
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Figure 1. The framework of our HPnet. The HPnet consists of a CNN-based feature extractor and
multiple parallel blocks. Each parallel block consists of three elements: the self-attention branch,
the convolution branch, and the fusion block.

For convenience, we use Xt to represent the features generated by the self-attention
branch, Xr to represent the features generated by the convolution branch and X f to repre-
sent the aggregated features.

3.2. The Parallel Branches

The self-attention branch and the convolutional branch are separated and transform
the features independently. To learn multi-scale features, the down-sampling module in
each module is adapted to downscale the features, which is a bottle-neck residual block
with stride = 2.

This self-attention branch consists of a down-sampling module and multiple self-
attention modules, which are adopted from the standard transformer encoder [10]. Due
to the high computational cost of the self-attention module, the down-sampling block is
adopted to downscale the features to alleviate this cost. Moreover, this block also aligns
the channel dimensions of the features with the convolutional branches. As shown in
Figure 2, the down-sampling module is a pre-activate residual block, which consists of
three convolution operators and the stride of the second convolution operator is set to 2.
To model the long-range dependency, the following self-attention module, which consists of
a multi-head self-attention module and a feedforward network, is adopted to calculate the
global similarity and incorporate the semantic information of the entire spatial dimension
of features. In addition, the self-attention module computes the dependency of each feature,
which also reveals the structure relation of the human pose in this task.
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Self-attention branch:

Figure 2. The detail of the self-attention branch.

Given an input 2D spatial feature X f ∈ RC×H×W , the down-sampling module gen-
erates a new feature Xt ∈ Rc×h×w, and h = H/r, w = W/r. Here, we set r = 2 for each
parallel block. As the input of the self-attention block is a 1D spatial feature, we flatten the
feature into the 1D form Xt ∈ Rc×hw. The self-attention module first generates the three
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features as query Q, key K, and value V, and then feeds into a multi-head self-attention
block formulated as:

X′t = Xt + MHSA(Q, K, V) (1)

Xt = X′t + FFN
(
LN

(
X′t

))
(2)

The MHSA is a multi-head self-attention module, LN is a layerNorm operator, and the
FFN is two layers perception. The final unflatten operator transforms the feature into Xt ∈
Rc×h×w. The MHSA mainly models the global similarity, which concatenates several self-
attention of the different subspace of features. The self-attention operator is formulated as:

X′t = softmax
(

QKT
√

dk

)
V (3)

The self-attention branch generated the features, which possess long-range semantic
information. This information promotes the semantic representation of each feature and
improves the recall of the human pose. However, the process of generating global similarity
in the self-attention module discards the spatial relations, resulting in local structural
insensitiveness. Therefore, a convolutional branch is utilized to mitigate the insensitiveness.

3.3. The Convolutional Branch

To generate locally sensitive features, we modify a ResNet-like convolutional block and
plugin multiple blocks into each convolutional branch. As illustrated in Figure 1, we divide
the classic ResNet [41] into a plain convolutional stage and four residual convolutional
stages. In this paper, the last 3 stages are modified into HPnet and the remaining stages are
treated as the feature extractor. Thus, the convolutional branch consists of a down-sampling
ResBlock with stride = 2 and a fixed number of ResBlock with stride = 1 illustrated in
Figure 3. Given the input feature X f ∈ RC×H×W , the module encodes the feature into
Xr ∈ Rc×h×w. The number of blocks in each stage is following the original ResNet.
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Figure 3. The detail of the convolutional branch.

3.4. The Cross-Branches Attention

The parallel branches generate two types of features, while the features imply distinc-
tive inherent modalities of dependency. The convolutional branch progressively enlarges
the receptive field, meanwhile, it is sensitive to the location. As a result of these properties,
the feature Xr generated by the convolutional branch captures the local structure, which
facilitates estimating human pose accurately. On the contrary, the self-attention branch
establishes the global dependency by enumerating the entire spatial location of feature
space, thus it is insensitive to the local structure. Even the positional encoding is injected to
overcome this weakness, the self-attention branch is still unsatisfied with the high-precision
location. Therefore, fusing these two types of features leverages complementary properties.

Although the parallel strategy avoids the dominance of one type of feature compared
to the sequential model, the mutual conflict still remains by simply adding these features.
The addition treats these features as consistent features, which disrupts the internal prop-
erties of these two features. To mitigate the conflict, we design a cross-branches attention



Sensors 2023, 23, 4425 6 of 18

module, which constructs two soft-gated functions to monitor the features. In general,
the cross-branches attention module is formulated as:

X f = Gt � Xt + Gr � Xr (4)

The key role of this module is to determine the way to generate the gated value G.
To define this attention module [34,35,42], we first explore the dimension of the gate and
then investigate the features to generate the gate value. The existing spatial attention [33]
generates a gated value for each location, which implies the different importance of each
location for the task. By contrast, the channel attention [31] produces a gated value for
each channel, which means the different channels of the features tend to represent one
specific semantic information, and each type of semantic information is supported by a
variant range of dependencies. Thus, the channel-wise gated function is adopted to fusion
different ranges of dependencies.

In the existing dual path methods [4], the feature to generate the gate value for one
path is from another path, which generally fuses the multi-modality data. Differing from
these methods, our model aggregates the features generated from one modality with
different properties. This way induces a mutual fusion rather than a complementary fusion.
To establish a complementary fusion module, we develop a cross-branches module.

As shown in Figure 4, the gated module consists of five basic operators. The features
are down-sampled to Xg ∈ RC×1×1 with a global average pooling operator, and then with
a two layers perception to boost the feature representation.

G = sigmoid(MLP(Xg)) (5)

Global pooling

Linear

ReLU

Linear

Sigmoid

Global pooling

Linear

ReLU

Linear

Sigmoid

Add

c × ℎ ×

c × 1 × 1

c × 1 × 1

c/4 × 1 × 1

c/4 × 1 × 1

c × 1 × 1

c × ℎ ×

c × 1 × 1

c × 1 × 1

c/4 × 1 × 1

c/4 × 1 × 1

c × 1 × 1

Global pooling

Linear

ReLU

Linear

Sigmoid

Global pooling

Linear

ReLU

Linear

Sigmoid

Add

c × ℎ ×

c × 1 × 1

c × 1 × 1

c/4 × 1 × 1

c/4 × 1 × 1

c × 1 × 1

c × ℎ ×

c × 1 × 1

c × 1 × 1

c/4 × 1 × 1

c/4 × 1 × 1

c × 1 × 1

Convolution 1x1

Sigmoid

Convolution 1x1

Sigmoid

Add

c × ℎ ×

1 × ℎ ×

1 × ℎ ×

c × ℎ ×

1 × ℎ ×

1 × ℎ ×

Convolution 1x1

Sigmoid

Convolution 1x1

Sigmoid

Add

c × ℎ ×

1 × ℎ ×

1 × ℎ ×

c × ℎ ×

1 × ℎ ×

1 × ℎ ×

(a) (d) Cross-Branches Attention(b) (c)

Figure 4. The detail of different attention modules. (a) is mutual spatial-based attention, (b) is
spatial-base attention, and (c) is mutual channel-based attention. The (d) is our cross-branches
attention module.

Finally, we adopt the sigmoid function to map the value of features to (0, 1). Both
features are gated by the corresponding gated value and then added together. The cross-
branches attention module generates aggregated features, that are fed into the next stage.

In the three stages of parallel modules, the resolution of features is downscaled to
1/32 of the original input image. Following the SimpleBaseline, we utilize a three-layer
transpose convolutional operator as the output head to upsample the feature heatmaps to
1/4, which facilitates the high resolution of the output confidence map.
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3.5. Loss

The hybrid parallel net generates the heatmap of the human pose, and we adopt a
joint MSE loss to end-to-end train this model. Given the target heatmap H, our model
generates the heatmap Ĥ to predict. The loss is formulated as:

L =
1

KHW ∑
khw

Ik(Ĥkhw −Hkhw)
2 (6)

Here, the K is the number of joints, and Ik means the visibility of each joint. This conven-
tional heatmap loss leads to a competitive performance without any hyper-parameters.

4. Experiments

We conduct experiments on the COCO [43] person keypoints dataset and MPII [44] to
evaluate the effectiveness of the HPnet. To verify the effectiveness of our method, we first
compare the proposed HPnet to the sota methods and then conduct ablation studies on the
self-attention branch and the cross-branches attention module.

4.1. Experimental Setup
4.1.1. Datasets

COCO [43] is the most typical common dataset for human pose estimation. The COCO
keypoints challenge dataset consists of 118k training images and 41k testing images, and 5k
valid images. The training set consists of 100k individuals annotated with 17 keypoints,
which include 5 facial landmarks and 12 body joints. We train the proposed HPnet on the
train set and utilize average precision on OKS metric to evaluate it on the validation set
and test-dev set.

MPII [44] is conventional dataset for human pose estimation. Differing from the
COCO dataset, the configuration of the human pose is 16 joints without facial landmarks.
The dataset contains almost 15k images and 40k annotated human instances. The training
set consists of 15k images and 22k individuals and the validation set contains 2729 images
and 2958 persons. The PCKh metric is adopted to evaluate the performance of our HPnet
on the MPII dataset.

4.1.2. Evaluation Metrics

Object Keypoints Similarity (OKS) [43] is a standard metric to evaluate the keypoints
distance of human instances on the COCO dataset. For each human instance, the OKS is
calculated by:

OKS =
∑i exp

(
−d2

i /2S2σ2
i
)
δ(vi > 0)

∑i δ(vi > 0)
. (7)

Here, di is the distance between the ground-truth keypoint and matched detected keypoints,
and S is the segmentation area of this human instance. For controlling the fall-off threshold
of each keypoint, the σi is set to measure reweight of the distance.

We utilize the mean average precision (AP) for all instances over 10 OKS thresholds
to verify the performance, and we also use the average precision over different OKS
thresholds and different person scales to verify the effectiveness of the proposed method.
The AP50 represents the percentage of keypoints in which OKS is less than 0.5, and the
AP75 means that OKS is less than 0.75. The COCO dataset defines the scale of human
instances according to the area of the bounding box of human instance; thus, we also adopt
the mean average precision for all median human instances (AP(M)) and all large human
instances (AP(L)) to further evaluate the performance of the proposed method.
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PCKh [44] is percentage of correct keypoints under matching threshold as 50% of the
head segment length. The PCKh is modified from PCK [45] and to alleviate the drawback
of PCP [46] metric. For each person, the PCKh is calculated by:

PCKh =
∑i δ(vi > 0)δ(di > 0.5 · σ · ζ)

∑i δ(vi > 0)
. (8)

Here, the σ is scale bias for the MPII dataset, which is 0.6. The ζ is the diagonal length of
the bounding box of the corresponding human head. We also calculate the PCKh of each
type of keypoint to inspect the performance of our model.

4.1.3. Implement Detail

The model is implemented based on the open-source toolbox MMPose [47]. For both
COCO and MPII, we train the HPnet with Adam optimizer, and the learning rate is set to
1× 10−4 . We adopt a multi-step learning rate schedule to decrease the LR at {170, 200},
and the total epoch to train the HPnet is set to 210. The train and test data augmentation
is following the routine. For the COCO dataset, our models are trained on a host with
8 Nvidia RTX 2080 Ti GPUs, and each training process costs from 20 h for res50 with
256× 192 input resolution to 90 h for res152 with 256× 192 input resolution. For the MPII
dataset, we train our models on 4 GPUs, and each training costs 21 h for 256× 256 and 41 h
for 384× 384 with res152.

We conduct our model at different input image scales 256× 192 and 384× 288 on the
COCO dataset, 256× 256 and 384× 384 on the MPII dataset. In the self-attention block, we
set the dropout ratio as 0.1, and use the ReLU activation function. The number of heads in
MHSA is set to 8. The keypoints head follows the SimpleBaseline head and adopts three
deconvolutions with stride = 2. The resolution of the output heatmap is 1/4 of the input
image size.

Following the conventional setting [47], we adopt the same person detector [9] to
generate the bounding box of each person instance across all COCO validation and test-dev
sets. The person detection AP on the validation set is 56%, and 60.9% on the test-dev set.
For the MPII dataset, we use the ground truth bounding box to evaluate all the methods.

4.2. Results on Coco Keypoint Detection Task

We compare our HPnet with the state-of-the-art methods on the bath valid set and
test-dev set of the COCO dataset. The performance of our model is comparable to other
state-of-the-art methods.

As shown in Table 1, compared to the SimpleBaseline [8] method, our HPnet obtains
almost 2.4–1.3% improvement with the same convolution branch. These results indicate
that the self-attention branch and fusion module in our HPnet is reasonable. Compared to
the TransPose [12], our HPnet obtains the 1.1% improvement with the same convolution
branch and the same number of self-attention modules. The input resolution of each self-
attention module is still 1/8 of input image size in the TranPose [12]. However, the input
resolution of each self-attention module is gradually decreasing from 1/8 to 1/32 in the
different stages of our HPnet. This result shows that the parallel model outperforms the
sequential model in this scenario. As shown in Table 2, we conduct experiments on the
test-dev set to verify the effectiveness of our HPnet, and the results show that our model is
comparable to other state-of-the-art models.
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Table 1. Comparisons with state-of-the-art methods on COCO validation set.

Method Res Backbone AP AP50 AP75 AP(M) AP(L)

SBL [8] 256 × 192 Res50 70.4 88.6 78.3 67.1 77.2
SBL [8] 384 × 288 Res50 72.2 89.3 78.9 68.1 79.7
SBL [8] 256 × 192 Res101 71.4 89.3 79.3 68.1 78.1
SBL [8] 384 × 288 Res101 73.6 89.6 80.3 69.9 81.1
SBL [8] 256 × 192 Res152 72.0 89.3 79.8 68.7 78.9
SBL [8] 384 × 288 Res152 74.3 89.6 81.1 70.5 81.6

TransPose-R-A3 [12] 256 × 192 ResNet-S 71.7 88.9 78.8 68.0 78.6
TransPose-R-A4 [12] 256 × 192 ResNet-S 72.6 89.1 79.9 68.8 79.8
TransPose-H-A3 [12] 256 × 192 HRNet-S-W32 74.2 89.6 80.8 70.6 81.0
TransPose-H-A4 [12] 256 × 192 HRNet-S-W48 75.3 90.0 81.8 71.7 82.1

HPnet 256 × 192 Res50 72.8 90.0 80.9 65.7 75.2
HPnet 384 × 288 Res50 74.8 90.4 82.0 67.7 77.9
HPnet 256 × 192 Res101 73.3 90.4 81.4 66.3 75.7
HPnet 384 × 288 Res101 75.1 90.4 82.0 67.9 78.0
HPnet 256 × 192 Res152 73.7 90.4 81.7 66.6 76.3
HPnet 384 × 288 Res152 75.6 90.5 82.7 68.4 78.6

Table 2. Comparisons with state-of-the-art methods on COCO test-dev set.

Method Res AP AP50 AP75 AP(M) AP(L)

G-RMI [2] 353 × 257 64.9 85.5 71.3 62.3 70
Integral [48] 256 × 256 67.8 88.2 74.8 63.9 74

CPN [7] 384 × 288 72.1 91.4 80 68.7 77.2
RMPE [49] 320 × 256 72.3 89.2 79.1 68 78.6

HRNet-W32 [9] 384 × 288 74.9 92.5 82.8 71.3 80.9
HRNet-W48 [9] 384 × 288 75.5 92.5 83.3 71.9 81.5

TokenPose-L/D24 [26] 256 × 192 75.1 92.1 82.5 71.7 81.1
TokenPose-L/D24 [26] 384 × 288 75.9 92.3 83.4 72.2 82.1

SBL [8] 384 × 288 73.7 91.9 81.1 70.3 80
TransPose-H-A6 [12] 256 × 192 75.0 92.2 82.3 71.3 81.1

HPnet 384 × 288 75.4 92.6 83.2 71.8 81.2

4.3. Results on MPII Dataset

We also conduct experiments on the MPII validation set to further verify the effective-
ness of our HPnet. The HPnet still achieves the competitive performance of PCKh on the
MPII dataset.

As shown in Table 3, our HPnet achieves overall 91.8% of PCKh on the validation set,
which surpasses the TokenPose [26] and HRNet [9]. Especially on the elbows and ankles,
our model achieves almost 2–3% improvement.

Table 3. Comparisons of PCKh on MPII validation set.

Method Res Head Shoulders Elbows Wrists Hips Knees Ankles PCKh

Hourglass [16] 256 × 256 96.6 95.6 89.5 84.7 88.5 85.3 81.9 89.4
CPM [1] 368 × 368 96.1 94.8 87.5 82.2 87.6 82.8 78.0 87.6
SBL [8] 256 × 256 96.9 95.4 89.4 84.0 88.0 84.6 81.1 89.0

HRNet-W48 [9] 256 × 256 97.2 95.7 90.6 85.6 89.1 86.9 82.3 90.1
RLE [17] 256 × 256 95.8 94.6 86.9 78.3 87.5 80.4 73.5 86.0

TokenPose-L/D24 [26] 256 × 256 97.1 95.9 90.4 86 89.3 87.1 82.5 90.2

HPnet 256 × 256 97.0 96.7 92.2 88.0 91.5 88.7 85.3 91.8

To investigate the high-precision localization, we evaluate our method under differ-
ent matching thresholds PCKh@[0.0, 0.5] to further verify the performance of our HPnet.
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The PCKh@[0.0, 0.5] means that we normalized the distance of predicted keypoints and ground
truth with different ratios of head size and calculate the percentage of correct keypoints.

As illustrated in Figure 5, our HPnet surpasses the previous state-of-the-art methods.
Especially, our HPnet achieves distinct improvement under the small matching threshold
with 384 input resolution.

Figure 5. Comparisons of PCKh@[0.0, 0.5] on MPII validation set.

4.4. Ablation Study
4.4.1. Effectiveness of the Self-Attention Branch

Compared to vanilla ResNet-based pose estimation models such as SimpleBaseline [8],
the HPnet introduces the self-attention branch. In this section, we conduct ablation ex-
periments on the configuration of the self-attention branch without any cross-branches
attention modules. For convenience, we utilize the three numbers ijk to represent the
number of self-attention blocks in each stage.

As shown in Table 4, the base ResNet50 model only achieves 71.6% AP. The AP slightly
improved with one self-attention block in the last stage, whereas the AP75 fractionally
declined. This shows that the conflict between the two types of dependencies corrupts the
localized precision, which means the self-attention branch conduces to modeling semantic
information rather than finely localization. The results also show that the resolution of the
self-attention block is proportional to the AP improvement, and the model achieves 1%
improvement while plugging one self-attention branch in the first stage.

Table 4. Ablation study on the configuration of the self-attention branch. The convolution branch is
ResNet50, and the fusion module is add.

ijk AP AP50 AP75 AP(M) AP(L)

- 71.6 89.7 79.8 64.6 74.2
001 71.9 89.9 79.7 64.9 74.6
010 72.2 90.0 80.1 65.0 74.8
100 72.5 90.1 80.6 65.4 75.0
111 72.5 90.0 80.2 65.4 75.1

4.4.2. Effectiveness of the Cross-Branches Attention

For the initial setting, the model briefly element-wise sums the two types of features
together, and the conflict corrupts the performance in the jitter. We develop the cross-
branches attention module to mitigate small localized errors.

As shown in Table 5, we develop four extra-type fusion blocks for comparison. The
m-* attentions are mutual attentions that generate a gated value to regulate the opposite
branch, which is shown in Figure 4. The *-spatial attentions are spatial attentions which
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predict a g ∈ R1×H×W to gate the feature in all pixel locations. The concat concatenates
both features and transforms the feature with a 1× 1 convolution. The self-channel cross-
branches attention obtains superior performance rather than others, especially in AP75.
The proposed fusion block alleviates the degradation of high-precision localization when
the self-attention blocks are plugged into the model.

Table 5. Ablation study on the different feature fusion modules. The convolution branch is ResNet50,
and the configuration of the self-attention branch is 111.

Method AP AP50 AP75 AP(M) AP(L)

concat 72.3 89.8 79.9 65.3 74.8
m-spatial 72.5 90.0 80.0 65.5 74.9

m-channel 72.6 89.9 80.1 65.5 75.1
self-spatial 72.4 89.8 80.2 65.2 75.2

CBA 72.8 90.0 80.9 65.7 75.2

Further experiments on the deeper models and large resolution of input images
show that the cross-branches attention obtains impressive AP75 improvement. As shown
in Table 6, the res101-based HPnet achieves almost 2% improvement under the AP75
protocol with the 384× 288 input image size. Even if the res152-based HPet, the AP75 still
increases 1%.

Table 6. Effects of the cross-branches attention on different backbones. The configuration of the
self-attention branch is 111.

Backbone CBA AP AP50 AP75 AP(M) AP(L)

res101 73.2 89.8 80.0 65.8 76.2
-

√
75.1 90.4 82.0 67.9 78.0

res152 74.6 90.1 81.7 67.4 77.6
-

√
75.5 90.5 82.7 68.4 78.6

We also visualize the amplitude of features to further verify the effectiveness of
the cross-branches block. As illustrated in Figure 6, the transmap represents the feature
generated by the self-attention branch, and the transAtt is the gated value generated by
the Gt. After being gated, the response map alters to complementary to the convolution
branch. The convolution branch still focuses on the person instance even is followed by
a gated function. Thus, the proposed HPnet drives each branch to learn complementary
information rather than conflicting information.

4.4.3. Hyperpramameter Tuning

Position embedding plays an important role in the transformer, and we also verify
the effectiveness of position embedding. As shown in Table 7, the AP drops counter-
intuitively if we add the position embedding in the self-attention block. The reason is
that the convolution branch of HPnet models position-sensitive information, and injecting
position embedding into the self-attention branch causes conflict with the other convolu-
tional branch.

Table 7. Effect of the position embedding.

Res AP AP50 AP75 AP(M) AP(L)

- 72.54 89.97 80.24 65.40 75.07
w/pos 72.17 89.85 79.81 65.11 74.65
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Figure 6. Visualization of the amplitude of the features response and the attention values at final
cross-channel attention fusion block.
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We add more self-attention blocks in the self-attention branch to conclude the saturated
number of self-attention blocks for the human pose performance. However, if we add
two self-attention blocks in stage 2, the Table 8 shows that more blocks slightly decrease
the AP. The reason is that the convolutional branch is pre-trained on ImageNet, and the
self-attention block is trained from scratch. Due to the gated function in the cross-attention
module, the self-attention blocks are hard to train adequately.

Table 8. Effect of more self-attention blocks.

Config AP AP50 AP75 AP(M) AP(L)

111 72.54 89.97 80.24 65.40 75.07
121 72.46 89.94 80.12 65.32 74.92

We also conduct the dark heatmap decoding method as shown in Table 9. Our HPnet
is compatible with the dark method. Our model achieves 0.5% improvement by replacing
the conventional Gaussian heatmap with the dark method directly.

Table 9. With dark decoding method.

Post AP AP50 AP75 AP(M) AP(L)

- 75.6 90.5 82.7 68.4 78.6
Dark 76.25 90.93 83.20 69.19 79.32

We also show the estimated poses of examples on the COCO validation set in Figure 7.

Figure 7. Visualization of human pose estimation results of our HPnet.

5. Discussion
5.1. Performance at Each Type of Joint

We plot the PCKh at [0.0, 0.5] at each type of keypoint to inspect our model. As illus-
trated in Figure 8, our HPnet surpasses the previous methods on the overall PCKh and
PCKH at each type of joint. Especially, our HPnet achieves considerable improvement on
the challenging joints—wrist and ankle. The reason is that the hybrid parallel net applies
the self-attention module to boost the semantic representation of joints that are away from
the torso and possess large variations. We apply high-resolution input images to estimate
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human poses and attain decent improvement on high-precision localization under lower
matching thresholds. We also realize that employing high-resolution features to estimate
the human pose only achieves negligible improvement on PCKh@0.5. The reason is that the
matching threshold 0.5 covers most instances except the extreme cases which are failed to
detect even applying higher resolution.

Figure 8. Comparison of PCKh@[0.0, 0.5] on each type of joints on MPII validation set.

5.2. Location Errors Analysis

We utilize the tool [50] to diagnose the location error of keypoints estimated by our
HPnet on the COCO dataset. The Good predicted keypoints are which the OKS is greater
than 0.85 with matched ground-truth keypoints. The overall inaccurate predicted keypoints
are divided into four types: Jitter is that the 0.5 <= oks < 0.85; the Inversion is that the
OKS is greater than 0.5 with mismatched keypoints; and the Swap means mismatched
human instance. The Miss means OKS is less than 0.5 with all keypoints in this image.

As shown in Figure 9, even though our method mitigates the errors and achieves
comparable performance with the other sota methods, our model still suffers from the
Jitter error. The reasons are that the resolution of the input image is still limited by the
computational complexity, and the representation of the human pose is the vanilla Gaussian
heatmap. A higher-resolution heatmap or well-designed representation of the human pose
may further alleviate the Jitter errors.

Figure 9. Overall performance of predicted human keypoints using our HPnet (ResNet-152) on
COCO validation set.

From the pie chart of each type of error, we observe that the distributions of Inversion
and Swap error on each keypoint are inconsistent with the other two types. The Miss and
Jitter are balanced to each keypoint, but the Inversion and Swap are various. The lower
body of the human pose is distinguished from the upper body by Inversion, which means
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the hips, knees, and ankles are easier to match other keypoints. One reason is that the legs
overlap each other frequently in this dataset. Differing from the Inversion, the shoulders
are easier to swap to other instances, one reason is occlusion by other human instances.
In addition, the precision of the bounding boxes generated by the person detector is the
key role to mitigate the errors.

5.3. Failure Cases Analysis

We also show some failure cases in COCO validation set by our HPnet, and we
summarize the cases into four types according to the diagnosis tool [50].

As shown in Figure 10a, the bounding box of the human instance is partially occluded
by other human instances, which may confuse the model with the corresponding part of
this human instance, because the heatmap-based models generate the location of each joint
by extracting the top one response of each heatmap. Although the bounding box injects
visible parts of other human instances, the estimated pose of this human may be disturbed
by neighbor human instances.

(a) Miss (d) Inversion(c) Swap(b) Jitter 

Figure 10. Failure cases by our HPnet (ResNet-152) on validation set.

The Figure 10b and d show that the small and blurred instances of human instances
are still the main factor to degrade the performance of human pose estimation. The small
instance indicates that the details around the joints are lost; thus, accurately localizing the
joints is unfeasible. In addition, the small blurred person lost the distinctness of each joint;
thus, the inversion error of this scenario is inevitable.

Our HPnet still suffers from the crowding scenario as illustrated in Figure 10c. The
Swap error shows that the pose of the occluded human instance is corrupted by the
front human instance. The proposed method has to infer the invisible joint without any
appearance information of this joint, and it is reasonable that the localization is inaccurate.

6. Conclusions

In this paper, we propose a Hybrid Parallel network (HPnet) to parallelize the self-
attention and convolution, and a cross-branches attention block to fusion the two types of
features. Our Hybrid Parallel network mitigates the mutual conflict while the HPnet lever-
ages the complementary capabilities of convolutional modules and self-attention modules
for human pose estimation. We conduct experiments on both COCO and MPII datasets
to demonstrate the effectiveness of the proposed HPnet, and the extended experiments
verify the effectiveness of the cross-branches attention module. In addition, the hybrid
parallel model is suitable for high-precision localization vision tasks on account of the
complementary capability inherited by the self-attention module and the convolution mod-
ule. In the future, we will further investigate the main issues to degrade the performance
of the human pose estimation model, e.g., the small person, occlusion etc., and leverage
the large model and structure information of human pose to achieve higher-precision
keypoints localization.
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