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Abstract: Underwater acoustic sensor networks (UASNs) are challenged by the dynamic nature of
the underwater environment, large propagation delays, and global positioning system (GPS) signal
unavailability, which make traditional medium access control (MAC) protocols less effective. These
factors limit the channel utilization and performance of UASNs, making it difficult to achieve high
data rates and handle congestion. To address these challenges, we propose a reinforcement learning
(RL) MAC protocol that supports asynchronous network operation and leverages large propagation
delays to improve the network throughput.he protocol is based on framed ALOHA and enables
nodes to learn an optimal transmission strategy in a fully distributed manner without requiring
detailed information about the external environment. The transmission strategy of sensor nodes is
defined as a combination of time-slot and transmission-offset selection. By relying on the concept
of learning through interaction with the environment, the proposed protocol enhances network
resilience and adaptability. In both static and mobile network scenarios, it has been compared with
the state-of-the-art framed ALOHA for the underwater environment (UW-ALOHA-Q), carrier-sensing
ALOHA (CS-ALOHA), and delay-aware opportunistic transmission scheduling (DOTS) protocols.
The simulation results show that the proposed solution leads to significant channel utilization gains,
ranging from 13% to 106% in static network scenarios and from 23% to 126% in mobile network
scenarios.oreover, using a more efficient learning strategy, it significantly reduces convergence time
compared to UW-ALOHA-Q in larger networks, despite the increased action space.

Keywords: medium access control; reinforcement learning; underwater acoustic networks

1. Introduction

Underwater acoustic sensor networks (UASNs) have attracted considerable attention
over the past decade due to their potential to support a wide range of applications that can
generate benefits for humans. UASNs can find their applications in underwater pollution
monitoring, coastline protection, mineral detection, oil reservoir management, emergency
operation support, mine reconnaissance, assisted navigation, etc. [1]. However, while
potential UASN applications are exciting, the design of UASN communication protocols
faces many challenges. The critical issues are the slow propagation speed of acoustic signals
(∼1500 m/s), narrow bandwidth, and high bit error rate [2]. These inherent characteristics
of the underwater acoustic channel result in a low fundamental capacity according to
Shannon’s capacity theory [3].

Medium access control (MAC) protocols are responsible for coordinating data trans-
missions of sensor nodes to avoid collisions at the receiver. Among the aforementioned
challenges, the slow propagation speed of acoustic signals in water is the main hurdle
for MAC efficiency. Due to large propagation delays, the reception time of data packets
depends not only on the packet transmission time but also on the transmitter–receiver
distance [4]. This means that simultaneous transmissions may not collide at the receiver,
while collision of non-simultaneous transmissions is possible—the so-called space-time
uncertainty phenomenon. MAC protocols used in terrestrial radio networks (e.g., TDMA,
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CSMA, ALOHA, etc.) are designed under the assumption that propagation delays are
negligible. Thus, when directly applied in UASNs, these protocols experience drastic
performance drops.

MAC protocols are generally classified as contention-free or contention-based.
Contention-free protocols are based on the idea of dividing communication channels
in time (TDMA), frequency (FDMA), or code domain (CDMA). TDMA is the basis of the
most well-established research on UASN MAC [5]. The proposed solutions are able to
achieve high throughput by relying on centralized resource (time-slot) scheduling and the
knowledge of global network information, including link propagation delays. However,
in many practical UASNs, global network knowledge is not available, as it is difficult
and costly to track in the dynamic underwater environment. Moreover, TDMA-based
approaches require clock synchronization across the network, which is difficult to achieve
underwater due to GPS unavailability. Contention-based protocols aim to minimize the
probability of collisions while operating in a distributed setting. They are categorized
into handshaking-free and handshaking-based. The former are only suitable for lightly
loaded networks [6]. The latter solve the hidden-terminal problem by performing a hand-
shaking procedure before data transmission. However, due to large propagation delays,
handshaking seriously degrades acoustic channel utilization. Therefore, there is no one-
suits-all MAC solution for UASNs. The goal that is being pursued is the development of a
distributed bandwidth- and energy-efficient MAC protocol that supports asynchronous
network operation and fits well in dynamic environments.

In this paper, we propose a novel reinforcement learning (RL)-based MAC protocol
for UASNs to address the dynamicity and complexity of underwater acoustic channels.
The proposed protocol treats the sensor nodes as asynchronous learning agents that can
learn optimal transmission strategies through trial-and-error interaction with the envi-
ronment. In this way, the nodes can continually adapt to topological and environmental
changes without gathering detailed network information such as link propagation de-
lays. Our study is inspired by the research reported in [3,7], where the authors proposed
UW-ALOHA-Q-RL-based framed ALOHA protocol for UASNs. UW-ALOHA-Q is the
transformation of ALOHA-Q (designed for terrestrial radio networks) that enables the asyn-
chronous operation of UASN and improved channel utilization. However, UW-ALOHA-Q
uses the stop-and-wait transmission approach, where time slots are dimensioned to accom-
modate data packet transmission, maximum round-trip delay, and acknowledgment (ACK)
packet reception. The number of slots in the frame is determined based on a heuristic
formula, the efficiency of which varies with the network radius and topology. Furthermore,
in UW-ALOHA-Q, nodes adapt their frame start time independently of the slot learning
process (using a random backoff mechanism). Therefore, the network often fails to con-
verge, as we will show in our study. To address the mentioned limitations, we propose a
new RL-based MAC algorithm referred to as delayed-reward ALOHA-Q (DR-ALOHA-Q)
for UASNs, which uses reduces time-slot size and enables the nodes to transmit in every
time slot, regardless of whether the rewards for the previous time slots are received or
not. In this way, the nodes can learn to utilize the available bandwidth more efficiently
compared to UW-ALOHA-Q because no time slots are wasted due to long propagation
delays. As an additional measure to boost the channel utilization, we increase the action
space of the learning algorithm such that nodes select not only a time slot within the frame
but also a time offset for packet transmission within the selected slot.

The key contributions of the paper are summarized as follows:

• We define DR-ALOHA-Q as a framed-ALOHA MAC scheme that selects optimal time
slots and time offsets for packet transmissions for UASN nodes. As we will show later
in the paper, joint optimization of time-slot selection and transmission offset enables
DR-ALOHA-Q to achieve high channel utilization at a reasonable convergence speed.
Therefore, clock synchronization is not required;

• We formulate the MAC problem as a decentralized multiagent reinforcement learning
problem with a delayed reward. A computationally efficient RL model is run indepen-
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dently on each sensor node, without requiring any information exchange among the
nodes. The total number of network nodes is the only global information assumed to
be known locally. To maximize the network throughput, DR-ALOHA-Q deviates from
the usual RL approach with an immediate reward mechanism, which is not suitable
for environments with long propagation delays.

• Hysteretic Q-learning [8] is applied to enhance the convergence properties of the algorithm;
• We evaluate the performance of DR-ALOHA-Q through a series of simulations and

compare it with UW-ALOHA-Q, [3], DOTS [9], and CS-ALOHA [10] for a wide
range of static and mobile network scenarios. Our results show that DR-ALOHA-Q
achieves significant improvements in terms of channel utilization. Furthermore, even
when considering higher channel utilization targets, DR-ALOHA-Q achieves faster
convergence times than UW-ALOHA-Q.

The rest of this paper is organized as follows. Section 2 summarizes related work.
In Section 3, we present the considered UASN scenario and present the DR-ALOHA-Q
protocol design. Simulation results are presented in Section 4. Section 5 concludes the paper.

2. Related Work

The research community has developed numerous MAC solutions to address the
difficulties encountered in underwater acoustic communication. These solutions can be
classified into two categories: contention-free and contention-based. TDMA-based proto-
cols, such as UW-FLASHR [11], ST-MAC [12], STUMP [13], TDA-MAC [5], and DQUA-
MAC [14], are examples of contention-free MAC protocols commonly used in underwater
sensor networks. However, these protocols rely on centralized scheduling, which can
lead to excessive control overhead or delayed responses to network dynamics. In contrast,
contention-based MAC protocols offer greater flexibility and responsiveness to dynamic
network conditions.

Contention-based protocols are further divided into handshaking-based and handshaking-
free protocols. Many handshaking-based approaches for UASNs are based on MAC solu-
tions used in terrestrial networks. For example, DACAP [15] and slotted FAMA [16] require
nodes to wait for control packets such as request to send (RTS), clear to send (CTS), and
acknowledgments (ACKs) to propagate through the slow acoustic medium before establish-
ing a communication link for data transmission, resulting in low channel utilization. Some
approaches leverage large propagation delays to enable parallel transmissions of sensor
nodes. For instance, MACA-U [17] and APCAP [18] exploit a long waiting time during
handshakes for data transmissions. DACAP [15] uses different handshake lengths for
different recipients based on the estimated distance between the nodes. DOTS [9] utilizes
locally obtained information about the propagation delays towards one-hop neighbors
to enable concurrent transmissions with low probability of collision. It provides stable
throughput and fair medium access, even in cases of node mobility. Despite the many
improvements, the performance of UASN handshaking-based protocols is fundamentally
constrained by prolonged channel reservation procedures or/and the inefficiency of carrier
sensing caused by slow propagation of control signals in comparison to similar protocols
used in terrestrial radio systems.

In lightly loaded networks, there has been significant interest in handshaking-free
protocols, such as simple Aloha [19]. Various variants of Aloha-based protocols have been
proposed for UASNs, such as CS-ALOHA [10], which employs only carrier sensing and
an ACK mechanism; ALOHA-AN [20], which uses additional control packets for collision
avoidance; and time-slotted variants that use increased guard times (S-ALOHA [21]) or
transmit at a specific time that has been carefully calculated to synchronize the arrival time
of the data packet with the beginning of the time slot at the receiver (SA-ALOHA [22]). All of
these protocols suffer from low throughput in heavy traffic conditions. T-Lohi [23] follows
a different approach whereby short contention signals (3B long tones) and predefined
waiting times are used to resolve potential collisions. However, when many nodes compete
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for resources, the time it takes for one node to win the contention is likely to significantly
exceed the duration of the actual data transmission.

In recent research studies, RL has been used for MAC in UASNs [3,7,24–28]. The advan-
tage of learning-based MAC stems from its ability to accomplish and retain a (semi)optimal
transmission strategy in a dynamic environment. Furthermore, learning-based algorithms
can be typically implemented in a decentralized manner, and their communication over-
head can be limited. All of these are desirable features for resource-limited networks oper-
ating in a highly unpredictable underwater environment. Solutions presented in [24–27]
address specific scenarios that are not similar to that considered in this paper. In particular,
the authors of ref. [24] used slotted carrier-sensing multiple access (slotted CSMA) and an
RL algorithm to transmit packets over the optimal relay node and subchannel to the sink.
The authors aimed to maximize the lifetime of the network as their primary optimization
objective. However, the protocol requires time synchronization, which is difficult to achieve
underwater, as well as periodic exchange of control packets for neighbor discovery, which
may result in excessive energy consumption. The protocol design also incorporates multi-
channel communication, which is not suitable for UASNs in which the channel bandwidth
is very limited. On the other hand, due to large propagation delays, CSMA is gener-
ally ineffective in UASNs, as it demands excessive guard intervals. In [26], the problem
of transmission power control for collision avoidance was considered. The time-slotted
contention-based MAC protocol proposed in [25] uses Q-learning to select the backoff
waiting time before the packet transmission. The slot duration corresponds to the packet
transmission time plus the guard interval. Improvements over UW-ALOHA-Q and MACA-
U in terms of energy efficiency, channel utilization, and latency are proven via simulation
analysis but under some very demanding assumptions. Namely, the protocol assumes that
the nodes are synchronized, propagation delays between communicating nodes are known,
nodes know the exact transmission times that correspond to data packet arrival at the
beginning of the slot at the sink, etc. The solution proposed in [27] is handshaking-based
and concerns the problem of multimedia streaming in multihop networks.

A learning-based MAC protocol designed for scenarios similar to those considered
in this paper is UW-ALOHA-Q [3]. Compared to ALOHA-Q [29], which is designed for
terrestrial radio networks, UW-ALOHA-Q incorporates three enhancements that make it
more suitable for underwater environments: asynchronous operation, increased channel
utilization through a reduced number of slots per frame, and a new random backoff
scheme. The ability of the protocol to support mobility is demonstrated for a wide range of
scenarios in [7]. However, the slots are designed to accommodate data and ACK packet
transmission, maximum round trip time, and guard interval, whereas the optimal number
of slots per frame is determined based on a heuristic formula taking the network radius and
the number of nodes as input. As a result, the protocol exhibits very different behavior in
different network configurations. Moreover, nodes use an uncoordinated random backoff
mechanism to adjust the frame start time after several consecutive collisions. In larger
networks, this significantly prolongs the convergence process to the optimal transmission
strategy, as observed in Section IV. The problem of ALOHA-Q’s large overhead with respect
to the slot size is tackled in [28], but the proposed solution is applicable to linear chain
networks only.

Recently, deep reinforcement learning (DRL) has been applied in the MAC design
for UASN [30,31]. In [30], a DRL mechanism with delayed reward and a nimble training
mechanism was used nodes to determine the optimal transmission strategy in a mixed
environment in which nodes with different protocols (such as TDMA and ALOHA) coexist.
The authors also showed that the proposed solution outperforms slotted FAMA and DOTS
in a homogeneous environment. A similar approach was proposed in [31] for hybrid
optical and acoustic underwater sensor networks. The difficulty in applying DRL to MAC
design is that the state space can be very large. In a network of N nodes, the state space is
at least Nm when accounting for the past m transmissions. In general, the limitations of
the DRL approach include increased complexity, a long convergence time, and increased
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computation demand for each node. In [30], a network with only four DRL nodes was
considered, and even then, the adaptation time was on the order of several thousand
time slots.

The protocol proposed in this paper (DR-ALOHA-Q) is a handshaking-free contention-
based protocol. Similar to [3,7], it is based on framed ALOHA and uses RL to enable
nodes to discover optimal transmission strategies in a dynamic underwater environment,
without requiring knowledge of global network information (e.g., propagation delays).
Moreover, the protocol supports asynchronous operation, does not employ carrier sensing,
and is characterized by very low complexity. In contrast to [3,7] but similar to [30], we
consider a scenario in which the time-slot duration is far shorter than the propagation delay.
Aiming to maximize the channel utilization under space-time uncertainty, the nodes are
trained to select optimal time slots in the frame and to optimally delay packet transmission
with a time slot.

3. Scenario and Network Model

We consider a network of N underwater sensor nodes that transmit data to a common
sink node utilizing acoustic communication (Figure 1). This type of network topology is
common for a variety of practical applications, such as long-term environmental monitoring,
seismic monitoring in oil reservoirs, and the Internet of Underwater Things. To avoid
collisions at the sink node, the nodes of a MAC protocol are arranged in a time-slotted
manner. Time is divided into frames, each consisting of S time slots, as illustrated in Figure 2.
Each node is allowed to transmit sensed data once per frame. To transmit a data packet,
a node needs to select one of the S available slots in the subsequent frame. Once a packet is
received, a sink uses a separate downlink channel to broadcast the acknowledgment (ACK)
of reception. The system model considered in this study is identical to that used in [3].

The proposed MAC protocol relies on reinforcement learning to alleviate the collision
problem and achieve high channel utilization. In the considered reinforcement learning
framework, sensor nodes are regarded as the learning agents that choose transmission
strategies in each frame based on the feedback received from the sink node for their past
actions. In the rest of this section, we first review the basic principles of reinforcement
learning and Q-learning, which are the theoretical basis for the proposed DR-ALOHA-
Q protocol. Then, we describe how those learning concepts are incorporated into the
protocol design.

Sink/Gateway 

node

Figure 1. Considered UASN model.
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t-1 frame t frame t+1 frame... ...

Slot 1 Slot 1 ... Slot S

time

Figure 2. Slotted time-frame structure.

3.1. Reinforcement Learning Technique

Reinforcement learning (RL) is a type of machine learning that involves training an
agent to make decisions that maximize a reward signal over a time horizon. The agent
interacts with the environment in discrete time steps by performing actions and receives
feedback in the form of a reward or penalty for those actions. Based on the observed
feedback, the agent adjusts its behavior in an attempt to improve its decision-making skills
over time through a trial-and-error process.

Figure 3 illustrates the procedure followed by the RL agent in each time slot (t).
The agent observes the current state of the environment (st) and selects an action (at) based
on its current policy (π). In the context of RL, a policy (π) is a function that maps state–action
pair (st, at) to the probability (π(st, at)) of selecting action at in state st. After taking action
at, it receives a direct reward (rt). The agent uses this reward to evaluate its performance,
and the environment moves to the next state (st+1). This process repeats at each time step.

Agent

Environment

trts

1ts +

1tr +

ta

Figure 3. Reinforcement learning process.

Q-learning is one of the most popular model-free RL algorithms. In Q-learning,
the agent aims to find a policy that maximizes the cumulative discounted reward, which
is calculated by summing the rewards received at each time slot and discounting them
by a factor between 0 and 1. This is achieved using a lookup Q table, which is a matrix
representing the agent’s knowledge of the environment. The Q table comprises a row for
each possible state of the environment and a column for each possible action the agent can
take in that state. A matrix value (Q(st, at)) should reflect the expected reward that can be
received by taking action at in state st and following the optimal policy from that point on.
The optimal policy is greedy with respect to Q values of state–action pairs. The Q table is
initially filled with random values, and the agent updates these values as it interacts with
the environment according to the Bellman equation:

Q(st, at)← (1− α)Q(st, at) + α(rt+1 + γ max
a,

Q(st+1, a,)) (1)

where α ∈ (0, 1] is the learning rate of the algorithm, and γ ∈ (0, 1] is the discount factor.



Sensors 2023, 23, 4474 7 of 22

3.2. DR-ALOHA-Q MAC Protocol

In the DR-ALOHA-Q protocol, sensor nodes use a Q-learning scheme to select a
time slot in the frame to transmit a data packet. Additionally, nodes choose a time offset
to delay packet transmission within the time slot. The protocol provides support for
asynchronous network operation. The lack of reliance on time synchronization is considered
an important advantage in UASNs, since GPS is not available underwater, and network-
wide synchronization is costly and complex to implement. In contrast, terrestrial radio
networks (TRNs) can be relatively easily synchronized based on the global time reference,
reducing the likelihood of collisions in contention-based MAC schemes by decreasing the
duration of the vulnerable period. The slotted ALOHA protocol approximately doubles
the throughput of pure ALOHA in TRNs, since collisions only occur when synchronized
transmissions are made in the same time slot [32].

In UASNs, due to space-time uncertainty, the probability of collision depends on both
transmission times and locations of sensor nodes, as illustrated in Figure 4 For instance,
nodes A, B, and C can transmit at different time slots (Schedule 1) but cause collisions at
D because of their different propagation delays. Alternatively, the nodes can transmit in
the same time slot (Schedule 2) and avoid collisions at D if the difference between their
propagation delays is large enough, i.e., larger than the product of the packet transmission
time and the acoustic propagation speed in the water. Although this two-dimensional
uncertainty can technically occur in any type of communication, it is only relevant when
the propagation delay is significantly larger than the transmission delay, as in the case
of UASNs. Therefore, to reduce the probability of collision in UASNs, it is necessary to
eliminate the uncertainty in both dimensions. Network-wide synchronization can eliminate
transmission time uncertainty, but eliminating space uncertainty requires the use of a slot
size that can accommodate packet transmission time (Tp), maximum propagation delay in
the networkτmax

prop), and a guard interval (Tg). Considering that the physical properties of
the acoustic underwater channel cause long propagation delays, dimensioning the time
slot in this way significantly reduces channel utilization and increases end-to-end delay.
Therefore, we decided to reduce the slot size to Ts = Tp + Tg and to use a frame structure
with S = N time slots. The guard interval is designed to efficiently handle variations
in propagation delays that occur as a result of node mobility and changes in the water
temperature, pressure, and salinity, as well as to enable fast convergence of the RL algorithm.
The reduced slot size and asynchronous node operation result in unresolved time and
space uncertainty and, in turn, an increased vulnerability (collision) period. However,
DR-ALOHA-Q efficiently avoids collisions through Q-learning, as described below.

Agent

Environment

trts

1ts +

1tr +

ta

C

D

A B

Schedule 1 Schedule 2

A

B

D

C

timetime

Figure 4. Space-time uncertainty in UASNs.

3.2.1. A Model for Transmitting Packets

We now design a Q-learning model for DR-ALOHA-Q. Specifically, the definitions of
system state, action space, and reward function in the DR-ALOHA-Q algorithm are given
as follows.
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System state. In the proposed protocol, the state is defined as the receiver of a
data packet. Because the considered network model has only one node that acts as a
data packet receiver, i.e., sink, the applied Q-learning method is a single-state Q-learning
method. Several recent studies [3,7,26] adopted single-state Q-learning in the design of
MAC protocols for underwater and terrestrial networks due to its low computational
complexity. The reason for this low computational complexity lies in the fact that is difficult
to define meaningful and non-misleading states for the MAC problem. The convergence
time of multistate learning algorithms also might be unacceptably large for practical UASN
applications. Therefore, we anticipate that single-state Q-learning is the most appropriate
RL formulation, although the optimality of the solution is most likely sacrificed.

Action space. Actions concern transmission strategy decisions, i.e., joint selection of a
time slot in the frame and a time offset (delay) for packet transmission within the time slot.
We express the time-offset options as a multiple of δ time units. Let the maximum allowable
time offset for packet transmission in each time slot be Kδ. Then, for each underwater node
(i), the set of available actions is:

At = {at = 〈j, k〉|j ∈ S, k ∈ [0, 1, 2, . . . , K]} (2)

where 〈j, k〉 is the action of transmitting in j-th slot of the subsequent frame with a delay of
kδ̇ time units from the start of the slot.

Reward function. After a sensor node performs an action, it evaluates the effectiveness
of the action based on the reward (rt+1) it receives. The goal of the Q-learning agent is to
maximize the total network throughput. Therefore, the reward value for a given action (at)
is based on the packet reception result of the sink node. Specifically, the sensor node waits
for the acknowledgment (ACK) from the sink node and determines the observation as
ot = 〈Success〉 or 〈Collision〉. The deadline for ACK reception is designed to be larger than
2τmax

prop. If the ACK is received before the deadline expires, the performed action is paired
with the observation 〈Success〉; otherwise, 〈Collision〉 is implied. The reward function is
defined as:

rt+1 =

{
1, if ot = 〈Success〉.
0, if ot = 〈Collision〉.

(3)

3.2.2. Learning to Avoid Collisions

To determine the optimal transmission strategy, every time a node needs to transmit
a data packet, it checks the Q values of all possible actions. The Q values are maintained
in the form of a one-dimensional Q table with a number of elements equal to S · K, which
corresponds to the size of the action space. The table is initialized with random values
between 0 and 1 so that all nodes start learning with random action choices. At the start of
each time frame, every node selects a time slot and a time offset for the slot as indicated
by the action with the largest Q value. The Q-table is updated according to the observed
transmission result (i.e., the ACK signal) as follows:

Qt+1(a) = Qt(a) + α(rt+1 −Qt(a)) (4)

In the above equation, t denotes the start time of the frame in which action a is taken,
while t + 1 is the time when the observation of the transmission result is determined,
i.e., the moment when the ACK is received or the deadline for receiving the ACK expires.
The Q-value updating rule differs from (1) because in single-state Q-learning, there is no
new state and, thus, no concept of future reward. The protocol operation is presented
visually through a flow chart in Figure 5.

It should be noted that the proposed Q-learning model violates the implicit assumption
of conventional RL that the agent takes a new action only after it receives the corresponding
feedback for the action performed in the previous time step [3]. Because of the reduced
time-slot size, ACKs for successful transmission may not arrive during the same time frame.
This is particularly true for sensor nodes far away from the sink node, the propagation
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delay of which could be many times larger than the frame size. While the reduced slot
size entails higher theoretical channel utilization, delayed rewards slow down the learning
process. We investigate this tradeoff in Section 4.

Start

Initialize the 
frame size 

S=N

Is buffer empty?

Wait for the frame start

Yes

No

Select a slot and a 
transmission offset 
based on Q-table

Go to idle mode until 
the chosen slot

Transmit in the chosen 
slot with a chosen time 

offset

ACK received?

No

Timeout 
expired?

Yes

Decrease Q-value of the 
selected action

No Yes
Increase Q-value of the 

selected action

Retry > Limit?

Drop the packet

Yes

No

Figure 5. Flow chart of the DR-ALOHA-Q protocol.

In the proposed DR-ALOHA-Q protocol, network nodes act as independent learning
agents that share the same goal: maximizing the network throughput. Independent learning
makes the protocol scalable because the size of Q tables is not affected by the number of
nodes. However, it also makes the environment unpredictable from the local perspective
of an agent. To speed up the convergence time of the distributed learning, we apply a
variant of multiagent RL called Hysteretic Q-learning [8]. In the multiagent environment,
even if an agent chooses a good action, it may suffer a penalty (i.e., reward 0) as a result
of actions taken by the other nodes. To address this issue, in compliance with hysteretic
Q-learning principles, we use two different learning rates, α and β, in the Q-table update
rule, as follows:

µ = rt+1 −Qt(a) (5)
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Qt+1(a)←
{

Qt(a) + α · µ, if µ ≥ 0
Qt(a) + β · µ, else

(6)

These learning rates are determined based on the sign of the parameter µ, which
indicates whether the actions taken were beneficial or detrimental to achieving the desired
behavior of the system. Learning rate α is used for increasing Q values when the actions
taken were beneficial, while β is used for decreasing Q values when the actions taken
were detrimental. In order to give less weight to penalties, β is set to a value lower than α.
Therefore, an agent places less emphasis on a penalty that was incurred for actions that
were previously awarded.

4. Simulation Results

In this section, we assess the effectiveness of DR-ALOHA-Q through simulations.
The simulations were conducted using our self-developed event-driven simulator, which
was implemented in Python programming language We compare the performance of the
proposed protocol with that of UW-ALOHA-Q, DOTS, and CS-ALOHA in the UASN
scenario with periodic data gathering under saturated traffic conditions. The simula-
tion analysis is conducted for random network typologies with 10 and 25 sensor nodes.
The network radius is varied from 100 m to 1500 m. Unless otherwise specified, simula-
tion parameters from Table 1 are used. The data packet size and ACK size in bits were
determined based on prior research [3]. To suit the practical settings of underwater environ-
ments, a data rate of 13,900 bps was assumed by referring to an underwater modem that is
currently available on the market [33]. The protocol performance is evaluated in both static
and mobile network setups. All nodes are considered to be within interfering range of each
other. For the proposed protocol and UW-ALOHA-Q, the simulation duration is set to 3000
time frames. DOTS and CS-ALOHA were evaluated for the same amount of time as the
proposed protocol.

Table 1. Simulation parameters.

Parameter Value

Data packet size 1044 bits
ACK packet size 20 bits
Data packet transmission time (Tp) 75.108 ms
ACK packet transmission time (Ta) 1.439
Slot duration 110 ms
Propagation speed 1500 m/s
Transmission rate 13,900 bps
Learning rate α 0.1
Learning rate β 0.01
Time-offset step δ 5 ms

4.1. Benchmark Protocols

DR-ALOHA-Q is compared to three previously proposed underwater MAC tech-
niques, each presenting a different and paradigmatic approach to collision avoidance.
UW-ALOHA-Q is a reinforcement-learning-based MAC protocol designed for underwater
communication. It utilizes Q-learning to determine the optimal time slot for transmitting
data packets in each time frame. Compared to the ALOHA-Q protocol, which is used
in terrestrial networks, UW-ALOHA-Q introduces three enhancements to address the
unique challenges of the underwater environment: refined frame length, asynchronous
operation, and uniform random backoff. To improve channel utilization, UW-ALOHA-Q
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uses a refined frame size with S time slots, where S is computed based on the index ratio
(B), defined as:

B =
S · (2 · τmax

prop + Tp)

N · Tp
(7)

In particular, UW-ALOHA-Q proposes to choose the number of slots in order to
maximize channel utilization under the condition that the index B is equal to or greater
than 1.5, assuming that the number of nodes in a network (N) and the network radius (R)
are known.

The DOTS protocol uses passively observed information about the neighboring trans-
missions to achieve both temporal and spatial reuse in UASNs. Each node builds a delay
map, which includes information about the source and destination of the observed packets,
the time at which packets were sent (timestamps), and the estimated propagation delay
between the packet source and the destination. The timestamps included in the packet
header are used to calculate the propagation delay to the packet sender. However, this
requires clock synchronization across the network, which is difficult to achieve in UASNs.
Based on the overheard transmissions, each node can estimate the time at which a response
to the observed packet will arrive back to the sender. When a node needs to transmit
a frame, it employs a decision-making algorithm based on the delay map database to
determine whether or not to initiate the transmission. If no conflicts arise, the node starts
transmitting. If conflicts are detected in the delay map, the node delays its transmission for
a random period of time (backoff period) before attempting transmission again.

CS-ALOHA is a modified version of ALOHA that is suitable for use in underwater
settings. In this approach, nodes transmit their data without engaging in the RTS/CTS
handshaking process, as long as the channel is not currently in use. Additionally, the system
includes an acknowledgment mechanism to confirm successful transmissions. For both
CS-ALOHA and DOTS, we set the maximum backoff period to 10τmax

prop, following the
approach proposed in [16].

4.2. Investigated Metrics

The protocol performance is evaluated through the investigation of the channel utiliza-
tion (U) and protocol convergence time (Ct). Channel utilization is defined as the fraction
of the total simulation time during which the sink node successfully receives data traffic:

U =
D · Tp

Simulation duration
(8)

where D is the total number of successfully received data packets.
The protocol convergence time (Ct) is evaluated as the time required to find the optimal

transmission strategy for a certain network size. Since UW-ALOHA-Q and DR-ALOHA-Q
use different slot sizes, we normally express the convergence time in seconds. However,
we also present results in terms of the number of time frames required for the protocol to
converge, since this better indicates the energy efficiency of the protocol. The performance
metrics are measured in a consistent manner as an average of 20 simulation runs.

4.3. Simulation of Static UASN

This scenario pertains to UASNs that comprise nodes that are either moored or an-
chored. The unintentional movements of sensor nodes are neglected.

Figures 6 and 7 show the channel utilization achieved by the analyzed protocols
in networks with 10 and 25 nodes randomly deployed within a circle area, respectively.
The results clearly indicate that DR-ALOHA-Q achieves the highest channel utilization
and relatively steady-state performance. The DOTS protocol exhibits the worst behavior.
The throughput of DOTS decreases in more sparsely deployed networks. This is a gen-
eral feature of handshaking-based protocols. As the distance between nodes increases,
the overall time required to reserve the channel and transmit data also increases, which
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reduces the network throughput. In sparsely deployed networks, DOTS nodes are less
likely to detect active transmissions in the network and therefore fail to efficiently exploit
temporal reuse. CS-ALOHA outperforms DOTS in almost all the analyzed network con-
figurations. In the UASN scenario with 25 nodes, CS-ALOHA exhibits very low channel
utilization for short network radii because the nodes often overhear transmissions from
other nodes but are unable to identify collision-free transmission opportunities, leading
to unnecessary backoff periods. As a result, channel utilization is significantly reduced,
and the overall performance of the network is adversely affected. Moreover, it is important
to note that the throughput gains of CS-ALOHA, compared to DOTS, come at the cost of
lower energy efficiency and fairness due to the higher number of transmission attempts
(as well as collisions) and the lack of a fairness control mechanism [9]. The throughput
performance of CS-ALOHA is generally inferior to that of learning-based protocols such
as UW-ALOHA-Q and DR-ALOHA-Q. Both UW-ALOHA-Q and DR-ALOHA-Q tend to
imitate TDMA scheduling. Therefore, the fairness of these protocols is implied.
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Figure 6. Channel utilization for a static UASN comprising 10 nodes.
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Figure 7. Channel utilization for a static UASN comprising 25 nodes.

The channel utilization of UW-ALOHA-Q exhibits a zig-zag pattern due to its utilization
of large time slots and the selection of the optimal number of slots in a frame based on (7). This
leads to varying amounts of idle time in a frame depending on the maximum propagation
delay or network radius. For instance, in a network with 25 nodes, the optimal number of
slots varies for different network sizes. A network with a radius of 100 m requires 14 slots
for optimal channel utilization, while a network with a radius of 900 m only needs 3 slots.
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This leads to maximum theoretical utilization of 0.6058 Erlangs and 0.469 Erlangs for the
former and latter cases, respectively. This effect is discussed in [7] and termed as “the effect of
a slot”. On the contrary, DR-ALOHA-Q has a maximum theoretical channel utilization that
does not vary with the network radius, as it only depends on the slot size. The number of
slots is always equal to the number of network nodes, which eliminates the zig-zag pattern in
channel utilization. We set the default slot size to 110 ms, i.e., ∼1.46Tp. This allows the slot to
accommodate packet transmission time and a guard interval. The size of the guard interval is
determined empirically based on a simulation study that considers the tradeoff between the
protocol throughput and convergence properties. With this setting, the maximum theoretical
channel utilization is approximately 0.6828 Erlangs.

It is interesting to note that DR-ALOHA-Q achieved slightly worse results in the
scenario with 10 nodes than in the scenario with 25 nodes. This could be due to the fact
that nodes transmit more often. Although the majority of nodes can promptly identify a
collision-free transmission approach, some nodes may fail to do so because the Q values
of other nodes’ decisions rise steeply due to the rarity of collisions in comparison to the
number of successful transmissions. The problem could be alleviated by using a more
sophisticated algorithm to adjust the learning rate or a more granular reward mechanism,
which would favor the nodes experiencing a large number of consecutive collisions. As the
primary aim of this paper is to demonstrate improved performance compared to UW-
ALOHA-Q, which can be accomplished with larger slot sizes, as demonstrated later, we
leave further improvements of the learning algorithm for our future work.

As discussed before, slot size is a crucial parameter that determines the achievable
channel utilization of DR-ALOHA-Q. Moreover, it impacts the end-to-end communication
delay. If the slot size is too large, the channel utilization will be low. Conversely, if the
slot size (i.e., guard interval) is too small, nodes will fail to find a collision-free transmis-
sion strategy. Figure 8 presents simulation results in terms of channel utilization for a
10-node network achieved using slot sizes of 90, 100, 110, and 120 ms, which corresponds
to approximately 1.2Tp, 1.3Tp, 1.5Tp, and 1.6Tp, respectively. Figure 9 shows the percentage
of simulations in which the network converges before 3000 iterations. Convergence is
considered to have occurred when all nodes transmit packets using the same action (slot
and offset) for 20 consecutive frames. For a network with 25 nodes, similar results are
shown in Figures 10 and 11. The results clearly indicate that the learning algorithm used by
DR-ALOHA-Q cannot converge in a reasonable time when the slot size is 1.2Tp and 1.3Tp.
When the slot size is equal to approximately 1.5Tp, the protocol converges to the optimal
scheduling solution in most of the cases. In both scenarios, i.e., for networks comprising
10 and 25 nodes, convergence can be guaranteed with a slot size of 1.6Tp. This slot size
configuration corresponds to the maximum achievable channel utilization of 0.63 Erlangs,
which is still considerably better than that achievable with UW-ALOHA-Q.

200 400 600 800 1000 1200 1400
Network radius (m)

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

Ch
an

ne
l u

til
iza

tio
n 
(E
rla

ng
)

DR-ALOHA-Q (S=90 ms)
DR-ALOHA-Q (S=100 ms)
DR-ALOHA-Q (S=110 ms)
DR-ALOHA-Q (S=120 ms)

Figure 8. DR-ALOHA-Q channel utilization as a function of slot size in a UASN with 10 nodes.
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Figure 9. Convergence rate of DR-ALOHA-Q in a UASN with 10 nodes.
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Figure 10. DR-ALOHA-Q channel utilization as a function of slot size in a UASN with 25 nodes.
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Figure 11. Convergence rate of DR-ALOHA-Q in a UASN with 25 nodes.

Tables 2 and 3 present a comparison of the convergence properties of the proposed
protocol and UW-ALOHA-Q for UASNs with 10 and 25 nodes, respectively. In each case,
20 simulations were conducted for different network radii. Since the protocols do not use
the same frame size, the convergence time is expressed in seconds. In order to provide
a comprehensive evaluation, we report the average result of all simulation runs where
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the protocols converged, as well as the percentage of simulations where the protocols
achieved convergence. Table 3 shows that UW-ALOHA-Q successfully converges in less
than 3000 frames in the UASN scenario with 10 nodes. This is not solely due to reduced
contention among the nodes but also due to significant idle time in a frame as a result of the
calculation (7). Namely, UW-ALOHA-Q has a maximum theoretical channel utilization of
less than 0.55 in all of the examined network configurations. When the number of network
nodes is 25, UW-ALOHA-Q fails to converge in up to 35% of simulations for certain network
configurations, as shown in Table 3. In this situation, the duration of idle time within the
frame is decreased due to the implementation of (7) as a frame dimensioning mechanism.
For instance, in a network with a radius of 700 m, the maximum theoretical channel
utilization of UW-ALOHA-Q is approximately 0.59. Although this is much lower than the
channel utilization offered by DR-ALOHA-Q, UW-ALOHA-Q struggles to converge in 35%
of simulation runs.

In the scenario with 25 nodes, DR-ALOHA-Q converges in 100% of situations for both
S = 110 ms and S = 120 ms Therefore, the convergence time is around 250 s in the worst
case, which is significantly lower than the convergence time of UW-ALOHA-Q in most of
the cases. The only scenario in which UW-ALOHA-Q achieves faster convergence is that
in which the network radius is 900 m. However, in this scenario, the maximum channel
utilization offered by UW-ALOHA-Q is considerably lower than that of the proposed proto-
col, as shown in Figure 6. In a network with 10 randomly deployed nodes, the convergence
rate of DR-ALOHA-Q for S = 110 ms is slightly worse due to the occasional oscillation in
learning explained before. However, relative to UW-ALOHA-Q, throughput gain is even
more pronounced. With S = 120 ms, DR-ALOHA-Q achieves stable channel utilization of
0.626 Erlangs, while its convergence time is negligibly slower (up to 15 s) in the worst-case
scenario and significantly faster (over 7 times) in some cases. It is important to note that
UW-ALOHA-Q achieves faster convergence only when it uses a frame structure with a
long idle time, which significantly lowers channel utilization compared to DR-ALOHA-Q.

Figure 12 shows the channel utilization as a function of time for DR-ALOHA-Q
with/without hysteretic Learning (HL) and UW-ALOHA-Q. The results refer to a network
topology comprising 25 nodes randomly deployed within a circular area of a 500 m radius.
Figure 12 shows that both DR-ALOHA-Q and UW-ALOHA-Q nodes successfully learned
an optimal transmission strategy. However, it can also be observed that DR-ALOHA-Q
converged faster in the learning process and that HL contributed to decreased convergence
time. Therefore, DR-ALOHA-Q achieved higher channel utilization than UW-ALOHA-Q.
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Figure 12. Real-time channel utilization in a 500 m UASN for the UW-ALOHA-Q and the proposed
protocol with DR-ALOHA-Q and without hysteretic Learning (DR-ALOHA-Q/H).
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Table 2. Convergence properties of DR-ALOHA-Q and UW-ALOHA-Q in the UASN scenario with
10 nodes.

Protocol Name
Network
Radius

in Meters

Convergence
Time

in Seconds

% of Simulations
Where the Network

Vonverges

DR-ALOHA-Q (S = 110 ms) 100 31.93 100%
DR-ALOHA-Q (S = 120 ms) 100 28.55 100%
UW-ALOHA-Q 100 25.93 100%

DR-ALOHA-Q (S = 110 ms) 300 31.26 85%
DR-ALOHA-Q (S = 120 ms) 300 26.18 100%
UW-ALOHA-Q 300 27.44 100%

DR-ALOHA-Q (S = 110 ms) 500 36.06 95%
DR-ALOHA-Q (S = 120 ms) 500 32.77 100%
UW-ALOHA-Q 500 23.69 100%

DR-ALOHA-Q (S = 110 ms) 700 40.89 100%
DR-ALOHA-Q (S = 120 ms) 700 34.55 100%
UW-ALOHA-Q 700 19.47 100%

DR-ALOHA-Q (S = 110 ms) 900 36.58 95%
DR-ALOHA-Q (S = 120 ms) 900 33.31 100%
UW-ALOHA-Q 900 245.41 100%

DR-ALOHA-Q (S = 110 ms) 1100 39.66 95%
DR-ALOHA-Q (S = 120 ms) 1100 34.66 100%
UW-ALOHA-Q 1100 168.02 100%

DR-ALOHA-Q (S = 110 ms) 1300 47.48 100%
DR-ALOHA-Q (S = 120 ms) 1300 39.58 100%
UW-ALOHA-Q 1300 120.12 100%

DR-ALOHA-Q (S = 110 ms) 1500 47.53 90%
DR-ALOHA-Q (S = 120 ms) 1500 41.69 100%
UW-ALOHA-Q 1500 92.54 100%

One of the key DR-ALOHA-Q features is the ability to delay a packet transmission
with a time slot to leverage space-time uncertainty and enhance throughput. Thus, we
analyzed the impact of the time-offset step (δ) on the protocol performance. In particular,
the protocol performance is evaluated for δ ∈ [5, 10, 20, 40, 55] ms, and the obtained results
in terms of channel utilization are presented in Figure 13 for the UASN scenario with
10 nodes and in Figure 14 for the UASN scenario with 25 nodes. The results in terms of
convergence properties are reported for a network radius of 500 m in Tables 4 and 5. The
results show that the performance deteriorates with an increase in δ, but decent throughput
performance can be achieved even with relatively large time-offset steps. A small value
for δ can help the protocol converge to the optimal strategy, but if the value is too small,
the convergence process might be slowed down significantly due to an increased action
space of the learning algorithm. On the other hand, when offset steps are less granular,
the protocol either converges rapidly (because action space is relatively small) or fails to
converge at all. In networks with anchored/moored sensor nodes, achieving network
convergence is considered the primary objective. After convergence, a globally optimal
packet transmission schedule is formed, and the nodes can stop the learning algorithm and
just repeat the learned schedule as long as network convergence is maintained. In mobile
networks, convergence does not apply; therefore, the focus is on retaining high channel
utilization through effective adaptation of transmission timings in response to changing
conditions. The value of the δ parameter should be chosen by carefully considering
a tradeoff between channel utilization and the likelihood of convergence for a given
network scenario.
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Table 3. Convergence properties of DR-ALOHA-Q and UW-ALOHA-Q in the UASN scenario with
25 nodes.

Protocol Name
Network
Radius

in Meters

Convergence
Time

in Seconds

% of Simulations
Where the Network

Vonverges

DR-ALOHA-Q (S = 110 ms) 100 199.48 100%
DR-ALOHA-Q (S = 120 ms) 100 135.86 100%
UW-ALOHA-Q 100 360.57 100%

DR-ALOHA-Q (S = 110 ms) 300 181.46 100%
DR-ALOHA-Q (S = 120 ms) 300 143.92 100%
UW-ALOHA-Q 300 2054.03 80%

DR-ALOHA-Q (S = 110 ms) 500 183.96 100%
DR-ALOHA-Q (S = 120 ms) 500 121.74 100%
UW-ALOHA-Q 500 3246.2 90%

DR-ALOHA-Q (S = 110 ms) 700 250.25 100%
DR-ALOHA-Q (S = 120 ms) 700 123.47 100%
UW-ALOHA-Q 700 1909.9 65%

DR-ALOHA-Q (S = 110 ms) 900 189 100%
DR-ALOHA-Q (S = 120 ms) 900 182.67 100%
UW-ALOHA-Q 900 177.97 100%

DR-ALOHA-Q (S = 110 ms) 1100 194.62 100%
DR-ALOHA-Q (S = 120 ms) 1100 132.26 100%
UW-ALOHA-Q 1100 1808.55 70%

DR-ALOHA-Q (S = 110 ms) 1300 208.66 100%
DR-ALOHA-Q (S = 120 ms) 1300 136.3 100%
UW-ALOHA-Q 1300 282.67 100%

DR-ALOHA-Q (S = 110 ms) 1500 244.46 100%
DR-ALOHA-Q (S = 120 ms) 1500 123.76 100%
UW-ALOHA-Q 1500 176.83 100%
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Figure 13. DR-ALOHA-Q channel utilization as a function of δ in a UASN with 10 nodes.
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Figure 14. DR-ALOHA-Q channel utilization as a function of δ in a UASN with 25 nodes.

Table 4. Convergence properties of DR-ALOHA-Q in function of δ in a static UASN with 10 nodes.

δ (ms) Network Radius
in Meters

Convergence Time
in Frames

% of Simulations
Where the Network

Converges

5 500 50.58 95%
10 500 36.37 95%
20 500 40.23 85%
40 500 35 70%
55 500 26.29 70%

Table 5. Convergence properties of DR-ALOHA-Q as a function of δ in a static UASN with 25 nodes.

δ (ms) Network Radius
in Meters

Convergence Time
in Frames

% of Simulations
Where the Network

Converges

5 500 59.2 100%
10 500 69.65 100%
20 500 55.72 90%
40 500 46.73 75%
55 500 44.77 65%

4.4. Simulation of a Free-Floating UASN

In addition to static typologies, we evaluated the proposed protocol in a mobile UASN
with free-floating sensor nodes. In particular, N nodes are randomly deployed in a circle
area with a 500 m radius and moved according to the meandering current mobility (MCM)
model [34] for 30 min. The node movements are limited to the circle region with a radius
of 1000 m around the fixed sink node. In this way, all deployed nodes remain within an
interference range of each other during the whole simulation and experience a high level of
channel contention. The MCM mobility model operates under the assumption that sensor
nodes are not independent in their movement. Instead, they are advected by the same
velocity field, which, in turn, is affected by meandering subsurface currents and vortices,
influencing the nodes’ path vectors. To maintain consistency with [9], we restricted node
speed to 0.3 m/s in our simulations by parameterizing the MCM model accordingly.

The effect of MCM mobility on channel utilization of the proposed protocol and UW-
ALOHA-Q, DOTS, and CS-ALOHA protocols is examined in Figure 15. The protocols are
evaluated in scenarios with different numbers of sensor nodes, specifically N ∈ [5, 10, 15, 20].
The presented results are averaged over 20 simulation runs, with error bars representing the
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standard deviation of the results. All protocols are tested using the same set of parameters
as in the static UASN scenario, with the exception of the DOTS protocol. To mitigate invalid
transmission scheduling caused by node mobility, a 20 ms-long guard interval is utilized
for DOTS, as proposed in [9]. The obtained results clearly demonstrate the superior perfor-
mance of DR-ALOHA-Q over UW-ALOHA-Q, DOTS, and CS-ALOHA in the scenario with
MCM mobility. By incorporating the learning-based adaptive MAC approach, DR-ALOHA-
Q effectively leverages time-space uncertainty, resulting in significant improvements in
channel utilization and throughput. In general, the efficiency of learning-based approaches
largely depends on the frequency and magnitude of environmental changes. When the
rate of environmental changes is low, learning-based protocols are more likely to deliver
superior performance outcomes. In contrast, in situations in which environmental changes
occur rapidly and unpredictably, the effectiveness of these approaches may be diminished.
Nevertheless, in the considered mobile UASN scenario, DR-ALOHA-Q adapts to node
movements sufficiently rapidly, resulting in a notably higher channel utilization compared
to the other protocols.

Compared to a static network scenario, node mobility considerably deteriorates the
performance of UW-ALOHA-Q In the given scenario, the maximum theoretical channel
utilization achievable with UW-ALOHA-Q protocol is approximately 0.21, 0.48, 0.37, and 0.5
Erlangs for N ∈ [5, 10, 15, and20], respectively. Consequently, the idle time at the sink node
constitutes 79%, 52%, 63%, and 50% of the frame duration for these network sizes when
the optimal transmission schedule is established. This idle time serves as a guard interval
to account for variations in propagation delay that arise due to node mobility, helping
to prevent collisions and ensure reliable data transmission between the nodes and the
sink. However, the guard or idle intervals are not evenly distributed within a frame.
Thus, although these intervals may be relatively large, they cannot always absorb the node
movements. In some cases, adjustments to the transmission strategy are required in order
to maintain optimal throughput performance. As shown in Figure 15, in the scenarios with
N = 10 and N = 20 nodes, the MCM mobility model deteriorates UW-ALOHA-Q’s channel
utilization by 20% and 16%, respectively, compared to the maximum theoretical values.
In the scenarios with N = 5 and N = 15 nodes, there was no performance degradation due
to node mobility, but the achieved channel utilization is generally low due to previously
elaborated limitations of the frame dimensioning formula.

In comparison to UW-ALOHA-Q, DR-ALOHA-Q employs smaller idle intervals at
the sink, which account for just 38% of the frame duration. This entails that DR-ALOHA-Q
nodes need to adjust transmission strategies more frequently. Notably, as the number of
nodes (N) increases, the performance degradation of DR-ALOHA-Q compared to a static
network scenario becomes more pronounced. However, DR-ALOHA-Q still outperforms
UW-ALOHA-Q by a considerable margin of 23% in the worst-case scenario (N = 20)
and by nearly 200% in the best-case scenario (N = 5). This superior performance can
be attributed to two main factors. First, the maximum theoretical channel utilization of
DR-ALOHA-Q is much higher (0.683 Erlangs). Secondly, DR-ALOHA-Q is able to learn
good policies more rapidly without relying on the unstable and inefficient uniform random
backoff mechanism. In the considered fully connected network scenarios, mobility did not
cause any considerable changes in throughput for DOTS and CS-ALOHA.

As depicted in Figure 16, we also analyzed the impact of the time-offset step (δ) on
the protocol performance in a free-floating network. Our results indicate that even for
δ = 55 ms, which corresponds to half the slot size, DR-ALOHA-Q achieves a respectable
channel utilization. However, when the number of nodes is small (e.g., N = 5), the benefits
of using small offset steps are more evident. In larger networks, finding an efficient
transmission strategy becomes a more complex task. Therefore, using a small δ does not
necessarily improve channel utilization, as the environment changes faster than the learning
algorithm can converge.
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Figure 15. Channel utilization in a free-floating UASN.
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Figure 16. DR-ALOHA-Q channel utilization as a function of δ in a free-floating UASN scenario.

5. Conclusions

In this paper, we presented DR-ALOHA-Q, a delayed-reward ALOHA-Q for UASNs.
DR-ALOHA-Q utilizes Q-learning algorithms to determine optimal time slots and time
offsets within a slot for data transmissions by sensor nodes. In this way, the protocol
leverages large propagation delays in underwater acoustic communication to maximize
channel utilization. Therefore, the protocol operates without any prior knowledge of link
propagation delays and does not require time synchronization across the network. Each
node learns the optimal transmission strategy independently, solely based on the delayed
feedback from the sink node. We evaluated the performance of DR-ALOHA-Q by means of
simulations in static and free-floating UASNs of different sizes under saturated traffic load.
The performance of the protocol was compared to that of the state-of-the-art reinforcement-
learning-based MAC protocol available in the literature, namely UW-ALOHA-Q, as well as
two other popular MAC approaches, DOTS and CS-ALOHA. The results show that DR-
ALOHA-Q not only achieves significant performance improvements in terms of channel uti-
lization but also exhibits robustness against different propagation delays and demonstrates
good adaptability to network mobility. In terms of channel utilization gains, DR-ALOHA-Q
outperforms UW-ALOHA-Q, achieving gains ranging from 13% to 106% in a static net-
work and from 23% to 200% in a mobile network scenario.dditionally, DR-ALOHA-Q
effectively reduces end-to-end delay. The performance gains stem from a reduced time-
slot size and a reinforcement learning framework that drives the protocol operations by
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letting each node to promptly adjust the transmission strategy in response to changing
communication conditions.

In our future work, we aim to further improve the efficiency of the learning algo-
rithm and extend the protocol to support the smooth integration of new nodes into an
operating UASN.
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