Modeling and Calibration of Pressure-Sensing Insoles via a New Plenum-Based Chamber
Abstract
:1. Introduction
1.1. Existing Insoles
1.2. Existing Calibration Setups
1.3. Overview of Models Used for Calibration
1.4. Contribution
- by introducing a novel, pressure-based, calibration setup;
- by proposing a refined calibration procedure for our insole, using a polynomial model of each sensor that also considers information coming from its past outputs;
- by validating the model found with static and dynamic trials performed using our setup.
2. Background
2.1. Sensing Technology
2.2. Physics-Based Approach
- k changes with the pressure and with time, since the linear model is valid only for small deformations;
- is not constant due to mechanical hysteresis;
- A can vary slightly from one taxel to another.
2.3. Problem Statement
3. Calibration Setup
- a steel pressure tank, capable of withstanding a maximum pressure of 10 bars;
- a custom support, specially designed to house the insole during calibration;
- a 24-L air compressor;
- a closed-loop pressure regulator (QB4 from ProportionAir);
- a high-precision pressure sensor (PN2014 from IFM);
- several high-pressure elements (pipes and valves) to connect the various parts of the setup together.
4. Modeling and Identification
4.1. Polynomial Model
- is the vector containing all of the capacitance measurements recorded by taxel i;
- is the pressure estimated by taxel i at time t based on its measurements;
- is a polynomial of order that links the instantaneous value of the capacitance to the pressure estimate;
- is a polynomial of order contributing to enhance the pressure estimate with information coming from the past state of the sensor (at time );
- is a parameter selecting the number of past samples to be considered for the current estimate.
4.2. Data Collection
4.3. Mathematical Methods
4.4. Data Preprocessing
- implement a Tikhonov regularization [32] of our problem to favour solutions with a lower norm;
- normalize the regressor (i.e., each column is scaled by the value of its maximum element). As a result, all the elements in the new regressor will belong to the range . This is necessary, since, from its definition in (9), it is evident that different columns of have very different orders of magnitude. The solution of the scaled problem is also to be scaled similarly in order to counter-balance the smaller value range considered;
- subsample the original dataset to scale down the dimension of the problem by retaining a similar level of information.
4.5. Calibration of the Base Instantaneous Polynomial
4.6. Expansion of the Base Model
5. Results and Discussion
- Model A, found by setting , that achieves a lower RMSE on the validation scenarios considered;
- Model B, found by setting , that, even if slightly less accurate, requires a lower dimensionality of the optimization vector.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravuri, S.; Lenc, K.; Willson, M.; Kangin, D.; Lam, R.; Mirowski, P.; Fitzsimons, M.; Athanassiadou, M.; Kashem, S.; Madge, S.; et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 2021, 597, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Goren, O.; Nachmani, E.; Wolf, L. A-Muze-Net: Music Generation by Composing the Harmony based on the Generated Melody. arXiv 2021, arXiv:2111.12986. [Google Scholar]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2014, 15, 1321–1330. [Google Scholar] [CrossRef]
- Tsao, L.; Li, L.; Ma, L. Human Work and Status Evaluation Based on Wearable Sensors in Human Factors and Ergonomics: A Review. IEEE Trans. Hum.-Mach. Syst. 2019, 49, 72–84. [Google Scholar] [CrossRef]
- Rana, M.; Mittal, V. Wearable Sensors for Real-Time Kinematics Analysis in Sports: A Review. IEEE Sens. J. 2021, 21, 1187–1207. [Google Scholar] [CrossRef]
- Sorrentino, I.; Andrade Chavez, F.J.; Latella, C.; Fiorio, L.; Traversaro, S.; Rapetti, L.; Tirupachuri, Y.; Guedelha, N.; Maggiali, M.; Dussoni, S.; et al. A novel sensorised insole for sensing feet pressure distributions. Sensors 2020, 20, 747. [Google Scholar] [CrossRef]
- Alamäki, A.; Nevala, E.; Jalovaara, J.; Barton, J.; Tedesco, S.; Condell, J.; Esquivel, K.M.; Kelly, D.; Heaney, D.; Gillespie, J.; et al. Validation of the wearable sensor system-MoveSole® smart insoles. Finn. J. eHealth eWelf 2021, 13, 124–132. [Google Scholar] [CrossRef]
- Ziagkas, E.; Loukovitis, A.; Zekakos, D.X.; Chau, T.D.P.; Petrelis, A.; Grouios, G. A Novel Tool for Gait Analysis: Validation Study of the Smart Insole PODOSmart®. Sensors 2021, 21, 5972. [Google Scholar] [CrossRef]
- Tan, A.M.; Fuss, F.K.; Weizman, Y.; Woudstra, Y.; Troynikov, O. Design of low cost smart insole for real time measurement of plantar pressure. Procedia Technol. 2015, 20, 117–122. [Google Scholar] [CrossRef]
- Tao, J.; Dong, M.; Li, L.; Wang, C.; Li, J.; Liu, Y.; Bao, R.; Pan, C. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Shu, L.; Hua, T.; Wang, Y.; Li, Q.; Feng, D.D.; Tao, X. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767–775. [Google Scholar] [PubMed]
- Peng, M.; Zhang, Z.; Zhou, Q. Basketball footwork recognition using smart insoles integrated with multiple sensors. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020; pp. 1202–1207. [Google Scholar]
- Martini, E.; Fiumalbi, T.; Dell’Agnello, F.; Ivanić, Z.; Munih, M.; Vitiello, N.; Crea, S. Pressure-sensitive insoles for real-time gait-related applications. Sensors 2020, 20, 1448. [Google Scholar] [CrossRef]
- Ostaszewski, M.; Pauk, J.; Lesniewski, K. A portable plantar pressure system: Specifications, design, and preliminary results. Technol. Health Care 2020, 28, 553–560. [Google Scholar] [CrossRef]
- Almassri, A.M.M.; Wan Hasan, W.Z.; Ahmad, S.A.; Shafie, S.; Wada, C.; Horio, K. Self-Calibration Algorithm for a Pressure Sensor with a Real-Time Approach Based on an Artificial Neural Network. Sensors 2018, 8, 2561. [Google Scholar] [CrossRef] [PubMed]
- Tahir, A.M.; Chowdhury, M.E.; Khandakar, A.; Al-Hamouz, S.; Abdalla, M.; Awadallah, S.; Reaz, M.B.I.; Al-Emadi, N. A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vGRF) in gait analysis. Sensors 2020, 20, 957. [Google Scholar] [CrossRef] [PubMed]
- Rescio, G.; Leone, A.; Francioso, L.; Siciliano, P. Sensorized Insole for Diabetic Foot Monitoring. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 860. [Google Scholar]
- Oldfrey, B.; Jackson, R.; Smitham, P.; Miodownik, M. A deep learning approach to non-linearity in wearable stretch sensors. Front. Robot. AI 2019, 6, 27. [Google Scholar] [CrossRef]
- Eguchi, R.; Takahashi, M. Accessible calibration of insole force sensors using the Wii balance board for kinetic gait analysis. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- Kangro, J.; Traversaro, S.; Pucci, D.; Nori, F. Skin normal force calibration using vacuum bags. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 401–406. [Google Scholar]
- Kangro, J.; Sureshbabu, A.V.; Traversaro, S.; Pucci, D.; Nori, F. A Plenum-Based Calibration Device for Tactile Sensor Arrays. IEEE Robot. Autom. Lett. 2018, 3, 3937–3943. [Google Scholar] [CrossRef]
- Xu, W.; Huang, M.C.; Amini, N.; He, L.; Sarrafzadeh, M. ecushion: A textile pressure sensor array design and calibration for sitting posture analysis. IEEE Sens. J. 2013, 13, 3926–3934. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, J.; Han, S.; Park, Y.L.; Jo, S. Deep Full-Body Motion Network for a Soft Wearable Motion Sensing Suit. IEEE/ASME Trans. Mechatron. 2019, 24, 56–66. [Google Scholar] [CrossRef]
- Cannata, G.; Maggiali, M.; Metta, G.; Sandini, G. An embedded artificial skin for humanoid robots. In Proceedings of the 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Seoul, Republic of Korea, 20–22 August 2008; pp. 434–438. [Google Scholar]
- Metta, G.; Fitzpatrick, P.; Natale, L. YARP: Yet another robot platform. Int. J. Adv. Robot. Syst. 2006, 3, 8. [Google Scholar] [CrossRef]
- Hayt, W.H., Jr.; Buck, J.A.; Akhtar, M.J. Engineering Electromagnetics|(SIE); McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Beatty, M.F. Principles of Engineering Mechanics: Volume 2 Dynamics–The Analysis of Motion; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 33. [Google Scholar]
- Nishiyama, H.; Nakamura, M. Capacitance of disk capacitors. IEEE Trans. Components Hybrids Manuf. Technol. 1993, 16, 360–366. [Google Scholar] [CrossRef]
- Norgren, M.; Jonsson, B.L.G. The capacitance of the circular parallel plate capacitor obtained by solving the Love integral equation using an analytic expansion of the kernel. arXiv 2009, arXiv:0909.3674. [Google Scholar] [CrossRef]
- Kirchhoff, G. Zur Theorie des Kondensators; Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1877; pp. 144–162. [Google Scholar]
- Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math. Program. Comput. 2020, 12, 637–672. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; V.H. Wiston: Washington, DC, USA, 1977; Volume 1, p. 487. [Google Scholar]
RMSE [bar] | Dimension of | Error % | ||||
---|---|---|---|---|---|---|
Model A | 0.158 | 3 | 60 | 4 | 244 | 4.4 |
Model B | 0.167 | 3 | 40 | 4 | 164 | 4.6 |
Model C | 0.147 | 7 | 60 | 8 | 488 | 4.1 |
from [6] | 0.322 | 3 | 0 | 0 | 3 | 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belli, I.; Sorrentino, I.; Dussoni, S.; Milani, G.; Rapetti, L.; Tirupachuri, Y.; Valli, E.; Vanteddu, P.R.; Maggiali, M.; Pucci, D. Modeling and Calibration of Pressure-Sensing Insoles via a New Plenum-Based Chamber. Sensors 2023, 23, 4501. https://doi.org/10.3390/s23094501
Belli I, Sorrentino I, Dussoni S, Milani G, Rapetti L, Tirupachuri Y, Valli E, Vanteddu PR, Maggiali M, Pucci D. Modeling and Calibration of Pressure-Sensing Insoles via a New Plenum-Based Chamber. Sensors. 2023; 23(9):4501. https://doi.org/10.3390/s23094501
Chicago/Turabian StyleBelli, Italo, Ines Sorrentino, Simeone Dussoni, Gianluca Milani, Lorenzo Rapetti, Yeshasvi Tirupachuri, Enrico Valli, Punith Reddy Vanteddu, Marco Maggiali, and Daniele Pucci. 2023. "Modeling and Calibration of Pressure-Sensing Insoles via a New Plenum-Based Chamber" Sensors 23, no. 9: 4501. https://doi.org/10.3390/s23094501
APA StyleBelli, I., Sorrentino, I., Dussoni, S., Milani, G., Rapetti, L., Tirupachuri, Y., Valli, E., Vanteddu, P. R., Maggiali, M., & Pucci, D. (2023). Modeling and Calibration of Pressure-Sensing Insoles via a New Plenum-Based Chamber. Sensors, 23(9), 4501. https://doi.org/10.3390/s23094501