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Abstract: The dynamic measurement and identification of structural deformation are essential for
structural health monitoring. Traditional contact-type displacement monitoring inevitably requires
the arrangement of measurement points on physical structures and the setting of stable reference
systems, which limits the application of dynamic displacement measurement of structures in practice.
Computer vision-based structural displacement monitoring has the characteristics of non-contact
measurement, simple installation, and relatively low cost. However, the existing displacement iden-
tification methods are still influenced by lighting conditions, image resolution, and shooting- rate,
which limits engineering applications. This paper presents a data fusion method for contact acceler-
ation monitoring and non-contact displacement recognition, utilizing the high dynamic sampling
rate of traditional contact acceleration sensors. It establishes and validates an accurate estimation
method for dynamic deformation states. The structural displacement is obtained by combining
an improved KLT algorithm and asynchronous multi-rate Kalman filtering. The results show that
the presented method can help improve the displacement sampling rate and collect high-frequency
vibration information compared with only the vision measurement technique. The normalized root
mean square error is less than 2% for the proposed method.

Keywords: Kanade–Lucas–Tomasi optical-flow method; data fusion; computer vision; Kalman filter

1. Introduction

In structural health monitoring, it is necessary to deploy sensors to monitor the struc-
ture’s response. These sensors collect important data on various aspects of the structure,
such as vibrations and displacements [1,2]. These measurements can provide valuable
insights into the structure’s integrity and indicate any load anomalies or structural defects.
Moreover, displacement monitoring can also be used to update the finite element model of
the structure, which is essential for accurately assessing, monitoring, and controlling civil
infrastructure [3–7]. For example, peak deformation demands, including peak inter-story
drift ratio and peak roof displacement, are essential indicators in earthquake engineering
for evaluating structural seismic performance [8–11]. Vehicle-induced displacement is
also utilized to detect bridge damage and assess bridge conditions [12]. Additionally, the
displacement of a high-rise building is an important indicator of safety [13,14]. Therefore,
displacement is critical in ensuring civil infrastructure’s health and integrity.

There are many means of directly measuring the displacement response of a structure
in the field of structural engineering, which include pull-wire displacement gauges, linear
variable differential transformers (LVDT) [15], laser Doppler vibrometers (LDV) [16], Real-
Time Kinematic global satellite navigation systems (RTK-GNSS) [17], etc. LVDT usually
need to be installed between the target point and a fixed reference point; hence, despite
the high accuracy of LVDT measurements, they are not easy to be installed in practical
engineering [18,19]. As LVDT is a contact measurement method, any severe structural
deformation or breakage during a shaking table test can potentially damage the LVDT. On
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the other hand, LDV can remotely measure displacement with high resolution and accuracy;
however, it can be expensive and limited to a few measurement points [16]. RTK-GNSS is
more accurate than normal GNSS and can provide centimeter-level accuracy; however, it
has a lower sampling frequency [20]. Moreover, the GPS method is infeasible for indoor
measurement due to the requirement of signal reception [21,22]. Accelerometric integration
is also used to measure displacement; however, this method suffers from low-frequency
drift and cannot measure residual deformation [23]. Several methods [24–28] have been
used to solve the drift problem; however, these methods will remove information about the
structure’s response.

With the development of high-quality, low-cost optical cameras and lenses in re-
cent years, structural monitoring and inspection–based computer vision have gradually
become a hot topic. Numerous displacement estimation methods, such as template match-
ing [29–31], feature matching [18,32–34], digital image correlation (DIC) [35–37], and optical
flow methods [38–41], have been proposed. Optical flow methods are widely used among
these techniques due to their high accuracy and computational efficiency. Many researchers
have utilized the Kanade–Lucas–Tomasi (KLT) tracker, an intensity-based optical flow
estimation algorithm, for target-based or target-free structural displacement measure-
ment [42–44]. The concept of optical flow was initially introduced by Gibson [45] and
referred to the velocity of a moving object in a time-varying image. Based on this idea, the
KLT optical flow method matches and tracks feature points in two adjacent frames to obtain
motion information for those points. However, despite its advantages, the KLT method
has two primary limitations, loss of feature points during tracking [41,46] and drift-type er-
rors [47,48], respectively. Regarding the first limitation, since the Taylor expansion is used in
the derivation of KLT, it is necessary to satisfy the assumption of small deformations, which
is described in detail in Section 2. As for the second limitation, the KLT tracker estimates
the feature locations by using an image gradient, but errors induced by integration drift
can cause inaccuracies in the measurement of residual displacement, leading to deviations
from the correct tracking over time. This problem is particularly challenging when tracking
long sequences, even though it may not be noticeable in individual image pairs.

To estimate displacement in a high sampling rate, vision-based measurements at a low
sampling rate and acceleration measurements at a high sampling rate can be combined as
well. The study by Roberts et al. [49] highlighted the importance of displacement fusion
in extending the available frequency band, particularly in detecting vibrations of bridges
reliably. They found that a minimum sampling rate of 100 Hz is required for bridges.
To achieve the sampling rate, several researchers have proposed to fuse low-sampled
measurements, such as GPS and strain sensors, with high-sampled measurements (such as
acceleration) [50–53]. Efforts were also taken to fuse vision cameras and accelerometers.
Park et al. [54] utilized a complementary filter to fuse acceleration and displacement, while
Ma et al. [55] employed an adaptive Kalman filter to estimate displacement. These methods
mainly used the feature-matching based method to estimate displacement, which takes
more time compared with the KLT method.

Utilizing the high dynamic sampling rate of traditional contact acceleration sensors,
this paper introduces a data fusion approach for contact acceleration monitoring and
non-contact displacement recognition, constructing and validating an accurate estimation
method for critical dynamic deformation states in structures. This paper is structured as
follows: Section 2 provides a brief overview of the KLT algorithm. Section 3 introduces the
algorithm employed in this study. Section 4 presents the study’s results, demonstrating the
proposed method’s high efficiency, accuracy, and robustness in achieving drift-free large
structural displacements. The primary limitations of the KLT method were addressed by
fusing accelerometer data, which improved the accuracy of feature tracking and reduced
errors caused by integration drift. Finally, the concluding remarks are presented in Section 5.
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2. A Brief Review of the Kanade–Lucas–Tomasi (KLT) Method

Optical flow refers to the pattern of apparent motion of objects in an image between
two frames due to either the motion of the object or the camera. For instance, in Figure 1,
three target points in two adjacent images can have their positions in the second image
identified by detecting the pixels with consistent intensity values with the corresponding
pixels in the first image. It represents the displacement of a 2D vector field (dx, dy) when a
feature point moves from the first frame I(x, y, t) to the second frame after a time interval
of dt. The optical flow equation assumes that the object’s brightness does not change.

I1(x, y, t) = I2(x + dx, y + dy, t + dt) (1)

I1(x, y, t) represents image pixels from the reference image, and I2(x + dx, y+dy, t+ dt)

is the image pixels of the following image. For simplicity, let d =
[
dx, dy

]T , X = [x, y]T .
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Figure 1. Demonstration of motion of three points in two frames: (a) first frame and (b) second frame.

Under the pixel window, the error function is constructed:

ε =
x

W
[I2(X + d)− I1(X)]2ω(X)dX (2)

where a window W, centered on the position of a target point, is established in the first
image. w(X) is a weighting function that assigns weight to the surrounding pixel. In the
simplest scenario, w(X) = 1. Another commonly used function is the Gaussian function,
which addresses the center of the window.

Set the partial derivative of ε with respect to d as:

x

W
[I2(X + d)− I1(X)]

[
∂I2(X + d)

∂d
− ∂I1(X)

∂d

]
ω(X)dX = 0 (3)

The following formula can be obtained from Taylor’s expansion:

I2(X + d) ≈ I2(X) + dx
∂I2

∂x
(X) + dy

∂I2

∂y
(X) (4)

The substitution of Equation (4) into Equation (3) leads to
x

W

[
I2(X)− I1(X) + pTd

]
p(X)ω(X)dX = 0 (5)

where:

p =

[
∂I2

∂x
,

∂I2

∂y

]T
(6)
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The following equation can be obtained from Equation (5):

Zd = e (7)

where Z =
s

W p(X)pT(X)ω(X)dX, and e =
s

W [I1(X)− I2(X)]p(X)ω(X)dX.
Equation (7) is solved by an iterative method to obtain the value of d. When the value

of e is less than the set threshold, the approximate solution of d can be obtained. In summary,
the KLT tracker uses points from the previous and current frames to create motion vectors.
Selecting these feature points is an essential part of the KLT method. Normally, a region-of-
interest (ROI) is used to focus on a specific part of an image to extract relevant information.
Common feature detectors include scale-invariant feature transform (SIFT), speeded-up
robust features (SURF), and oriented FAST and rotated BRIEF (ORB) [56]. The Harris point
suggested in [44] is an efficient detector in real-time for calculating the optical flow because
Harris points are simple, reliable, and efficient corner detection. Traditionally, the KLT
algorithm calculates velocity by computing the optical flow between consecutive frames. If
the small motion assumption is not satisfied, the traditional way is using an image pyramid,
as shown in Figure 2, which is briefly described below.
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Figure 2. Image pyramid of the KLT method.

The overall pyramidal tracking algorithm proceeds as follows: as an initial layer 0, the
original image is used, and the image is reduced by 2L times in length and width to serve as
a layer L. The Gaussian pyramid is generated using the obtained images by superimposing
them from bottom to top. The corresponding points are also reduced by 2L times. The
displacement value of the target point on the highest layer is calculated using the method
described in the previous section. This value is used in the optical-flow calculation of
the next layer as an initial guess to determine the accurate displacement value. Once the
displacement value is calculated, it is passed to the following layer as an initial guess and
then to the lowest layer (level 0) to obtain the actual displacement value. The work of Kim
et al. [57] provides a detailed description of the propaganda process. The limitations of the
KLT method are discussed and demonstrated by Won et al. [41] The paper demonstrates
feature loss and drift occurrence in the KLT method.

3. Methodology

Figure 3 shows an overview of the proposed method. As presented in Figure 3a, one
camera is fixed on the ground to trace natural targets on the structure, and an accelerometer
is placed on the same floor as the natural targets. Figure 3b illustrates the two stages
of the proposed technique for displacement estimation. In the first stage, referred to as
the calibration stage, shown in Figure 3, several tasks are accomplished, including the
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correction of lens parameters, time synchronization, and scale factor calculation. Following
this, the second stage, which is called the displacement estimation stage, is initiated.
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3.1. Calibration Stage
3.1.1. Video Preprocessing and Measurement Conversion

This section uses video preprocessing to correct the distortion caused by the wide-angle
lens typically used in consumer-grade cameras. A chessboard pattern is used to calibrate the
camera to correct lens distortion [58]. The calibration process involves capturing multiple
chessboard images from different angles and orientations, enabling the estimation of the
parameters for the lens distortion model. Once the distortion parameters are determined,
the images are rectified to remove the distortion and create a rectified image.

3.1.2. Time Synchronization between Vision and Acceleration

This study used two separate acquisition systems to collect data from the camera and
the accelerometer.Due to varying sampling rates and data sources, time synchronization is
critical before fusing them. As a result, it was necessary to synchronize the data in time. As
shown in Figure 4, to avoid the low-frequency drift phenomenon commonly observed in
acceleration sensors, the integration results were filtered using a bandpass filter. The lower
limit of the passband in bandpass filtering should be sufficiently large to avoid drift, and
the upper limit should be at 1/10 of the camera sampling frequency [59]. Additionally, the
results of computer vision measurements were resampled to match the sampling frequency
of the acceleration measurements. The computer vision measurement results were also
filtered using a bandpass filter with the same range as the integration results. This step
reduces the impact of frequencies outside the filter range. The cross-correlation analysis
was used to finely align the data from the camera and the accelerometer [54]. Here, the time
lag is determined at the point where the maximum value of the cross-correlation occurs.
This process enabled accurate data matching from both systems and properly synchronized
the recorded data.
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3.1.3. Calculating the Scale Factor

The scale factor λ, determined by the distance between the camera and the target
object, translates the image pixel values into real-world metric values, as shown below.

λ =
D
d
(unit :

mm
pixel

) (8)

where D is the actual dimension of the known object, and d is the number of pixels in the
image that covers the object.

After time synchronization, the displacements obtained from both methods are trun-
cated to the same length. The scale factor is then estimated using the least squares method.
By implementing these steps, potential discrepancies in the displacements can be mini-
mized, and the study results can be reliable.

3.2. Displacement Estimation Stage
3.2.1. Drift-Free KLT Method

Figure 5 describes the detailed procedure for estimating target displacement in the
i-th frame. It is important to note that the proposed technique only applies to in-plane
motion estimation, and only one direction is considered, though it can be extended in two
directions. The method includes the following steps: first, feature points, such as Harris
corner points, are selected in the reference frame. Using a priori estimate y, the current
frame image is translated. Image translation allows for the adjustment of the images in a
way that the displacements fall within the range of small motion, enabling the application
of the Taylor expansion of Equation (4).
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Consequently, this approach improves the accuracy and reliability of the displacement
estimation, particularly in cases where the initial displacements may not meet the small
motion assumption. Furthermore, by incorporating image translation, the proposed method
demonstrates its adaptability to various scenarios, enhancing its practical applicability and
performance. After translating the image, the KLT algorithm calculates the optical flow
between the reference frame and the current frame to obtain the average velocity of the
selected feature points, which is used to determine their average displacement.

d = dtranslate + dKLT (9)

In the Equation (9), d is the displacement of different frames, and dKLT is displacement
calculated from the drift-free KLT method. dtranslate is the image translate pixel, calculated
as follows:

dtranslate = round(
Dpredicted

λ
) (10)

where Dpredicted is the predicted displacement of the target object. Using a priori estimation
in the proposed method improves the accuracy of displacement estimates by minimizing the
impact of drift-type errors that can accumulate over time. Furthermore, by selecting feature
points with strong texture in the reference frame and employing optical flow to calculate
displacement, the method further improves the accuracy of displacement estimates.

3.2.2. Asynchronous Kalman Filter

The Kalman filter is a widely used method for data processing that estimates data
by continuously predicting and correcting in the time domain. In general, the sampling
frequency of the accelerometer is higher than the frame rate of the video. Smyth and Wu [60]
used a multi-rate Kalman filter to fuse acceleration and displacement at different sampling
rates to improve the estimation of the displacement signal. Ma et al. [55] proposed an
asynchronous Kalman filer to fuse acceleration and displacement with adaptive parameters.

In the case of asynchronous situations, Ma et al. [55] categorized time steps into three
types. Figure 6 shows the overview of the proposed methods. Type 1 involves only acceler-
ation updates, while the second type involves visual updates. Type 3 involves acceleration
updates following visual updates. Among these three types, only in type 2 are the values
and probabilities of displacement fused when computing computer displacement updates.
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Suppose Xk =
[
xk,

.
xk]

T is a state variable, and xk,
.
xk represents displacement and

velocity, respectively, at the k-th time step, then a discrete state space model for the relation-
ship between acceleration and displacement can be described as:

Xk = A(dt)Xk−1 + B(dt)ak−1 + B(dt)wk−1 (11)

Dk = HXk + vk (12)

where wk and vk are the noises of measured acceleration and displacement, respectively. Q
and R are the corresponding variances of wk and vk, respectively. dt is the time interval of
the time step. A and B are the state transition matrix and control input matrix, respectively.
In this case, they are functions of the time interval:

A(dt) =
[

1 dt
0 1

]
; B(dt) =

[
dt2/2

dt

]
; H = [1 0] (13)

Assume that during type 1, only acceleration is considered. The X̂−
k and its covariance

P̂−
k were obtained as follows:

X̂−
k = A(dta)X̂

+
k−1 + B(dta)ak−1 (14)

P̂−
k = A(dta)P̂

−
k−1AT(dta) + Q(dta) (15)

Q(dta) = q
[

dt3
a/3 dt2

a/2
dt2

a/2 dta

]
(16)
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where dta and q denote the time interval and noise variance of the acceleration measure-
ments, respectively. The q value can be easily estimated using laboratory testing.

Since no other measurement is available in this time interval,

X̂+
k = X̂−

k ; P̂+
k = P̂−

k (17)

In type 2, the prior state Ŷ−
i and covariance Ĝ−

i can be estimated according to the
following state estimation:

Ŷ−
i = A(dtk,i)x̂k + B(dtk,i)ak (18)

Ĝ−
i = A(dtk,i)P̂kAT(dtk,i) + Q(dtk,i) (19)

where dtk,i denotes the time interval between the k-th acceleration and the i-th vision mea-
surements. With the Ŷ−

i , the drift-free KLT method was applied to estimate displacement
di from vision measurements.

The posterior state and its covariance were calculated as follows:

Ŷ+
i = Ŷ−

i + P̂kHT
(

HP̂kHT + R
)−1

(Di − HŶ−
i ) (20)

Ĝ+
i = (I − P̂kHT

(
HP̂kHT + R

)−1
)Ĝ−

i (21)

Here, R is calculated as follows:

R = σ2
D/dtk,i (22)

where σ2
D is the observation noise of displacement measurement.

In type 3, the prior state and covariance are estimated according to the following
state estimation:

X̂k+1 = A(dti,k+1)Ŷ
+
i + B(dti,k+1)ak (23)

P̂k+1 = A(dti,k+1)Ĝ
+
i AT(dti,k+1) + Q(dti,k+1) (24)

3.2.3. Parameter Estimation

As described in Equation (8), the actual displacement is the product of the scale factor
and the pixel displacement. Therefore, according to the law of error transfer, the variance
of the displacement measurement can be calculated by the following equation:

σ2
D = σ2

λ · D2
+ σ2

D · λ
2

(25)

where σ2
u is the variance of the displacement measurement, D and σ2

D are the mean and
variance of the displacement, respectively, and λ and σ2

λ are the mean and variance of the
scale factor, respectively. For structural monitoring, the mean value of displacement d can
be assumed to be 0, and the variance of displacement σ2

d is estimated by calculating the
mean of the variance of all frames based on the matching results for each frame.

3.3. Comparison with Conventional Motion Estimation Approaches

This paper compares two commonly used motion estimation methods: (a) a feature-
matching-based method [32] and (b) the commonly used KLT tracker, as mentioned in
Section 2. The feature-matching-based method consists of the following steps: (1) video
preprocessing: the specific step is the same as the method in this article. (2) Feature
detection and feature description: this step detects distinctive features or key points in
ROI. These features are usually corners, edges, or regions with rich textures. Here, the
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Harris corner detection algorithm is used. After detecting the features, a descriptor is
computed for each feature. (3) Feature matching: the matching step involves comparing
the descriptors from the two images and finding the best match for each feature. (4) Outlier
removal: since not all matched features correspond to the same physical point in the scene,
some matches might be incorrect or outliers. One effective technique for outlier removal is
random sample consensus (RANSAC), which is commonly used in computer vision and
image processing. (5) Motion estimation: the relative displacement between the two images
can be computed with the set of correctly matched features.

4. Small-Scale Laboratory Validation
4.1. Experimental Setup

The proposed method for drift-free large motion measurement is investigated in a
laboratory experiment to determine its performance and its sensitivity to the video’s frame
rate. Figure 7 illustrates the validation of a three-story steel building model excited by
a uniaxial shaking table. The simultaneous measurement of structural responses was
conducted using the proposed system and a laser displacement sensor used for ground
truthing; the details regarding these devices are in Table 1. The algorithm was implemented
in MATLAB, running on a PC with a 2.3 GHz Intel i7 processor and 32 GB of RAM. In this
experiment, three different types of excitations were used at the bottom of the structure:
(1) 1 Hz sine excitation, (2) 4 Hz sine excitation, and (3) earthquake excitation.
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Figure 7. Experimental setup of shaking table test.

Table 1. Details of the cameras and sensors.

Type Description

Camera A Sony ILCE-7RM4 camera, featuring a resolution of 1920 × 1080 p, is utilized to
capture the video of the structural vibration at a frame rate of 100 fps.

Laser displacement sensor (LDS) A Panasonic HG-C 1200 micro laser distance sensor is employed to supply the
ground-truth displacement data for the top floor, with a sampling rate of 500 Hz

Accelerometer A KT-1100 accelerometer is employed to deliver the acceleration data for the top
floor, with a sampling rate of 500 Hz.
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4.2. Experimental Result

To quantify the measurement accuracy of the results, the error analysis is conducted
using the normalized root-mean-square error (NRMSE):

NRMSE =

√
1
N ∑N

i=1 (x̂i − xi)
2

max(xi)− min(xi)
(26)

where x̂ is the estimated displacement; x is the reference displacement; N is the number of
displacement measurements.

Figure 8 shows the grayscale initial video frame; the selected target region is framed
in a red box containing the salient corner features to be tracked. This figure shows that the
Harris detector successfully detects the corner of the structure and other feature points. Af-
ter selecting the feature points, the feature-matching-based method is employed to estimate
the movement of the target object for each frame of the video in the calibration stage.
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Figure 8. Selected target (red box) at initial video frame and initial track point (green point).

Under case (1), the scale factor calculation results proposed in this paper are shown in
Figure 9, while the scale factor obtained through structural size measurement is 0.78 mm/pixel.
The two-scale factor shows that the scale method estimated here is effective, so in the
absence dimension scenario, the scale factor can be estimated in this way.

In the Kalman filter process, the noise parameter q is selected as 104 mm2/s2 in this
experiment, which is estimated based on prior experience. For case (1), with a video
sampling rate of 100 Hz, the results are shown in Figure 10. As shown in the figure,
compared to the feature-based and KLT methods, the KLT method exhibits a significant
drift phenomenon, while the drift-free method proposed in this paper does not have this
issue. All comparisons are made here by linearly interpolating the data to 500 Hz. The
method proposed in this paper can improve the NRMSE value, reducing it by 38% and
83%, respectively.
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Figure 10. Comparison between ground truth and displacements estimated by vision algorithms. 
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Figure 11 shows that the target is within ROI using the proposed image translat-
ing method. In this figure, the frame below moves 16 pixels, and the target in the ROI
roughly remains the same. Thus, the effectiveness of image translation during significant
displacement is verified.
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Figure 11. Comparison of ROI at different steps of the case (1). The red box represents the ROI, and
the green dots represent the feature points.

The vision sample frequency was modified to investigate the influence of the vision
sample frequency further and reduce computation time. In case (1), by resampling the
video and reducing the sampling frequency to 50 Hz, 25 Hz, and 10 Hz, it can be found
that as the sampling frequency decreases, the NRMSE values increase to 0.91%, 1.52%, and
1.51%, respectively, as shown in Figure 12. In comparison, the feature-matching method
changes to 1.57%, 1.66%, and 2.51%, respectively, and the result for the KLT method is
higher than the feature-matching method. In case (1), since the excitation frequency is only
1 Hz, the forced vibration frequency can be accurately captured in all cases.
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In case (2), the input frequency at the base of the structure was set to 4 Hz, with
an amplitude of 30 mm, allowing for the evaluation of the effectiveness of the proposed
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method under large displacement and high-frequency vibration conditions. As in previous
tests, the laser displacement sensor at the top of the structure was used as a reference for
calculating the error values. This experimental setup aimed to demonstrate the accuracy
and reliability of the proposed method in large amplitude and high-frequency vibrations.

Figure 13 shows the displacement of 100 Hz and 10 Hz sample frequencies. As the
figure shows, compared with 100 Hz, the pure 10 Hz vision sample frequency failed to
capture several peak values. Under a frequency of 100 Hz, the NRMSE values for the
proposed method and the feature matching method were 1.3% and 1.58%, respectively. At a
sampling frequency of 10 Hz, the KLT method could not detect displacements and was, thus,
omitted from the comparison. The NRMSE values for the proposed and feature matching
methods at 10 Hz were 5% and 12%, respectively. These findings indicate that for high-
frequency vibrations, the accuracy of purely visual methods is limited due to the constraints
imposed by the Nyquist sampling theorem, preventing real-time data acquisition.
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The computational time for each frame is presented in Table 2. Table 2 reveals that
the proposed method’s computation time is shorter than the feature-matching method
but longer than the KLT algorithm. In principle, the computation time for the proposed
method should be close to that of the KLT algorithm. The discrepancy in computation times
may be attributed to the time required for image translation and algorithm initialization.
Further investigation into optimizing the proposed method’s computation time may help
close the gap and make it more comparable to the KLT algorithm, enhancing its practical
applicability in real scenarios. Additionally, the proposed method can provide real-time es-
timations of drift-free displacements due to the reduced computation time. This advantage
makes the method more suitable for applications where rapid and accurate displacement
measurements are critical. The proposed method can outperform alternative approaches,
particularly in scenarios with high-frequency vibrations or large displacements, by offering
a balance between accuracy and efficiency.

Case (3) presents the displacement of the frame under the excitation of the El Centro
earthquake wave. Due to the frame’s flexibility, unlike case (1) and case (2), the top-floor
displacement is primarily governed by the frequency of the structure. In Case (3), the time
history curves and NRMSE values were calculated for different video sampling rates, as
shown in Figure 14. As the sampling rate decreases, the NRMSE increases from 0.83% to
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0.93%, 0.91%, and 1.13%. This trend demonstrates the influence of sampling rate on the
accuracy of displacement measurements.

Table 2. Compute time per frame of different algorithms.

Algorithm Time Per Frame(s)

Proposed method 0.035
Feature matching method 0.172

KLT 0.009
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displacement is primarily governed by the frequency of the structure. In Case (3), the time 
history curves and NRMSE values were calculated for different video sampling rates, as 
shown in Figure 14. As the sampling rate decreases, the NRMSE increases from 0.83% to 
0.93%, 0.91%, and 1.13%. This trend demonstrates the influence of sampling rate on the 
accuracy of displacement measurements. 
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Under earthquake conditions, the NRMSE values decrease for the given conditions,
indicating that the proposed method exhibits robustness. This improved performance
demonstrates the method’s ability to maintain accuracy and reliability even in challenging
situations. The method’s robustness is crucial in practical applications, where dynamic
conditions and external disturbances can significantly impact the quality and reliability of
displacement estimates.

Power spectral density (PSD) is a function used to describe the energy distribution
of a signal in the frequency domain. PSD is frequently used in signal processing and
communication systems to describe the spectral characteristics of noise and signals.

Figure 15 shows that the proposed method’s PSD is closer to the reference mea-
surement results. Note that here the PSD is calculated without interpretation. The high-
frequency information of the structure is more similar to the LDV results, which is beneficial
for determining the structure’s frequency and mode shapes. For the low-frequency portion,
after applying the Kalman filter, the power spectral density curve is closer to the pure
visual results. The first frequency, 2.63 Hz, is successfully identified in both scenarios.
Under the 10 Hz scenario, the vision method failed to identify the 6.84 Hz, the second
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mode. The third frequency, 18.55 Hz, is not apparent from those curves. These results
demonstrate the effectiveness of incorporating the Kalman filter in improving the accuracy
of the displacement estimates, particularly in capturing the structure’s essential dynamic
characteristics across various frequency ranges.
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5. Conclusions

This paper uses an accelerometer and computer vision techniques to fuse contact
monitoring and non-contact tracking data of structural dynamics to exploit both advantages
fully. In response to the shortcomings that computer vision techniques cannot capture high-
frequency vibration information of structures and require additional parameters to estimate
the scaling factor, while accelerometers cannot monitor low-frequency displacements and
have zero drift, this paper proposes to fuse data from computer vision and accelerometers
using Kalman filtering to calculate the scaling factor using the least squares method.

The method’s reliability is also verified by using a frame structure shaker table test.
The results show that (1) the method can reliably estimate the scale factor. (2) In the time
domain, the NRMSE value is effectively reduced, and the overall displacement measure-
ment accuracy is improved. (3) In the frequency domain range, the proposed data fusion
method compensates for the low sampling rate of pure computer vision and effectively
improves the signal-to-noise ratio of displacement data in the higher-order mode range.

The study also investigated the impact of lowering the sampling frequency on the
video vision technique. The findings reveal that the accuracy of the displacements is only
slightly affected when the sampling frequency is decreased from 100 to 10 Hz. The fused
displacements’ power spectral densities remain unchanged, even though the sampling
frequency is reduced to a tenth of its original value. This demonstrates that the proposed
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fused method is a feasible and efficient alternative for measuring displacement in civil
engineering structures.
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