
Citation: Chen, R.; Krueger-Ziolek, S.;

Battistel, A.; Rupitsch, S.J.; Moeller, K.

Effect of a Patient-Specific Structural

Prior Mask on Electrical Impedance

Tomography Image Reconstructions.

Sensors 2023, 23, 4551. https://

doi.org/10.3390/s23094551

Academic Editor: Sheryl Berlin

Brahnam

Received: 7 March 2023

Revised: 27 April 2023

Accepted: 6 May 2023

Published: 7 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Effect of a Patient-Specific Structural Prior Mask on Electrical
Impedance Tomography Image Reconstructions
Rongqing Chen 1,2,* , Sabine Krueger-Ziolek 1, Alberto Battistel 1 , Stefan J. Rupitsch 2 and Knut Moeller 1

1 Institute for Technical Medicine (ITeM), Hochschule Furtwangen, Jakob-Kienzle-Str. 17,
78054 Villingen-Schwenningen, Germany

2 Faculty of Engineering, University of Freiburg, Georges-Koehler-Allee 101, 79110 Freiburg, Germany
* Correspondence: rongqing.chen@hs-furtwangen.de

Abstract: Electrical Impedance Tomography (EIT) is a low-cost imaging method which reconstructs
two-dimensional cross-sectional images, visualising the impedance change within the thorax. How-
ever, the reconstruction of an EIT image is an ill-posed inverse problem. In addition, blurring,
anatomical alignment, and reconstruction artefacts can hinder the interpretation of EIT images. In
this contribution, we introduce a patient-specific structural prior mask into the EIT reconstruction
process, with the aim of improving image interpretability. Such a prior mask ensures that only
conductivity changes within the lung regions are reconstructed. To evaluate the influence of the
introduced structural prior mask, we conducted numerical simulations with two scopes in terms of
their different ventilation statuses and varying atelectasis scales. Quantitative analysis, including
the reconstruction error and figures of merit, was applied in the evaluation procedure. The results
show that the morphological structures of the lungs introduced by the mask are preserved in the EIT
reconstructions and the reconstruction artefacts are decreased, reducing the reconstruction error by
25.9% and 17.7%, respectively, in the two EIT algorithms included in this contribution. The use of
the structural prior mask conclusively improves the interpretability of the EIT images, which could
facilitate better diagnosis and decision-making in clinical settings.

Keywords: electrical impedance tomography; structural prior; image reconstruction; inverse problem

1. Introduction

Electrical Impedance Tomography (EIT) is a medical imaging modality which is
mainly used to visualise the ventilation distribution of the lungs at the bedside [1]. The
estimated regional conductivity changes are calculated by electrical current injection and
corresponding induced voltage measurements through electrodes placed equidistantly
around the thorax [2,3]. Conductivity changes during respiration are mainly caused by the
expansion of the alveoli, which lengthens the current pathways. One of the most common
applications of EIT is monitoring the treatment of Acute Respiratory Distress Syndrome
(ARDS) patients in the Intensive Care Unit (ICU) [4]. The resulting real-time insight into
the ventilation distribution provided by EIT is valuable in adjusting ventilator settings, e.g.,
the Positive End-Expiratory Pressure (PEEP), or in changing the posture of mechanically
ventilated patients [5,6]. Scientific and clinical research has shown that patients benefit from
EIT, as it can reduce Ventilator-Induced Lung Injury (VILI) in mechanical ventilation [2,7].
One of the advantages of EIT is that it is radiation-free compared to other imaging methods,
e.g., Computed Tomography (CT). Together with its relatively compact design and low-cost,
EIT is suitable for frequent examinations or long-term monitoring. In addition, EIT is a
real-time imaging modality that can reach 50 image frames per second.

Despite all of these benefits, EIT reconstruction leads to a mathematically ill-posed
inverse problem characterized by large degrees of freedom, mainly because of the nonlin-
ear nature of the relation between conductivity changes and boundary voltage measure-
ments [8,9]. Reconstruction of an EIT image usually involves the use of the Finite Element
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Model (FEM) due to the inhomogeneity within the thorax. Several algorithms have been
proposed to decrease the degrees of freedom of the EIT inverse problem, which modifies
the FEM used for the inverse problem. Gong et al. used spectral graph wavelets to create
a ’dual-model’ approach to the EIT inverse problem, resulting in down-sampling of the
nodes in the FEM [10]. Schullcke et al. and Chen et al. published a new EIT algorithm
that introduced the basic functions derived via Discrete Cosine Transformation (DCT) into
the EIT image reconstruction [11–13]. The degrees of freedom of the EIT inverse problem
become decreased through the clustering of the FEM by the cosine function subset from
DCT. As computational power and parallel computing capabilities continue to improve,
learning-based inverse solvers for fast EIT reconstruction are on the rise. One example of
this is EIT image reconstruction based on structure-aware sparse Bayesian learning [14,15].
Deep Neural Networks are being used in EIT as well, with the deep D-bar algorithm
enabling real-time reconstruction of absolute EIT images [16].

However, EIT images continue to be characterized by low spatial resolution, blurred
anatomical alignment, and reconstruction-induced artefacts. These make them difficult to
interpret in clinical settings. The combination of modalities as priors to improve image
accuracy is a common concept, and can be applied to EIT. Several research groups have
reported on the method of introducing structural prior information into the EIT reconstruc-
tion process [17–20]. Reconstructed EIT images showed improvements in interpretation;
however, the priors used in these methods were static and not personalized. Patient-related
structural priors have been reported by several other research groups as well. Nakanishi
et al. established an anatomical atlas consisting of the probability distributions of tissue
conductance obtained from measurements in multiple patients. However, this was not
extended to personalization for other patients [21]. Zhang et al. used machine learning
techniques to efficiently incorporate structural elements into the reconstruction process [22];
however, this is not computationally effective.

Additionally, it is common to incorporate data from one medical imaging technique
into another in order to enhance the reconstruction or improve the interpretability of the
results, e.g., PET-CT. There is a possibility of introducing patient-specific information
obtained from, e.g., CT scans, into the EIT reconstruction process, such as through a
structural prior mask [11]. The mask is capable of limiting the EIT reconstruction to the
lung region, which provides a broader insight into the anatomical structure of the lungs.
The applied structural prior could possibly achieve a superposition of the reconstructed
conductivity change and morphological images. However, at present it is not clear how the
EIT reconstruction is affected by an introduced structural prior mask.

The objective of this contribution is to investigate the influence of a personalized
structural prior mask on EIT reconstructions, particularly using the Gauss–Newton (GN)
EIT algorithm and DCT-based EIT algorithm. Two scopes of numerical simulations differing
in terms of ventilation status and atelectasis scales were conducted. We reconstructed EIT
images using the selected EIT algorithms with and without a structural prior mask. To
analyse the influence of the structural prior mask, an evaluation of EIT reconstructions
was conducted quantitatively in terms of the pixel-wise reconstruction error and figures
of merit.

2. Methods
2.1. Structural Prior Mask in EIT Reconstruction Algorithm

An EIT algorithm reconstructs the variation of the electrical conductivity distribution
x̂ from the measurements of boundary voltages v; however, the reconstruction process in
EIT is an ill-posed inverse problem. This means that the solution is not unique; additionally,
an arbitrarily small perturbation in the boundary measurements can result in a large
perturbation in the reconstruction of the conductivity variation. Time-difference EIT, which
has been frequently used in clinical applications, is more resistant to perturbations unrelated
to conductivity changes within the thorax, e.g., variations in electrode contact impedance,
patient movements, and general measurement noise, even though the accurate conductivity
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distribution variation x = σ2 − σ1 within the thorax is not linearly related to the boundary
measurements of the induced voltage changes y = v2 − v1. Our focus in this section is on
the mathematical theory of EIT reconstruction using the Gauss–Newton (GN) EIT algorithm
as an example, particularly the one-step linear Gauss–Newton solver. This approach
is widely used in time-difference EIT applications, and is relevant to our discussion of
established time-difference EIT algorithms in clinical settings. The reconstruction process is
usually described as a minimization approach to estimate changes in the conductivity x̂
from a set of changes in boundary voltages y, as follows:

x̂ = argminx

{
‖ F(x)− y ‖2

2 +λ2 ‖ Rx ‖2
2

}
, (1)

where x̂ is the estimated conductivity change from the EIT reconstruction and F(x) rep-
resents the nonlinear model mapping the conductivity change x to the boundary voltage
measurement y; y is usually normalized as y = v2−v1

v1
in the time-difference EIT, while R is

a regularization parameter introduced to linearize the inverse problem and λ is a hyper-
parameter that controls the level of regularization. There are different well-investigated
choices of R, e.g., Tikhonov, NOSER, and Laplace. The choice of R can lead to different
effects in the solution x̂, such as preserving edges or smoothing neighboring impedance
changes. As the conductivity properties of the thorax tissue are not homogeneous, an FEM
is required to spatially discretize the domain.

In EIT, the conductivity changes are usually assumed to be small, smooth, and slowly
varying. With this assumption, the forward model F(x) can be linearized around a pres-
elected conductivity distribution reference σre f as F(x) ≈ Jx. The Jacobian matrix J is a
mapping from the voltage variations to the conductivity change; J derives from a back-
ground reference σre f as Ji,j =

∂yi
∂xj

∣∣∣
σre f

, where the element Ji,j maps small voltage changes

at position i of y to a conductivity change of the element j within the FEM. With these
assumptions, (1) can be solved in a linearized form:

x̂ = (JTJ + λ2R)−1JTy = By , (2)

where the matrix B is the reconstruction matrix. This represents the broadly used one-step
linear Gauss–Newton solver.

To improve interpretability, a structural prior mask P can be derived from the mor-
phological image H, e.g., CT or MRI, as follows:

Pi,j =

{
1, if Hi,j ∈ lung
0, otherwise

. (3)

Thereafter, the structural prior mask P can be integrated into the EIT reconstruction
process by applying P to the corresponding space of the FEM as S = T(P). The operator T
is a map used to assign every pixel in P to the element in the FEM model, which covers
the pixel. The Jacobian matrix J is modified by the matrix S, which includes the structural
prior mask, as Jmask = J · S. Substituting the Jacobian matrix J in (2), the solution x̂mask is
calculated as

x̂mask = (JT
maskJmask + λ2R)−1JT

masky = Bmasky . (4)

In addition, the degrees of freedom in the EIT inverse problem can be reduced through
the introduction of a subset of functions [11]. The subset is used to cluster the elements of
the FEM, which introduces a map between the voltage variations and the changes of subset
of the functions, i.e., the solution of the EIT inverse problem is represented by the change
of the functions. Afterwards, an EIT image can be recovered using the inverse calculation
of the clustering process. The subset of functions is of varying nature, e.g., a subset of
cosine functions derived from the DCT. In this contribution, we include the DCT-based EIT
algorithm into the evaluation, in which the solution of inverse problem is represented by
the change of DCT coefficients. The details of this algorithm are described in Appendix A.
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In this contribution, we chose the Tikhonov regularization as R = I. The optimal
hyperparameter is chosen when the noise figure (NF) reaches 0.5. NF is defined as the ratio
of the input signal-to-noise ratio (SNR) and the output signal-to-noise ratio

NF =
SNRin
SNRout

=
mean|y|√

var(n)
/

mean|By|√
var(Bn)

, (5)

where n is the noise of the boundary voltage measurement.

2.2. Simulation Data

We evaluated the influence of the patient-specific structural prior mask on the EIT
reconstructions by means of numerical simulations. The simulations were carried out with
MATLAB R2019a (Mathworks, Natick, MA, USA) using the EIDORS toolbox [23]. A 3D
FEM model for the numerical simulation experiments was generated by Netgen using the
excursion of the thorax at the fifth intercostal space from a retrospective CT dataset [24].
For the initial setting of the simulation, i.e., the end of expiration, FEM elements which
did not relate to the lung tissue were assigned a conductivity of σinitial

non−lung = 1, while

elements relating to lung tissue were set to a conductivity of σinitial
lung = 0.5. The voltage

measurement vinitial was generated with the initial setting and used as the reference frame
for the following EIT reconstruction. Boundary voltage measurements at end-inspiration
were simulated in terms of two scopes of settings. The first scope of simulation settings
was conducted with four different ventilation patterns:

a. No ventilation in the dorsal right lung
b. No ventilation in the dorsal parts of both lungs
c. No ventilation in the ventral left lung and the dorsal right lung
d. No ventilation in the most ventral and most dorsal parts of both lungs.

As an example, ventilation pattern c is demonstrated in Figure 1. For the four different
ventilation patterns, the FEM elements belonging to the non-ventilated area preserve the
value of σnon-vent

lung = 0.5, while the conductivity of the FEM elements belonging to the
ventilated lung area was changed to σvent

lung = 0.25.

Figure 1. The 3D FEM model generated for simulation; simulation pattern c is demonstrated. The
dark blue area represents σnon-vent

lung = 0.5, while the light blue area represents σvent
lung = 0.25. Left:

the 3D FEM model with simulation pattern c. Right: the aerial view of the 3D FEM model with
simulation pattern c and the numbers of the electrodes.

The second scope of simulation was designed as nine different increasing scales of
atelectasis in the dorsal parts of both lungs, i.e., 10% to 90% with a step of 10%. These simu-
lations are closer to a patient with a deteriorating status. Similar to the first simulation set-
tings, the conductivity of the elements belonging to the ventilated lung region was changed
to σvent

lung = 0.25, while the non-ventilated area retained the value with σnon-vent
lung = 0.5.
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For each of the simulation settings, the boundary voltage measurement vvent
i was gen-

erated accordingly. Additionally, we added 1% white noise to the boundary measurement
vvent

i before the EIT reconstruction procedure. A different FEM mesh was implemented
into reconstruction to prevent the ‘inverse crime’ [25]. It is worth noting that the structural
prior masks integrated into the EIT reconstruction process were the binary lung contour,
which was used to generate the lung area in the simulation models as well.

2.3. Evaluation of the Reconstruction

In this section, we introduce several evaluation parameters to quantitatively analyse
the EIT reconstructions. These parameters are defined exclusively when the ground truth
is known.

The reconstruction error (RE), which is calculated using the pixel-wise `2-norm of
the image differences between the reconstructed image and the ground truth, is the first
evaluation parameter:

RE = ‖H−HGT‖2 , (6)

where H is the EIT reconstruction and HGT represents the simulation ground truth, i.e., the
simulated conductivity variations. Both H and HGT have M rows and N columns.

The figures of merit of the reconstructed image, which have been mentioned by several
publications [10,19,26], were used for the evaluation. The following calculations are based
on the definition of a lung region Hlung derived from an EIT reconstruction H:

Hlung
i,j =

{
1, if Hi,j ≤ 0.2 · Hmax

0, otherwise
, (7)

where Hmax represents the maximum pixel value in an EIT reconstruction H and Hlung is a
binary image that defines the lung region as ‘one’ and the non-lung region as ‘zero’. The
lung region of the ground truth in the simulation is the same as P in (3). Illustrations of the
definitions used in the calculation of the figures of merit are depicted in Figure 2.

Figure 2. Illustrations of the definitions used in the calculation of the figures of merit. Left: Simulation
ground truth HGT . Right: EIT reconstruction H.

Dislocation is the figure of merit used to evaluate the reconstructed position error of
the lungs:

D = ‖GGT
l − GH

l ‖+ ‖G
GT
r − GH

r ‖ , (8)

where GGT
l represents the centre of gravity of the left lung in the ground truth HGT , GH

l
is the centre of gravity of the left lung in the reconstructed image H, GGT

r is the centre of
gravity of the right lung in the ground truth HGT , and GH

r is the centre of gravity of the
right lung in the reconstructed image H. The left and right lung in reconstruction image
are from the lung region Hlung.
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Shape deformation quantitatively evaluates the corresponding lung regions Hlung in the
reconstruction H that do not comply with the actual area in the simulated ground truth
HGT :

SD =
‖Hlung − P‖
‖P‖ . (9)

Ring effect is the ratio of the sum of the negative pixel values and the sum of the
absolute pixel values in the reconstruction H:

R =
∑i,j|H<0

i,j |
∑i,j|Hi,j|

, (10)

where H<0
i,j represents the pixels with values less than zero in the EIT reconstruction H.

Amplitude response is defined as the ratio of the sum of the pixel values of the recon-
struction H and the sum of the simulation ground truth HGT :

A =
∑i,j Hi,j

∑i,j HGT
i,j

. (11)

In general, a small value for the figures of merit represents a good reconstruction. The
only exception is the amplitude response. It should ideally stay constant, which allows for a
quantitative analysis, e.g., air distribution within the lung area.

3. Results

The conductivity reconstructions for the four different ventilation patterns using
the GN and DCT approaches are depicted in Figure 3. All the pixels of the images were
normalised between−0.5 to 0.5, ensuring that all the images can be displayed with the same
colormap. Black areas show no conductivity change, while blue or purple areas indicate the
decrease or increase of the conductivity, respectively. The first row of Figure 3 demonstrates
the conductivity changes applied in the simulation, i.e., the ground truth. The second
row and third row illustrate the EIT reconstructions using the GN approach without and
with a structural prior mask, respectively. The last two rows illustrate the reconstructions
using the DCT approach without or with a structural prior mask, respectively. Without a
structural prior mask, the EIT reconstructions lead to blurred edges with rather strong ring
effects, which can be found in the reconstructions of both approaches (GN and DCT). In
addition, anatomical details, e.g., the bronchus, with no conductivity change within the
lung, cannot be observed in the reconstructions without a structural prior mask, while
these details are preserved in the results using a structural prior mask. It is worth noting
that even without a structural prior mask the EIT reconstructions from the DCT approach
bear less artefacts.

The reconstruction errors calculated using the pixel-wise `2-norm of the image differ-
ence between reconstructed images and the ground truth data are depicted in Figure 4. It
is obvious that a structural prior mask implemented in both approaches, the GN and the
DCT, will reduce the RE in the reconstructions when compared to the results without a
structural prior mask. The RE is reduced by 25.9% and 17.7% on average in the GN and the
DCT approach, respectively. There is no large difference between the results when using
the GN and DCT approaches when the structural prior mask is applied.
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Figure 3. Ground truth and EIT reconstructions using the GN and DCT approaches. First row:
different patterns of conductivity change for simulation (ground truth); second and third row:
reconstructions of the conductivity change using the GN approach without or with a structural prior
mask; fourth and fifth row: reconstructions of the conductivity change using the DCT approach
without or with a structural prior mask.
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Figure 4. The reconstruction error of the results using the GN and DCT approaches without and
with a structural prior mask. Blue bars: GN without structural prior mask; orange bars: GN with
structural prior mask; yellow bars: DCT without structural prior mask; purple bars: DCT with
structural prior mask.

The figures of merit of the reconstructions using the GN or DCT approaches with and
without a structural prior mask are depicted in Figure 5. In general, introducing a structural
prior mask to using the GN or DCT approach decreases the dislocation, shape deformation,
and ring effect compared to the results without a structural prior mask. This complies
with the finding in Figure 3, e.g., a reduced ring effect around the edge. In addition, even
without a structural mask the amplitude response stays more stable in the DCT approach
than in the GN approach.

Figure 5. The figures of merit of the reconstructions using the GN and DCT approaches without
or with a structural prior mask. Blue bars: GN without structural prior mask; orange bars: GN
with structural prior mask; yellow bars: DCT without structural prior mask; purple bars: DCT with
structural prior mask.
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The results for the simulations in terms of different atelectasis scales are illustrated in
Figure 6. All the pixels in the images were normalised to between−0.5 to 0.5 for comparison
purpose. Similar to results shown in Figure 3, the reconstructions with a structural prior
implemented show a reduced ring effect. The anatomical structure and the edge of the lung
are well preserved. As the atelectasis scale increases, the reconstructed ventilated areas
become wider than in the simulated ground truth (cf. the blue areas in Figure 6, with 80%
and 90% atelectasis scales). This is the widening effect of EIT, which occurs even when a
structural prior mask is applied. In addition, conductivity changes are reconstructed at the
dorsal part of the lung in the results from the GN approach with a structural prior mask,
while in ground truth there are no conductivity changes. This might be due to the nature of
the EIT inverse problem.

Figure 6. Ground truth and the EIT reconstructions of different scales of atelectasis. First row: ground
truth in the simulation of different scales of atelectasis; second and third rows: reconstructions of
the conductivity change using the GN approach without or with a structural prior mask; fourth and
fifth rows: reconstructions of the conductivity change using the DCT approach without or with a
structural prior mask.

The corresponding reconstruction errors are depicted in Figure 7. Introducing a
structural prior mask removes around 34.2% of the RE in EIT images using the GN approach
and 23.9% using the DCT approach. Furthermore, as the atelectasis scale increases, i.e.,
as the ventilated lung area decreases, the RE should decrease as well. This is due to the
reduction of the lung area with the changing conductivity. However, when no structural
prior mask is applied in the GN approach and DCT approaches, the again RE increases
after an atelectasis scale of 50% is reached. This might be due to the widening effect found
in Figure 6. Similar to the finding in Figure 4, the influence of the structural prior mask is
similar in both the GN and DCT approaches.
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Figure 7. The reconstruction error calculated from the results of the simulation in terms of different
scales of atelectasis. Blue bars: GN without structural prior mask; orange bars: GN with structural
prior mask; yellow bars: DCT without structural prior mask; purple bars: DCT with structural
prior mask.

The figures of merit calculated from each EIT image in Figure 6 are listed in Table 1 and
demonstrated as a box plot in Figure 8. It is clear that both the GN and DCT approaches
with a structural prior mask produce more accurate reconstructions, which are represented
by smaller values in terms of the dislocation, shape deformation, and ring effect. There
are several outliers in Figure 8, which are mostly provided by the values calculated from
the simulation with 80% and 90% atelectasis scales. The dislocation, shape deformation,
and ring effect are the largest with these simulation settings, which confirms the findings
in Figure 6. Figure 8 shows that the amplitude response remains more stable in the DCT
approach with the structural prior mask, while it becomes much larger and is not ideally
constant with the 80% atelectasis simulation setting.

Table 1. The figures of merit calculated from each EIT image of the simulation in terms of different
scales of atelectasis.

Algorithm GN DCT

Figures of Merit D SD R A D SD R A

Mask W/o W W/o W W/o W W/o W W/o W W/o W W/o W W/o W

Scale

10% 0.051 0.030 1.368 0.214 0.566 0.153 2.548 1.159 0.044 0.029 0.969 0.194 0.503 0.162 1.418 1.084
20% 0.061 0.035 1.692 0.341 0.586 0.219 2.564 1.547 0.049 0.030 1.019 0.314 0.519 0.214 1.380 1.070
30% 0.085 0.037 1.948 0.479 0.627 0.251 2.371 1.475 0.054 0.030 1.130 0.466 0.551 0.252 1.370 1.054
40% 0.113 0.040 2.134 0.712 0.729 0.286 2.640 1.761 0.065 0.033 1.227 0.669 0.586 0.286 1.374 1.064
50% 0.139 0.041 2.573 0.960 1.320 0.361 2.359 1.818 0.076 0.037 1.226 0.922 0.601 0.352 1.343 1.069
60% 0.152 0.044 2.804 1.075 1.894 0.553 2.722 2.303 0.090 0.040 1.274 1.044 0.653 0.501 1.641 1.173
70% 0.191 0.052 3.446 1.312 2.143 0.712 3.943 2.837 0.112 0.050 1.583 1.282 0.802 0.681 2.788 1.400
80% 0.224 0.099 4.751 1.587 2.791 0.900 5.831 3.440 0.160 0.085 2.296 1.454 1.170 0.897 3.614 2.826
90% 0.290 0.126 5.600 1.779 3.343 1.099 7.504 4.236 0.268 0.119 3.184 1.639 2.679 1.071 5.758 3.423

D: Dislocation; SD: Shape deformation; R: Ring effect; AR: Amplitude response; W/o: Without mask; W: With
mask.
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Figure 8. The figures of merit calculated from the EIT reconstructions of the simulation in terms
of different scales of atelectasis. Blue box: GN without structural prior mask; orange box: GN
with structural prior mask; yellow box: DCT without structural prior mask; purple box: DCT with
structural prior mask.

4. Discussion

In this contribution, we implemented two scopes of numerical simulations to inves-
tigate the influence of a structural prior mask on EIT images using the GN and DCT
approaches. In the first scope of simulations, four different ventilation patterns were simu-
lated. A decreasing atelectasis scale of the dorsal lung was conducted in the second scope of
our simulations. Overall, the EIT images reconstructed using the GN and DCT approaches
benefited from the implemented structural prior thanks to improved interpretability. This
result secures a more accurate EIT reconstruction as confirmed by different quantitative
evaluations, including the reconstruction error and figures of merit.

The structural prior mask considerably improves the accuracy and interpretability of
the resulting EIT image. In Figures 3 and 6, the EIT images reconstructed with a structural
prior mask generally maintained the shape of the lungs and preserved the anatomical
details when using either the GN or DCT approach, making the overall EIT images much
clearer and easier to interpret. This contributes to a decrease in the reconstruction error,
dislocation, and shape deformation (Figures 5 and 8). Ring effects in the non-lung regions
caused by the reconstruction algorithm are prevented (compare the results without and
with the structural prior mask presented in Figures 3 and 6). The amplitude response
stays rather stable when the structural prior mask is implemented, which could be helpful
for calculating the regional air distribution within the lungs. In addition, introducing a
structural prior mask into the EIT reconstruction process can facilitate the development of
comprehensive insight into the pathophysiology of lungs in clinical settings, as the regional
behaviour of the lungs can be directly correlated with the morphological structures.

It is common to combine data from different medical imaging methods to achieve
better interpretability. However, it is worth noting that structural prior masks introduced
to the EIT reconstruction process are usually derived from CT or MRI images representing
the patient’s status at a certain time, while EIT is generally used to monitor a patient’s
continuously changing status. In our simulation, the structural prior represents two healthy
lungs without atelectasis, which means that the structural priors will not be accurate if
there are atelectasis or non-ventilation areas in the simulation. Nevertheless, the majority
of EIT images show benefits from the structural prior mask (cf. Figures 3 and 6). However,
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when the difference between the current simulation setting and the structural prior mask
becomes larger, e.g., 80% and 90% atelectasis in the simulation, the structural prior mask
remains, as in healthy lungs the widening effect in the EIT images is obvious. The figures
of merit confirm this finding as well. Even though the EIT images show improvements
when compared to the results without a structural prior mask, the accuracy of the structural
prior is crucial when introducing it into the EIT reconstruction process. An inaccurate
structural prior mask, i.e., one that does not comply with the current patient status, can
result in an off-base reconstruction. To avoid misleading EIT reconstructions and resulting
compromised diagnosis, it is important to carefully select an accurate prior and detect any
inaccuracies. Chen et al. have proposed a method for quantifying the error introduced
by a structural prior mask, which can serve as an indicator of an inaccurate prior [12,13].
Consequently, it is necessary to check the implemented structural prior mask regularly to
maintain its accuracy. Furthermore, the widening effect is a general problem in EIT which
requires further investigation [27]. There are various additional sources of artefacts in EIT
raw data, e.g., patient movement and electrode connection variability, that can produce a
strong voltage signal. Without the implementation of the structural prior mask, the induced
artefacts usually occur at the edge of the EIT image. There is a risk that these sources of
artefacts may be reconstructed as the conductivity change within the lung region due to
the introduction of the structural prior mask. However, there are methods to filter out
components not correlated with the ventilation after reconstruction [28,29].

The fact that this study only used simulation experiments to evaluate the impact of
the structural prior mask is one of its limitations. Additional studies with phantoms and
clinical data are necessary to validate this method. In this contribution, we introduced the
structural prior through the application of a corresponding mask. There are further methods
to include patient-specific structural prior information into EIT algorithms, e.g., through
sub-domain based regularization or soft-prior regularization [30,31]. Future studies should
include these methods.

Nevertheless, reconstruction using the GN or DCT approaches can lead to enhanced
interpretability if an accurate structural prior mask is implemented. The incorporation
of structural information from a prior mask and functional data from EIT creates patient-
specific EIT imaging. This enables a comprehensive understanding of pulmonary patho-
physiology by preserving the anatomical structure of the lungs and correlating regional
lung behavior with morphological structures.

5. Conclusions

Simulations with two different scopes were used to evaluate the impact of a structural
prior mask on the EIT images from two different EIT algorithms. In conclusion, using a
structural prior mask can improve the accuracy of EIT images. This is confirmed by the re-
duced RE and comparison using figures of merit. In addition, anomalies in ventilation and
various conductivity distributions can be connected to respected structural data from other
morphological imaging methods. This leads to better interpretability of the EIT images.
Overall, the introduction of a structural prior mask represents a significant improvement
over existing EIT algorithms, and has great potential for enhancing the precision of EIT in
medical diagnostics.
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Abbreviations
The following abbreviations are used in this manuscript:

EIT Electrical Impedance Tomography
DCT Discrete Cosine Transform
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ARDS Acute Respiratory Distress Syndrome
PEEP Positive End-Expiratory Pressure
VILI Ventilator-Induced Lung Injury
CT Computed Tomography
MRI Magnetic Resonance Imaging
FEM Finite Element Model
RE Reconstruction Error

Appendix A

Introducing a subset of functions to the EIT inverse problem can reduce the degrees
of freedom of the EIT inverse problem. In this contribution, the subset we implemented
introduces a map between the FEM and the DCT subset D. D is a subset of basic cosine
functions from DCT at varying frequencies

D(p, q)m,n = αpαq cos
(2m + 1)pπ

2M
cos

(2n + 1)qπ

2N
(p, q ∈ (0, 1, . . . , 14)) , (A1)

where p and q are the frequencies of the cosine function at the x-axis and y-axis, respectively.
Here, p and q were chosen as fifteen frequencies at either axis. The desired EIT image size
has M rows and N columns, where (m, n) ∈ RM×N is the position of a pixel in the desired
image.

A structural prior mask P can be integrated into the EIT reconstruction process by
means of applying P to the DCT subset D(p, q):

C(p, q)m,n = Pm,n · D(p, q)m,n (A2)

where the matrix P specifies the shape of the lungs, and may include other structural
details which can be obtained. Using the matrix D(p, q) (without structural prior) or
C(p, q) (with structural prior), the columns of the basic function subset are calculated as
Knp

j = T(D(p, q)) or Kp
j = T(C(p, q)), where T is a map used to assign every pixel in

D(p, q) or C(p, q) to the element in the FEM model which covers the pixel and j is the
column index of the matrix K, which is calculated as j(p, q) = q ·

√
NDCT + p + 1, e.g.,

p = 1, q = 1 (i.e., K3 = T(C(1, 1))). An example of Knp
17 and Kp

17 (p = 1, q = 1) is depicted
Figure A1.

The Jacobian matrix J is modified by the subset matrix K (Knp or Kp) as JDCT = J ·K.
At last, the modified JDCT contains only nmeas × nDCT elements, which is far fewer than the
numbers of finite elements. Now, JDCT maps from the voltage variations to the change of
DCT coefficients. Then, the solution of the inverse problem is represented by the change in
DCT coefficients x̂DCT :

x̂DCT = (JT
DCTJDCT + λ2RTR)−1JT

DCTy = BDCTy . (A3)
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Figure A1. Visualization of the corresponding column of K with the FEM model. Left: Knp
17 ;

right: Kp
17.

The change of the DCT coefficients x̂DCT is then used to restore the EIT image H
through inverse DCT calculation:

H =
nxDCT

∑
p=0

nyDCT

∑
q=0

C(p, q) · x̂DCT,j . (A4)
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