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Abstract: Magnetic sensors are key elements in many industrial, security, military, and biomedical
applications. Heusler alloys are promising materials for magnetic sensor applications due to their
high spin polarization and tunable magnetic properties. The dynamic field range of magnetic
sensors is strongly related to the perpendicular magnetic anisotropy (PMA). By tuning the PMA, it is
possible to modify the sensing direction, sensitivity and even the accuracy of the magnetic sensors.
Here, we report the tuning of PMA in a Co2MnGa Heusler alloy film via argon (Ar) ion irradiation.
MgO/Co2MnGa/Pd films with an initial PMA were irradiated with 30 keV 40Ar+ ions with fluences
(ions·cm−2) between 1 × 1013 and 1 × 1015 Ar·cm−2, which corresponds to displacement per atom
values between 0.17 and 17, estimated from Monte-Carlo-based simulations. The magneto optical and
magnetization results showed that the effective anisotropy energy (Keff) decreased from ~153 kJ·m−3

for the un-irradiated film to ~14 kJ·m−3 for the 1 × 1014 Ar·cm−2 irradiated film. The reduced Keff

and PMA are attributed to ion-irradiation-induced interface intermixing that decreased the interfacial
anisotropy. These results demonstrate that ion irradiation is a promising technique for shaping the
PMA of Co2MnGa Heusler alloy for magnetic sensor applications.

Keywords: magnetic sensor; magnetic tunnel junction; perpendicular magnetic anisotropy; Heusler
alloy; Co2MnGa; effective anisotropy energy; ion irradiation; displacement per atom; interface intermixing

1. Introduction

Magnetic sensors are integral to many fields, including industrial, security, military,
space and biomedical applications [1,2]. These sensors are based on various principles,
such as search coil, anisotropic magnetoresistance, giant magnetoresistance, magnetic
tunnel junctions, fluxgate, Hall effect and superconducting quantum interference device
systems [3]. Among these, magnetic tunnel junction (MTJ)-based magnetic sensors exploit
tunnelling magnetoresistance (TMR), which has revolutionized various fields, from data
storage in computer hard disks to medical applications such as biosensors [4–8]. TMR relies
on the magnetic properties of the material, such as coercivity and magnetic anisotropy, to
detect and measure magnetic fields. The magnetic anisotropy determines the sensitivity,
accuracy and the sensing direction of the sensor [9,10]. It is particularly beneficial for
various sensing applications for a material to have perpendicular magnetic anisotropy
(PMA), such as high-density storage devices and read heads [11], non-destructive testing
(NDT)-based magnetic flux leakage sensors [12], high field spin-valve sensors [13], spin-
transfer-based devices with ultrafast switching [14], spin-torque-based memristors for
neuromorphic computing [15] and so on [16–20]. PMA is particularly beneficial in detecting
changes in magnetic flux perpendicular to the sensor plane, making it advantageous for
NDT-based magnetic sensors, magnetic read head sensors for hard drives, etc. PMA
allows the device to detect fields in a direction perpendicular to its plane. Therefore, it
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is crucial to develop techniques to effectively shape the PMA of magnetic materials in
various magnetic sensors and related applications. By tuning the PMA, it is possible to
enhance the performance of magnetic sensors, making them suitable for a wide range of
applications. For example, a reduced PMA is needed to efficiently switch magnetization
using voltage-induced strain, whereas a relatively high PMA is required in spin-transfer-
based devices [21,22]. Furthermore, it is also useful to have spatially varying anisotropies
in a magnetic stack for magnetic storage devices [23].

Materials showing PMA often constitute at least one of the four naturally occurring
ferromagnetic elements—Co, Fe, Ni and Gd. Among them Co-based bi-layer or multilayers
have been investigated for PMA-related applications owing to the relatively easier tuning
of magnetization and anisotropy when fabricated with noble metals [24]. The common
examples include Co/Pd, Co/Pt, Co/Ni, Co/Au and Co/Ag multilayers [25–28]. Many
binary (e.g., CoFe, CoPt, FePd, FePd and Mn3Ga) and ternary (e.g., CoFeB, TbCoFe and
GdFeCo) compounds are used for the fabrication of MTJs using Al2O3 and MgO barrier
layers and various seed layers, such as Ta, Pd, Pt or Ru [29,30]. PMA can be achieved in
various ferromagnetic materials in different ways, such as using nanostructured alumina
membranes, antidots and nanoholes [31–37]. Crystalline MgO is commonly used as a
barrier layer in MTJs because it yields high TMR values due to coherent tunneling when
the (001) phase is formed. Recently, Heusler alloys have attracted strong attention as
promising candidates for magnetic sensors [38] due to their unique properties, including
large magnetic moments, their half-metallic nature and perpendicular magnetic anisotropy
thin films [39], as well as high spin polarization [40–43]. Full-Heusler alloys have an
X2Y1Z1 composition [44], where X and Y are transition metals, whereas Z is a p-block
element. The common Heusler alloy examples include Ru2MnZ (where Z is Sn, Sb, Ge,
Si) [45], Ag2YB (where Y is Nd, Sm, Gd) [46], Ni2MnY (where Y is In, Sn, Sb) [47], Ni2MnZ
(where Z is B, Al, Ga, In) [48], Ni2FeZ (where Z is Al, Ga) [48], Fe2TiZ (where Z is Al,
Si, Sn) [49], Fe2MnZ (where Z is Al, Si) [49], Cu2MnZ (where Z is Al, In, Sn, Ge) [50],
Au2MnAl [50], Co2MnSi [51], Co2FeSi [52], Co2MnGa [17] and Co2FeAl [53]. Among
these, the Co2MnGa Heusler alloy has been studied for various applications, such as
magnetic sensors [43], waste heat conversion devices [42], optical applications [54] and
spintronics [55,56]. However, most studies on Co2MnGa are on relatively thick samples or
bulk ones, where PMA is either absent or is too low for practical applications [57]. It has
been reported that a Co2MnGa film below a thickness of 3.5 nm has PMA at a relatively low
saturation magnetic field (~50 mT), and a relatively high out-of-plane uniaxial anisotropy
energy density of 1.3 erg·cm−3 was discovered for a 2.8 nm thin film [55,58,59].

Various strategies have been explored to tailor the anisotropy of Heusler alloys, such as
strain-induced anisotropy change [60], buffer layer effects [61,62], doping-induced disorder
effects [63] and irradiation [8,64–66]. Modification of the magnetic properties of various
materials via irradiation has been reported for several types of irradiations, such as plasma
of various gasses [67,68], ionizing radiation [69,70], high-energy protons and cosmic rays,
X-rays [71], neutrons [72] and even several low and swift heavy ion irradiations [73,74].
Among these techniques, ion irradiation is a well-established technique for shaping the
magnetic properties of materials due to its high precision and control over the irradiation
parameters, such as the ion species, ion energy and ion beam current density [8,64–66,75,76].
Ion beam modification is a powerful technique that can modify the magnetic properties of
materials and induce a variety of precise structural changes. For example, it can increase
the saturated magnetic moments [64], modify the magnetic anisotropy [77], create exotic
magnetic nanostructures [78], alter the exchange bias [79,80], tune magnetic transition
temperatures [81], reduce the crystal ordering temperature [82,83] and induce or enhance
magnetoresistance in a wide range of materials and structures [76,84]. Ion irradiation alters
the material’s properties by introducing point defects into the lattice, which also leads to
changes in its magnetic properties [85,86]. By selecting the appropriate ion species, energy,
current density and number of ions, these defects can be precisely controlled [8,64–66]. The
selection of ion species is often a critical factor that determines the irradiation effects. Light



Sensors 2023, 23, 4564 3 of 14

gas ions such as H [87,88] and N [88]; inert gasses such as He [89], Ne [90] and Ar [91]; and
even heavy elements such as Fe [92], Cr [93] and Au [94] have been used for irradiation,
each having varied effects on the material.

Displacement per atom (DPA) has been increasingly used to evaluate ion-irradiation or
implantation-induced damage in materials, where the DPA denotes the average number of
times that an atom from the substrate lattice is displaced during ion irradiation and accounts
for all the parameters to provide a single value that represents the total damage endured by
the sample. Particularly in magnetic materials, where the structural changes by irradiation-
induced damage result in the modification of magnetic properties, DPA is a valuable param-
eter and has been employed by various researchers in the field [73,95–97]. Park et al. [98]
reported that 20 keV proton (p+) and Cr+ ion irradiation of CoFeB/MgO/CoFeB-based
MTJs caused different displacement damages. Proton irradiation up to 1 × 1018 p+·m−2

caused negligible displacement damages on MTJ layers, whereas Cr+-irradiation-induced
displacement damages reduced the magnetization and magnetoresistance. Xiao et al. [73]
focused on the heavy ion irradiation of CoFeB/MgO/CoFeB layers using 3 MeV Ta2+ ions.
They reported that the DPA of up to 3.5 × 10−4 for 1 × 1011 ions·cm−2 was below the
threshold limit for any significant displacement damages, above which the displacement
damages caused structural damages at the CoFeB/MgO interface. Fassbender et al. pro-
vided detailed reviews of the effects of light ion irradiation on simple magnetic structures
and the patterning of magnetic structures in 2003 [66] and 2008 [23], respectively. Recently,
our group also reviewed the effects of ion irradiation on magnetic thin films and magnetic
tunnel junctions for magnetic sensors [8] and demonstrated that ion irradiation can effec-
tively modify the properties of ferromagnetic and antiferromagnetic thin films, multilayer
stacks and magnetic tunnel junctions. We also summarized the effects of ion irradiation on
various magnetic properties and discussed the major causes of these changes. However,
to the best of our knowledge, and despite its versatility, ion irradiation has not been used
to tune the PMA on Co2MnGa Heusler films, which presents an exciting opportunity for
further research in this area.

In this study, we aimed to investigate the effect of Ar ion irradiation on the anisotropy
of Co2MnGa films for magnetic sensor applications. To achieve this, we fabricated thin
film stacks of MgO (2 nm)/Co2MnGa (3 nm)/Pd (2.5 nm) on thermally oxidized silicon
substrates and irradiated them with 30 keV argon ions in a fluence range of 1013 Ar·cm−2

to 1015 Ar·cm−2. We analyzed the magnetic properties of these films before and after
irradiation using the magneto optical Kerr effect (MOKE) and a superconducting quantum
interference device (SQUID) magnetometer. Furthermore, we simulated the ion irradiation
using Monte-Carlo-based simulation tools to understand the role of interfaces. Our find-
ings demonstrate that Ar-irradiation-induced damage, estimated from the DPA, leads to
significant interface mixing, resulting in the reduction of the PMA in the thin films. Our
results suggest that the DPA provides a very good estimate of interface intermixing in tai-
loring the PMA in Heusler-alloy-based MTJs. Furthermore, by elucidating the underlying
mechanisms that govern the effects of ion irradiation on the interfacial properties of these
films, our study provides valuable insights for the development of improved magnetic
sensors and related applications.

2. Materials and Methods

Sample preparation: A Kurt J. Lesker CMS-18 magnetron sputtering system (Jefferson
Hills, PA, USA), at the Robinson Research Institute, New Zealand, was used to deposit the
thin films. The multilayer stacks were prepared on thermally oxidized silicon substrates
measuring 10 mm × 10 mm in the sequence of MgO (2 nm)/Co2MnGa (3 nm)/Pd (2.5 nm).
The nominal thickness of each layer is indicated in parentheses, and the tri-layer structure
is depicted in Figure 1a. The substrate was sourced from the WaferPro LLC (West Palm
Beach, FL, USA), MgO from Kurt J. Lesker (Jefferson Hills, PA, USA) and Co2MnGa and
Pd from AJA International (Country Way, North Scituate, MA, USA). To prevent oxygen
interpenetration into Co2MnGa, which can reduce the PMA, Co2MnGa was deposited
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above MgO and then capped with Pd [99]. The layers were deposited in a high vacuum
chamber with a base pressure of ~1 × 10−8 Torr, at an ambient temperature. Subsequently,
the stack underwent in situ annealing at 573 K for an hour. RF sputtering was used to
deposit MgO at a growth rate of 0.05 Å/s, while Co2MnGa and Pd were DC-sputtered
at rates of 0.69 Å/s and 4.0 Å/s, respectively, in the absence of an external magnetic
field. Growth rates were calculated by measuring the thickness of a thick film (>50 nm)
using a Dektak profilometer (Bruker, Billerica, MA, USA) and Rutherford backscattering
spectrometry. XRD spectra were not informative for films due to extremely low thicknesses.
To verify the composition of the target, we conducted energy-dispersive X-ray (EDX)
analysis in a scanning electron microscope (SEM), which confirmed it to be Co2MnGa [58].
Further details can be found in the previous report by Ludbrook et al., which detailed that
Co2MnGa films with thicknesses below 3.5 nm show PMA [58].

Sample irradiation: The stack was irradiated using the low-energy ion implanter
facility at GNS Science, using a Penning gas ion source [100,101]. The stack was irradiated
with 30 keV 40Ar+ ions in a high vacuum (base pressure ~ 1 × 10−7 Torr) at normal incidence
and room temperature. The irradiation was performed at a current density of 0.6 µA·cm−2

for fluences (ions·cm−2) ranging between 1 × 1013 and 1 × 1015 Ar·cm−2. A raster scanning
beam was used to obtain the uniform irradiation of the stack. A schematic of the stack and
its irradiation is depicted in Figure 1a. We chose the energy for the ions to ensure that most
of them would penetrate through the thin films and deposit into the substrate, thereby
minimizing implantation effects, as demonstrated in Figure 1b.

Ion irradiation simulation: Monte-Carlo-based simulations were performed at de-
fault parameters using the Stopping and Range of Ions in Matter (SRIM) [102] and Static
and Dynamic Transport of Ions in Matter for Sequential and Parallel computer (SDTRIMSP;
Version 5.07) [103] codes, to obtain depth profiles and calculate the displacements per
atom (DPA) caused by the irradiation. The DPA was determined using the Kinchin–Pease
model [104]. SRIM and SDTRIMSP calculations were performed to obtain the change in
atomic concentration with irradiation per nanometer depth and the peak atomic concentra-
tions for the constituent elements, i.e., Mg, O, Co, Mn, Ga and Pd. Material densities used
for calculations were Pd = 12.02 g·cm−3, Co2MnGa = 7.79 g·cm−3 and MgO = 3.58 g·cm−3.
SRIM calculations showed that most ions passed through the multilayer stack and were
deposited into the substrate, as shown in Figure 1b. The simulations were used to optimize
the ion irradiation conditions for tuning the PMA of the Co2MnGa thin films and provided
a useful guide for the interpretation of the experimental results.
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Sample characterization: The magnetic properties of the films were measured via the
magneto optical Kerr effect (MOKE) using a Vertisis Technology MagVision Kerr System
with a green light of wavelength 500 nm and a 20× magnification objective. Polar-MOKE
(P-MOKE) measurements were employed to investigate out-of-plane coercivity and anisotropy
at room temperature. A magnetic property measurement system (MPMS) superconducting
quantum interference device (SQUID) magnetometer from Quantum Design (San Diego,
CA, USA) was utilized to perform magnetization measurements at 300 K. MOKE and
MPMS data analysis and fit were performed using the Origin Version 2022 software from
OriginLab Corporation (Northampton, MA, USA).

3. Results

Figure 2a shows the P-MOKE hysteresis loops for un-irradiated and Ar-irradiated
Co2MnGa stacks while sweeping an out-of-plane magnetic field within ±130 mT. All the
samples showed PMA, which is consistent with our previous studies that showed PMA in
Co2MnGa thin films below 3.5 nm [58]. The un-irradiated sample showed the presence of
very strong PMA, which can be seen by the shape of the hysteresis, and large coercivity of
~42 mT. Upon Ar irradiation, the hysteresis curves became narrow, indicating a decrease in
coercivity and PMA. Ar irradiation with fluence 1 × 1013 Ar·cm−2 decreased the coercive
field by ~36% to ~27 mT and further to ~18 mT at fluence of 5 × 1013 Ar·cm−2. Upon
further increasing the fluence, the coercive field was reduced to a certain constant value,
with no significant reduction beyond fluence of 3 × 1014 Ar·cm−2 up to the maximum
applied value of 1 × 1015 Ar·cm−2, as shown in Figure 2b.
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Figure 2. (a) P-MOKE hysteresis loops for un-irradiated and Ar-irradiated Co2MnGa stacks, and
(b) coercivity of Ar-irradiated Co2MnGa stack.

The out-of-plane uniaxial anisotropy of the stacks was estimated by conducting a
magnetic field sweep along the in-plane direction, while measuring the P-MOKE signal.
Prior to the in-plane magnetic field sweep, the samples were first saturated along the
out-of-plane direction using a magnetic field of 130 mT. Upon reducing the field to zero,
the out-of-plane magnetic moment (mZ) remained in the out-of-plane direction due to
the PMA. The magnetic moment was then rotated from the out-of-plane to the in-plane
direction by applying an increasing in-plane magnetic field (µ0HX), as shown in Figure 3.
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The effective anisotropy was estimated by applying the Stoner–Wohlfarth model
to fit the mZ values and using the saturation magnetization (MS) of the stack obtained
from SQUID magnetometry [105]. The model assumes that the y-axis component of
magnetization is zero (mY = 0) and the normalized out-of-plane saturation magnetization
is 1 (mz = 1). The x-axis component of magnetization can then be calculated using

mX =
√

1 − m2
Z. The Stoner–Wohlfarth equation for a PMA sample can thus be written as

mZ = m
√

1 − (mµ0Hk/2Ku)
2 (1)

where m is the magnetic moment, Ku is the uniaxial magnetic anisotropy and (µ0HK) is the
point where the extrapolated fit crosses mZ = 0. The magnetic moment rotates coherently
in the field regime from 0 to 100 mT, which can be fitted well with the Stoner–Wohlfarth
equation, represented by the red dotted line shown in Figure 3. Due the nucleation of
magnetic domains at higher external fields, the magnetization deviates from the single-
domain Stoner–Wohlfarth behavior. Hence, the effective magnetic anisotropy energy, Keff,
is given by

Ke f f =
µ0Hk MS

2
(2)

We performed SQUID magnetization measurements along the in-plane and out-of-
plane directions of the stacks to determine the saturation magnetization for anisotropy
calculation. Figure 4 shows the comparison between in-plane (HIP) and out-of-plane (HOOP)
magnetization normalized to the saturation magnetization, MS, for the un-irradiated,
5 × 1013 Ar·cm−2, 3 × 1014 Ar·cm−2 and 1 × 1015 Ar·cm−2 irradiated stacks. The curves
have had a linear background subtracted from each one to show the component that reaches
saturation at low fields < 0.5 T. It is evident that the un-irradiated HOOP curve is along the
easy axis and HIP is along the hard axis before irradiation and even for the 5 × 1013 Ar·cm−2

irradiated stack, which is also consistent with the P-MOKE results, showing strong PMA in
this range. It is thus evident that the samples have PMA up to fluence of 3 × 1014 Ar·cm−2.
However, for higher fluences, the HIP and HOOP plots follow a similar trend, indicating a
sample with an easy axis both in-plane and out-of-plane. This trend is also validated by the
near-zero anisotropy values beyond fluence of 3 × 1014 Ar·cm−2, as shown in Figure 5.
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To simulate and account for the changes in irradiation-induced damage from variations
in multiple irradiation parameters, such as ion species, ion energy and fluence, the DPA
was calculated. The DPA is a useful metric for comparing damage caused by ion irradiation
under different experimental conditions. It provides a normalized value that takes into
consideration the ion energy, target properties and irradiation fluence, and allows for
comparisons amongst different ion–target combinations [106]. The DPA accounts for all of
these parameters to provide a single value that represents the total damage endured by
a target surface. Specifically, the DPA is defined as the number of target atoms displaced
to a stable interstitial position in the host lattice per incident ion. While it is generally
only an approximation, the DPA is widely used in the field of ion-beam materials science.
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Considering the displacement energy to be Ed, and the damage energy as Ea, the DPA is
given by [107]

DPA =


0, when Ea < Ed

1 , when Ed < Ea < 2Ed/0.8
0.8 Ea/2Ed, when Ea > 2Ed/0.8

.

Of note is the fact that the damage energy Ea is the ion energy available to displace
atoms by collisions, which is often lower than the actual ion energy due to power lost via
collisions during ion irradiation.

The DPA was calculated using the TRIM simulation tool considering the “detailed
calculation with full damage cascade” damage [102]. From the total damage plot, the
average number of collision events in the Co2MnGa layer was taken and the DPA was
calculated using the following equation:

DPA =
Fluence

(
ions·cm−2)× (No. of Defects/ ion)× 108

Atomic Density (Atoms·cm−3)
(3)

DPA values for 30 keV Ar irradiation for fluence 1 × 1013 Ar·cm−2 and 1 × 1015 Ar·cm−2

were calculated to be 0.17 and 17, respectively, where the atomic density of Co2MnGa was
taken as 2.08 × 1022 atoms·cm−3.

The effective magnetic anisotropy energy Keff was calculated using µ0Hk and MS,
where the anisotropy fields µ0Hk were obtained using MOKE from the SW fit shown in
Figure 3 and the MS for the un-irradiated thin film was obtained from the SQUID measure-
ments in Figure 4. The calculated Keff values with respect to fluence and DPA are detailed
in Figure 5. For the un-irradiated stack, µ0Hk = 526 mT and MS = 583 kA·m−1, which
results in Ke f f = 153 kJ·m−3. The anisotropy decreased to ≈105 kJ·m−3, 77 kJ·m−3 and
then to 14 kJ·m−3 for fluences of 1013, 5 × 1013 and 1 × 1014 Ar·cm−2, respectively, and did
not change significantly beyond fluence of 3 × 1014 Ar·cm−2. It is known that ion irradia-
tion can cause an increase in the number of nucleation sites, leading to a reduction in the
anisotropy field with fluence [108,109]. This decrease in the anisotropy field consequently
results in a reduction in the effective anisotropy, as seen in Figure 5, for the Ar-irradiated
stacks.

These results are consistent with the trend observed in the magnetization measure-
ments obtained from SQUID. Previous research has shown that the PMA in Pd/Co2MnGa/MgO
occurs due to the interfacial magnetic anisotropy and is present for Co2MnGa thicknesses
smaller than 3.5 nm [58]. Thus, it is likely that ion irradiation causes intermixing at the
interfaces of Co2MnGa with Pd and MgO, which increases the interfacial roughness and
leads to a reduction in PMA.

4. Discussion

To achieve a comprehensive understanding of the impact of ion irradiation on Co2MnGa
thin films and the interfacial roughening phenomenon, we simulated the process of ion
irradiation on Co2MnGa using a Monte-Carlo-based simulation code, SDTRIMSP. Using
this, we calculated the atomic concentration of each element at a depth resolution of
1 angstrom and were able to obtain insights into the intricate intermixing of various con-
stituent elements at the interfaces. However, it is important to note that the simulations
have intrinsic errors related to the various assumptions, pseudo-potentials and stopping
power and range values [110]. As expected, we observed an increase in the intermixing
of various elements at the interfaces with an increase in fluence, as depicted in Figure 6a.
Importantly, the SDTRIMSP calculations further validated the relative intermixing tenden-
cies of different constituent elements, with palladium exhibiting relatively low intermixing
levels and magnesium and oxygen displaying the highest levels of intermixing, as antici-
pated due to their respective atomic masses. This is depicted in Figure 6b as the decrease in
the peak atomic concentrations of Mg, O, Co, Mn, Ga and Pd, relative to the un-irradiated
stack, with increasing Ar fluence.



Sensors 2023, 23, 4564 9 of 14
Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

  

(a) (b) 

Figure 6. SDTRIMSP calculations of (a) depth profiles for an un-irradiated and Ar-irradiated stack 

of Co2MnGa with barrier, buffer and capping layers, and (b) peak concentration relative to un-irra-

diated stack of each element with increasing Ar ion fluence. 

In a recent report, Gabor et al. [111] studied CoFe-based Heusler alloys and found 

that a CoFe-rich interfacial layer promotes strong electronic hybridization between the 

metal and oxygen orbitals, leading to PMA. Similarly, Sun et al. [62] studied the effects of 

buffer layers such as Pd, Ru and Cr in the formation of PMA in Co2Fe0.4Mn0.6Si Heusler 

alloy films. Both groups reported that the interdiffusion of elements and interface rough-

ness during deposition affect the hybridization of CoFe with oxygen and metal orbitals, 

ultimately leading to PMA. From these studies, it can be inferred that the mechanisms 

responsible for inducing PMA in CoFe-based non-Heusler thin films with a heavy metal 

and MgO interface [112] are also applicable to CoFe-based Heusler alloys. While it is well 

established that Co-, Fe- and CoFe-based non-Heusler alloys exhibit PMA at low film 

thicknesses, Heusler alloys possess unique properties that make them intriguing for ex-

ploring similar applications, potentially paving the way for novel device applications. 

We believe that the same mechanisms induce PMA in Co2MnGa thin films as sug-

gested for CoFe-based alloys—specifically, Co-3d and Pd-5d hybridization at the Co/Pd 

interface, and charge transfer between Co and O at the Co/MgO interface, which increases 

the splitting of out-of-plane hybridized band levels (dyz, dZ2, dxz and pz) [99,113–116]. How-

ever, our findings suggest that the observed decrease in PMA observed in Ar-irradiated 

Co2MnGa stacks is primarily due to intermixing at the interface with MgO, as Pd is rela-

tively inert to argon-irradiation-induced intermixing due to its heavy mass, while MgO 

intermixes relatively easily, as can be seen in Figure 6b. This intermixing induces oxygen 

penetration into the Co2MnGa thin film, which is known to reduce the Co-O hybridization 

and thus the out-of-plane anisotropy. Our simulations show that the intermixing of vari-

ous elements at the interfaces increases with fluence, as expected. The different masses of 

the recoiled ions cause this intermixing, which directly correlates with an increase in in-

terfacial roughness, resulting in a reduction in the PMA. Overall, our results shed light on 

the underlying mechanisms that govern PMA in Co-based Heusler alloys and provide 

insights into how to manipulate the PMA for specific applications, such as by controlling 

the fluence/DPA values of the ion irradiation. With the parameters that we used, our re-

sults show that PMA reduces upon Ar irradiation, which is desirable for various applica-

tions, such as voltage-tunable sensors, magnetic memory that requires efficient magneti-

zation switching using voltage-induced strain for high-density storage and low power 

consumption and spintronic devices where a reduced PMA may enhance the stability and 

controllability of the magnetic domains [21,22,117]. 

Figure 6. SDTRIMSP calculations of (a) depth profiles for an un-irradiated and Ar-irradiated stack of
Co2MnGa with barrier, buffer and capping layers, and (b) peak concentration relative to un-irradiated
stack of each element with increasing Ar ion fluence.

In a recent report, Gabor et al. [111] studied CoFe-based Heusler alloys and found that
a CoFe-rich interfacial layer promotes strong electronic hybridization between the metal
and oxygen orbitals, leading to PMA. Similarly, Sun et al. [62] studied the effects of buffer
layers such as Pd, Ru and Cr in the formation of PMA in Co2Fe0.4Mn0.6Si Heusler alloy films.
Both groups reported that the interdiffusion of elements and interface roughness during
deposition affect the hybridization of CoFe with oxygen and metal orbitals, ultimately
leading to PMA. From these studies, it can be inferred that the mechanisms responsible
for inducing PMA in CoFe-based non-Heusler thin films with a heavy metal and MgO
interface [112] are also applicable to CoFe-based Heusler alloys. While it is well established
that Co-, Fe- and CoFe-based non-Heusler alloys exhibit PMA at low film thicknesses,
Heusler alloys possess unique properties that make them intriguing for exploring similar
applications, potentially paving the way for novel device applications.

We believe that the same mechanisms induce PMA in Co2MnGa thin films as sug-
gested for CoFe-based alloys—specifically, Co-3d and Pd-5d hybridization at the Co/Pd
interface, and charge transfer between Co and O at the Co/MgO interface, which increases
the splitting of out-of-plane hybridized band levels (dyz, dZ

2, dxz and pz) [99,113–116].
However, our findings suggest that the observed decrease in PMA observed in Ar-irradiated
Co2MnGa stacks is primarily due to intermixing at the interface with MgO, as Pd is rela-
tively inert to argon-irradiation-induced intermixing due to its heavy mass, while MgO
intermixes relatively easily, as can be seen in Figure 6b. This intermixing induces oxygen
penetration into the Co2MnGa thin film, which is known to reduce the Co-O hybridization
and thus the out-of-plane anisotropy. Our simulations show that the intermixing of various
elements at the interfaces increases with fluence, as expected. The different masses of the
recoiled ions cause this intermixing, which directly correlates with an increase in interfacial
roughness, resulting in a reduction in the PMA. Overall, our results shed light on the
underlying mechanisms that govern PMA in Co-based Heusler alloys and provide insights
into how to manipulate the PMA for specific applications, such as by controlling the flu-
ence/DPA values of the ion irradiation. With the parameters that we used, our results show
that PMA reduces upon Ar irradiation, which is desirable for various applications, such as
voltage-tunable sensors, magnetic memory that requires efficient magnetization switching
using voltage-induced strain for high-density storage and low power consumption and
spintronic devices where a reduced PMA may enhance the stability and controllability of
the magnetic domains [21,22,117].

5. Conclusions

In summary, we show that ion irradiation is a promising tool to manipulate the
magnetic properties of Heusler-alloy-based magnetic sensors. The results indicate that
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30 keV argon irradiation in the fluence regime of 1013–1015 Ar·cm−2 can effectively tune
the anisotropy of the Co2MnGa-based thin films. Monte-Carlo-based simulations esti-
mated the displacement per atom values between 0.17 and 17 for fluences 1 × 1013 and
1 × 1015 Ar·cm−2, respectively. The effective anisotropy energy decreased from Keff ~ 153 kJ·m−3

for the un-irradiated stack to Keff ~ 14 kJ·m−3 for the 1 × 1014 Ar·cm−2 irradiated stack.
The simulations confirmed intermixing at the interfaces due to ion irradiation. We found
that the intermixing of Co2MnGa with the MgO layer was primarily responsible for the
reduction in the PMA, due to the irradiation-induced penetration of oxygen atoms into the
Co2MnGa thin film. This study highlights the potential of ion irradiation as a localized
modification tool to tailor the magnetic properties of Heusler alloys, which can be useful in
the development of improved magnetic sensors for various applications.
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