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Abstract: The leaf phenotypic traits of plants have a significant impact on the efficiency of canopy
photosynthesis. However, traditional methods such as destructive sampling will hinder the continu-
ous monitoring of plant growth, while manual measurements in the field are both time-consuming
and laborious. Nondestructive and accurate measurements of leaf phenotypic parameters can be
achieved through the use of 3D canopy models and object segmentation techniques. This paper
proposed an automatic branch–leaf segmentation pipeline based on lidar point cloud and conducted
the automatic measurement of leaf inclination angle, length, width, and area, using pear canopy as an
example. Firstly, a three-dimensional model using a lidar point cloud was established using SCENE
software. Next, 305 pear tree branches were manually divided into branch points and leaf points, and
45 branch samples were selected as test data. Leaf points were further marked as 572 leaf instances
on these test data. The PointNet++ model was used, with 260 point clouds as training input to carry
out semantic segmentation of branches and leaves. Using the leaf point clouds in the test dataset as
input, a single leaf instance was extracted by means of a mean shift clustering algorithm. Finally,
based on the single leaf point cloud, the leaf inclination angle was calculated by plane fitting, while
the leaf length, width, and area were calculated by midrib fitting and triangulation. The semantic
segmentation model was tested on 45 branches, with a mean Precisionsem, mean Recallsem, mean
F1-score, and mean Intersection over Union (IoU) of branches and leaves of 0.93, 0.94, 0.93, and 0.88,
respectively. For single leaf extraction, the Precisionins, Recallins, and mean coverage (mCoV) were
0.89, 0.92, and 0.87, respectively. Using the proposed method, the estimated leaf inclination, length,
width, and area of pear leaves showed a high correlation with manual measurements, with corre-
lation coefficients of 0.94 (root mean squared error: 4.44◦), 0.94 (root mean squared error: 0.43 cm),
0.91 (root mean squared error: 0.39 cm), and 0.93 (root mean squared error: 5.21 cm2), respectively.
These results demonstrate that the method can automatically and accurately measure the phenotypic
parameters of pear leaves. This has great significance for monitoring pear tree growth, simulating
canopy photosynthesis, and optimizing orchard management.

Keywords: pear canopy; point cloud segmentation; leaf phenotype

1. Introduction

Leaves are the primary organs for photosynthesis and respiration in plants, especially
fruit trees, and account for the largest proportion in the tree crown. They play a key
role in the growth and development of plants, making their characteristics important
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for characterizing plant growth conditions [1]. Thus, automatic extraction of phenotypic
parameters from leaves is essential for monitoring fruit tree growth [2].

Traditional methods for extracting leaf parameters often require manual measurement,
which are time-consuming, laborious, and destructive [3]. Devices based on radiation
transmittance measurement have been used for canopy porosity studies, but the sensors
could only been put at sample points or line transect, which still takes a lot of sampling
time to analyze the complete 3D canopy [4]. Although image-based methods are low-cost
and fast, the extraction of leaf phenotypes may be limited in complex scenarios with severe
canopy overlap [5,6]. Fortunately, the use of ToF (Time of Flight) camera [7] and lidar in
agriculture and forestry allows for the quick and accurate acquisition of three-dimensional
information about the canopy, making the extraction of leaf phenotypic parameters as well
as plants’ (trees’) volume efficient and accurate [8–11]. However, extracting leaves from
canopy point cloud models to realize single leaf measurement is challenging [12]. The
common strategy is to separate branches and leaves first, then extract single leaves, and
finally measure leaf phenotypic parameters.

In recent years, branch–leaf segmentation based on point clouds are continuously
developing, from using the difference in laser reflection intensity based on branches and
leaves, to the use of difference in their spatial structure characteristics, and further obtaining
more features through deep learning methods. Cote et al. [13] attempted to classify ever-
green conifer trunks and leaves using their different infrared spectral responses. However,
the separation of branches and leaves by use of single intensity information is empirical.
Xu et al. [14] calculated the shortest path from each point to the root point of the tree,
and then used a threshold to distinguish the point cloud of the branches and the leaves.
However, the accuracy of this segmentation method is not high enough. Su et al. [15]
proposed an extraction algorithm that combines classification and segmentation based on
K-means clustering and random sample consensus algorithm (RANSAC) to divide canopy
point clouds into branches and leaves. Tang et al. [16] separated the branches and leaves by
using both the similarity of principal direction between neighboring points and distribution
density of points. Hu et al. [17] used the SegNet network to separate branches and leaves in
the depth images and then extract leaf point clouds. Compared with using the discrepancy
between reflection intensity and simple spatial structure characteristics of branch and leaf,
it is more accurate to segment them through a deep learning model.

In terms of single leaf segmentation based on point clouds, it has been conducted
in various plants to trees. For the leaf segmentation of plants, Xia et al. [18] used mean-
shift clustering to segment objects from the background and active contour models, while
calculating gradient vector field to segment leaves in situ in a greenhouse. Li et al. [19]
proposed a single leaf segmentation method based on three-dimensional filtering and facet
region growth, which can better segment overlapping leaves. In the leaf segmentation of
crops, Duan et al. [20] used the octree algorithm to segment wheat point clouds by single
leaf, and estimated phenotypic parameters. Jin et al. [21] proposed the median normalized
vector growth algorithm to segment maize stems and leaves based on lidar point clouds
through four steps: pre-treatment, stem growth, leaf growth, and post-treatment. In
the leaf segmentation of (fruit) trees, Liu et al. [22] used the dynamic K threshold to
segment single leaves on the branches of apple trees. However, the point cloud of the
branches was not removed before single leaf segmentation, leaving some noise in the point
clouds of leaves. Similarly, Wu et al. [23] acquired the point clouds of apple and orange
canopies, and adopted Affinity Propagation algorithm to realize the separation of leaves.
Koma et al. [24] extracted leaves by region growing for the lidar point clouds of a tulip
tree. In addition, the methodology of segmenting poplar single leaves in the literature [17]
was also the point cloud clustering method, based on k–d tree. According to the above, we
found that methods based on region growing are the most common methods for single
leaf segmentation of plants and crops. However, clustering methods based on Euclidean
distance are more commonly used in single leaf segmentation of (fruit) trees than plants
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and crops, which may be due to the larger canopy, relatively smaller leaves, and scattered
leaf distribution.

In addition to the above step-by-step extraction strategy, the application of deep
learning methods makes it possible to simultaneously conduct branch–leaf semantic seg-
mentation and segmentation of single leaf instances. Jin et al. [12] proposed a voxel-based
convolutional neural network (VCNN) for the stem–leaf semantic segmentation and in-
stance segmentation of maize from terrestrial lidar data. In a similar deep learning ap-
proach, Li et al. [25] proposed the PSegNet neural network to segment plant point clouds
and trained multi-period tobacco, tomato, and sorghum point clouds using the Voxelized
Farthest Point Sampling (VFPS) strategy. Li et al. [26] developed DeepSeg3Dmaize, a plant
point cloud segmentation technique that integrates high-throughput data acquisition and
deep learning, using PointNet to implement stem–leaf and organ instance segmentation.
Compared with the previous two plant/crop models, PointNet is more widely applicable.

Based on single leaf point cloud, phenotypic parameters such as leaf length and width,
perimeter, area, leaf inclination, and azimuth angle can be easily estimated. Leaf length
and width are the most commonly measured parameters, which can be estimated using
the distance between two points on the tip and base [27], or through convex hull [24] and
bounding box methods [28,29]. However, due to leaf curvature, these methods may lead
to large errors. Using the midrib of the leaf to simplify the point cloud can improve the
accuracy [20]. For leaf inclination angle, it can be estimated by the angle between the
ventral normal of the leaf and the zenith axis, and the least squares (LS) method are widely
used for plane (line) fitting to obtain the normal (directional) vector [26,30]. As for leaf area,
it can be estimated with point cloud triangulation and surface reconstruction [19,31,32].

Compared with crops and plants, due to the interlacing branches in the canopy, it is
difficult to obtain high-quality canopy point cloud models of fruit trees. In addition, the
leaf segmentation methods using deep learning largely rely on datasets, and the annotation
of branch/leaf point cloud models of fruit trees is also challenging. Therefore, there are few
studies on organ scale (branch and leaf) segmentation for fruit trees based on deep learning,
much less based on leaf phenotypic characteristics’ measurement, at present. In this study,
we aim to develop an automatic pipeline for single leaf extraction and measurement of fruit
trees, not only efficient in point cloud processing for fruit tree canopy, but also accurate in
measuring leaf phenotypic parameters.

2. Materials and Methods

This section is comprised of five main parts: point cloud data acquisition and prepro-
cessing, construction of the branch level point cloud dataset, branch and leaf point cloud
segmentation using deep learning, leaf point cloud segmentation using clustering, and
estimation of leaf phenotypic parameters (as shown in Figure 1). The related algorithms
and samples are available at https://github.com/haitao971028/branch-leaf_segmentation_
and_leaf_traits_extraction (accessed on 1 March 2021).

2.1. Data Acquisition

Pear trees (Pyrus pyrifolia ‘Cuiguan’) with “Y” shape and 7 years of age were taken as
materials, planted in Baima Scientific Research Base of Nanjing Agricultural University,
Lishui District, Nanjing, Jiangsu Province, China.

In order to obtain accurate point cloud data of pear trees, the three-dimensional laser
scanner FARO Focus3D S70 (FARO Technologies, Inc., Lake Mary, FL, USA) was used for
point cloud data acquisition. The scanning was conducted in late June 2022 under clear
weather conditions, with no wind or light breeze. Due to the severe obscuration between
the leaves and branches of the pear tree, the scanner was placed on a tripod with a height
of approximately 1.6 m for multi-site scanning, in order to obtain all-round point cloud
data. The field of view was 360◦ horizontal × 300◦ vertical, and the scanning distance was
approximately 5 m (as shown in Table 1). The multi-site cloud registration was completed
using FARO SCENE software (FARO Technologies, Inc., Lake Mary, FL, USA), and a total
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of 20 pear trees were scanned. To conduct subsequent quantitative evaluation on the
estimation of phenotypic parameters, 5 branch samples were randomly selected from the
pear trees for indoor scanning (as shown in Figure 1a), with the scanning parameters set the
same as those in the field. Additionally, a total of 50 leaves were selected from the 5 branch
samples, and the corresponding leaf dip angle, length, width, and area were manually
measured as the true values.
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Table 1. Specifications of lidar scanners used in this study.

Index FARO Focus3D S70

Laser Class Level 1 (IEC 60825-1)
Laser wavelength 1550 nm
Detection range 0.6–70 m

Field of view horizontal 360◦ × vertical 300◦

Single point measuring speed Up to 976,000 times/s
Scanner weight 4.2 kg

Sensors Inclinometer, compass, GPS, height sensor, dual axis compensator
Scanning point spacing (scanning distance) 0.003 m (10 m)

Measuring error in distance 0.001 m

2.2. Dataset Construction
2.2.1. Data Preprocessing

Using the Cloud Compare V2 (CC) point cloud visualization software (http://www.
cloudcompare.org/, accessed on 1 March 2021) and the Point Cloud Library (PCL, Kitware
Inc., Tallahassee, FL, USA), the denoising and thinning of the pear tree point clouds were
completed [33]. The specific processes were as follows: Firstly, the ground and trunk point
clouds were manually removed using CC to obtain the whole canopy point clouds. Then,
Statistical Outlier Removal algorithm in the PCL was used to remove outliers. Finally, the
point cloud was voxelized to implement thinning, with the length, width, and height of the
voxels set to 0.003 m.

We used a semi-automated method to extract branches from the canopy. Firstly, CC
software was used to select some relatively complete clusters of branches from the whole
canopy for preliminary extraction. Then, cluster segmentation of branches was performed
based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [34] and
K-Nearest Neighbor (KNN) [35] algorithm to obtain single branches. For a few serious
overlapping branches, we manually segmented them by CC software. A total of 373 branch
samples, including 5 samples scanned indoors, were taken from the 20 pear canopies
point cloud models to establish the branch dataset. The number of points for each branch
ranged from 3 k to 10 k. To improve model training efficiency and retain the structural
characteristics of branches, the Farthest Point Sampling (FPS) method was used to sample
the branch point cloud to 2048 points. The point cloud was then normalized with the
origin as the center into a cube with a side length of 2 m. To avoid affecting subsequent
parameter measurement, the conversion parameter from the original point cloud model to
the normalized output was recorded, and was later used to reverse the normalized point
cloud to original scale and measure its real size.

2.2.2. Point Cloud Labeling

After data preprocessing, point cloud annotation is necessary to implement the follow-
ing model training. In this study, labels were set at the point level. Since the data samples
consisted only of branches and leaves, we assigned a label of “1” to point clouds belonging
to leaves and “0” to branch point clouds (as shown in Figure 1b). The labeling was done
using CC software.

The format of point cloud data in this study is an n × 4 matrix, where n is the number
of points in the sample. The matrix consists of four columns: the x, y, and z coordinates of
the points, and a label column with values of 0 or 1.

2.2.3. Dataset Partitioning

In order to ensure the quality of the dataset, 373 branches were selected by considering
the diversity of leaf density, leaf distribution, and the completeness of the branch and
leaves. Finally, we obtained a total of 305 high-quality branch samples (including 5 indoor
samples). Additionally, we conducted statistics on this dataset. The length of all branches
ranged from 0.25 m to 1.13 m, and the number of leaves on each branch ranged from

http://www.cloudcompare.org/
http://www.cloudcompare.org/


Sensors 2023, 23, 4572 6 of 19

8 to 26, as shown in Table 2. Out of the 305 samples, 260 samples (all infield) were randomly
selected for training, and another 45 (40 infield and 5 indoor) were used as test samples.

Table 2. Statistics of branch length and leaf number of samples in training set and test set.

Trait

Training Set Test Set

Maximum
Value

Minimum
Value

Mean
Value

Standard
Deviation

Maximum
Value

Minimum
Value

Mean
Value

Standard
Deviation

Branch length (m) 1.06 0.25 0.57 0.16 1.13 0.36 0.58 0.17
Leaf number 26 8 14.6 3.6 25 8 14.3 3.7

2.3. Branch–Leaf Segmentation Based on PointNet++ Model
2.3.1. PointNet++ Segmentation Model

PointNet++ [36] is a deep neural network capable of directly processing disordered
point cloud data. It is an upgraded version of PointNet [37] that addresses the limitations
of the PointNet network with regard to local feature extraction. The network is primarily
used for point cloud classification and segmentation. In this experiment, the segmentation
network of PointNet++ is utilized for branch–leaf segmentation.

The segmentation network is comprised of an encoder and a decoder. The encoder
is primarily responsible for the point cloud downsampling process, and extracting the
local features of the point cloud by setting up multiple Set Abstraction structures. The Set
Abstraction is composed of sampling, grouping, and PointNet modules, which eventually
output a point cloud with global features. The decoder, on the other hand, is responsible
for the upsampling process. The downsampled points are restored through distance-based
interpolation, and the characteristics of each point are calculated based on the KNN, which
are then sent to Softmax to achieve point-level classification. Figure 2 shows the structure
of the segmentation network.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 2. Structure of PointNet++ segmentation network. N represents the number of points, K 
represents the number of groups, d represents the coordinate dimension, and C represents the 
feature dimension. 

2.3.2. Model Training 
The PointNet++ model was trained using the PyTorch (https://pytorch.org/) 

framework. The training set was input the network with a batch size of 4. The initial 
learning rate was set to 0.001 and dynamically adjusted using the ADAM optimizer and 
stochastic gradient descent (SGD). The momentum was set to 0.9, and the weight 
attenuation coefficient was set to 0.001. 

In this experiment, the PointNet++ segmentation network was iterated for 500 
epochs. The network was trained on an Ubuntu 16.04 OS, with an Intel Xeon E5-2698V4 
CPU, 256 GB of memory, and NVIDIA Tesla V100 GPU. 

2.4. Single Leaf Segmentation Based on Mean Shift Clustering 
PointNet++ performed semantic segmentation of the points of branches and leaves at 

branch level, but did not segment single leaves. Therefore, we then utilized the coordinate 
information of the point cloud to conduct mean shift clustering [38] in three-dimensional 
space for instance segmentation of single leaves. Unlike other clustering algorithms, the 
mean shift algorithm is based on centroids. It can identify the dense center of data points 
by radius and cluster according to the density center without specifying a number of 
clusters [39]. 

The algorithm requires setting the key parameter radius. To ensure that the clustering 
center is closer to the leaf centroid, the size of the radius was set as the radius of the 
circumscribed sphere of the leaf point cloud. In this study, three different radius sizes of 
35 mm, 45 mm, and 55 mm were set, based on the actual size of pear tree leaves. 

2.5. Estimation of Phenotypic Parameters 
Based on the single leaf point cloud, four phenotypic parameters, including leaf 

inclination angle, leaf length, leaf width, and leaf area, were estimated, as shown in 
Figures 1e and 3. When using multi-station lidar scan for registering, the leaf surface in 
point cloud may not be smooth due to wind and registration errors, which has a 
significant impact on leaf surface reconstruction in the later stage. Therefore, the Moving 
Least Squares (MLS) method [40] was employed to resample the point clouds (i.e., 
smoothing) before parameter estimation, as shown in Figure 3b. 
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2.3.2. Model Training

The PointNet++ model was trained using the PyTorch (https://pytorch.org/) frame-
work. The training set was input the network with a batch size of 4. The initial learning rate
was set to 0.001 and dynamically adjusted using the ADAM optimizer and stochastic gradi-
ent descent (SGD). The momentum was set to 0.9, and the weight attenuation coefficient
was set to 0.001.

In this experiment, the PointNet++ segmentation network was iterated for 500 epochs.
The network was trained on an Ubuntu 16.04 OS, with an Intel Xeon E5-2698V4 CPU,
256 GB of memory, and NVIDIA Tesla V100 GPU.

https://pytorch.org/
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2.4. Single Leaf Segmentation Based on Mean Shift Clustering

PointNet++ performed semantic segmentation of the points of branches and leaves at
branch level, but did not segment single leaves. Therefore, we then utilized the coordinate
information of the point cloud to conduct mean shift clustering [38] in three-dimensional
space for instance segmentation of single leaves. Unlike other clustering algorithms, the
mean shift algorithm is based on centroids. It can identify the dense center of data points
by radius and cluster according to the density center without specifying a number of
clusters [39].

The algorithm requires setting the key parameter radius. To ensure that the clustering
center is closer to the leaf centroid, the size of the radius was set as the radius of the
circumscribed sphere of the leaf point cloud. In this study, three different radius sizes of
35 mm, 45 mm, and 55 mm were set, based on the actual size of pear tree leaves.

2.5. Estimation of Phenotypic Parameters

Based on the single leaf point cloud, four phenotypic parameters, including leaf inclination
angle, leaf length, leaf width, and leaf area, were estimated, as shown in Figures 1e and 3.
When using multi-station lidar scan for registering, the leaf surface in point cloud may
not be smooth due to wind and registration errors, which has a significant impact on
leaf surface reconstruction in the later stage. Therefore, the Moving Least Squares (MLS)
method [40] was employed to resample the point clouds (i.e., smoothing) before parameter
estimation, as shown in Figure 3b.
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plane fitting; (d) Leaf inclination angle estimation; (e) Leaf length and width estimation; (f) Leaf area
estimation. Sleaf in (c,d) is the leaf point cloud fitting plane.

2.5.1. Estimation of Leaf Inclination Angle

The leaf inclination angle is the angle between the ventral normal γ of the leaf and
the zenith axis z, ranging from 0◦ to 90◦. In this study, the normal vector r of leaf fitting
plane Sleaf was used to approximate the normal vector of the leaf point cloud, and the leaf
inclination α was the angle between r and z, as shown in Figure 3d. To obtain Sleaf and r,
the least squares method was used [30].
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2.5.2. Estimation of Leaf Length and Width

In order to improve the accuracy of parameter estimation, this study proposed the
midrib fitting algorithm to extract leaf length and width from point cloud, as shown in
Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 4. Schematic diagram of estimating leaf length and width based on midrib fitting. (a) The 
leaf base point P and the leaf tip point Q; (b) Approximate point cloud (purple points) of midrib; (c) 
The approximate midrib point cloud is projected onto the plane Svein; (d) Midrib fitting point cloud 
(red points) after projection; (e) The starting point M and the ending point L when estimating the 
leaf width; (f) Approximate point cloud (dark purple points) of estimating leaf width; (g) The 
approximate point cloud of estimating leaf width is projected onto the plane S; (h) Fitting point 
cloud for estimating leaf length (red points) and leaf width (blue points). Svein in (c) is the projection 
plane of midrib point cloud, and S in (g) is the widest cross section of the leaf. 

2.5.3. Estimation of Leaf Area 
Greedy Projection Triangulation algorithm [32] is adopted to build the mesh of single 

leaf point cloud, as shown in Figure 3f. 
Using Helen’s formula to calculate the area of each triangle and sum up to 

approximate the leaf area 𝐴𝑟𝑒𝑎௟௘௔௙, the formula is as follows: 

𝐴𝑟𝑒𝑎௟௘௔௙ = ෍ ඥ𝑝௜(𝑝௜ − 𝑎௜)(𝑝௜ − 𝑏௜)(𝑝௜ − 𝑐௜)௡
௜ୀଵ  (1)

𝑝௜ = 12 (𝑎௜ + 𝑏௜ + 𝑐௜) (2)

where 𝑎௜, 𝑏௜,  𝑐௜ and 𝑝௜ are the three sides and half of the perimeter of the ith triangle, 
respectively. 

2.6. Evaluation Metric 
In this study, we employed various evaluation methods for the branch–leaf and 

single leaf segmentation. To evaluate the performance of the semantic segmentation of 
branches and leaves, we introduced four metrics: Precisionsem, Recallsem, F1-score, and 
Intersection over Union (IoU) [42]. For each semantic class, the IoU reflects the degree of 
overlapping between the predicted results of each semantic category and the 
corresponding real results. Precisionsem reflects the proportion of points that the network 
correctly predicted in the total number of points predicted in the corresponding category. 
Recallsem refers to the ratio of the number of points the network correctly predicted to the 
total number of points in this category. F1-score is the harmonic mean of Precisionsem and 
Recallsem, and its value ranges between 0 and 1. Higher values for these four indicators 
indicate better segmentation performance. The four metrics are defined as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ୱୣ୫ = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3) 

Figure 4. Schematic diagram of estimating leaf length and width based on midrib fitting. (a) The
leaf base point P and the leaf tip point Q; (b) Approximate point cloud (purple points) of midrib;
(c) The approximate midrib point cloud is projected onto the plane Svein; (d) Midrib fitting point
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the leaf width; (f) Approximate point cloud (dark purple points) of estimating leaf width; (g) The
approximate point cloud of estimating leaf width is projected onto the plane S; (h) Fitting point cloud
for estimating leaf length (red points) and leaf width (blue points). Svein in (c) is the projection plane
of midrib point cloud, and S in (g) is the widest cross section of the leaf.

Based on the morphology of pear tree leaves and the leaf point cloud, it can be
estimated that the two points with the furthest distance from the leaf point cloud are the
leaf base point P and the leaf tip point Q (Figure 4a). Using these two points, the K-nearest
neighbor algorithm was employed to approximate the midrib. The algorithm involves the
following steps:

1. Set the two points obtained above as the starting and ending points, respectively (no
need to specify which is the starting point);

2. Take the starting point as the leaf base point and add it to the base point set;
3. Establish a k–d tree [41] of the leaf point cloud and search for the 1st to Kth nearest

neighbor points of the base point;
4. Calculate the distance 1 between one of these neighbor points and the base point, and

the distance 2 between it and the ending point. Sum up distance 1 and distance 2 and
denote this as D. Repeat this until the D of all the points is calculated;

5. Find the point N that minimizes D;
6. Add N to the base point set, set N as the new base point, and remove N from the leaf

point cloud;
7. Repeat steps 3, 4, 5, 6 until the base point equals the endpoint;
8. Collect the base points.

The pseudo code of the midrib fitting algorithm is as follows (Algorithm 1):
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Algorithm 1 Midrib fitting algorithm

Inputs: Point cloud I
Parameters: Starting point s, endpoint e, base point b = s, and k.
Outputs: Point cloud O after midrib fitting

Define three local variables N, D and d
O← ∅ , N← (0, 0, 0) , D ← 0 , and d← +∞
O.push_back (b).
while b 6= e do

Establish the k–d tree of O.
Initialize b’s k nearest neighbors nk
for each n, in nk do

Compute D, the sum of the distance between n and b, and the distance between n and e.
if D < d then

N← n
d← D

end if
end for
O.push_back (N), and I.erase (N).
b← N

end while

After the above steps, a point cloud approximation of the midrib can be obtained
(Figure 4b). To improve the fitting of the midrib, the above point cloud is projected onto
the plane Svein, which passes through the points P and Q and is perpendicular to Sleaf, to
obtain a new point cloud of the midrib (Figure 4d). The distance between adjacent points is
calculated, and the leaf length can be approximated by adding them up.

The calculation method for leaf width is similar to that of leaf length. First, the starting
point M is obtained, which is a boundary point at the widest cross section of the leaf,
by finding the farthest distance from the leaf point cloud to Svein (Figure 4e). Then, the
distance between point M and each point in the fitted midrib point cloud is calculated. If
the distance between points L and M is the shortest, L is the desired end point (Figure 4e).
Finally, based on L and M, the midrib fitting algorithm can be used to acquire the point
for calculating leaf width (Figure 4f). In this case, the projection plane is S (Figure 4g),
which passes through point M and is perpendicular to Sleaf and Svein. The distance between
adjacent points is calculated, and half of the leaf width can be approximated by summing
these distances.

2.5.3. Estimation of Leaf Area

Greedy Projection Triangulation algorithm [32] is adopted to build the mesh of single
leaf point cloud, as shown in Figure 3f.

Using Helen’s formula to calculate the area of each triangle and sum up to approximate
the leaf area Arealea f , the formula is as follows:

Arealea f =
n

∑
i=1

√
pi(pi − ai)(pi − bi)(pi − ci) (1)

pi =
1
2
(ai + bi + ci) (2)

where ai, bi, ci and pi are the three sides and half of the perimeter of the ith triangle, respectively.

2.6. Evaluation Metric

In this study, we employed various evaluation methods for the branch–leaf and single
leaf segmentation. To evaluate the performance of the semantic segmentation of branches
and leaves, we introduced four metrics: Precisionsem, Recallsem, F1-score, and Intersection
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over Union (IoU) [42]. For each semantic class, the IoU reflects the degree of overlapping
between the predicted results of each semantic category and the corresponding real results.
Precisionsem reflects the proportion of points that the network correctly predicted in the
total number of points predicted in the corresponding category. Recallsem refers to the ratio
of the number of points the network correctly predicted to the total number of points in this
category. F1-score is the harmonic mean of Precisionsem and Recallsem, and its value ranges
between 0 and 1. Higher values for these four indicators indicate better segmentation
performance. The four metrics are defined as follows:

Precisionsem =
TP

TP + FN
(3)

Recallsem =
TP

TP + FP
(4)

F1–score = 2× Precisionsem × Recallsem

Precisionsem + Recallsem
(5)

IoU =
TP

TP + FP + FN
(6)

Among them, TP refers to a point that is correctly predicted in this class, i.e., belongs
to the same class as manually labeled. FN refers to a point manually labeled in this class
but is incorrectly predicted to be in another class. FP refers to a point that is not manually
labeled in this class but is predicted to belong to it. These metrics were calculated for both
branches and leaves, and the averages were used for comprehensive evaluation.

For the evaluation of single leaf segmentation, the mean coverage (mCov) was used [43].
mCov represents the average point-level IoU matching between predicted and manually
marked instance, which is defined as follows:

mCov(I, P) =
1
I

I

∑
m=1

max
n

(IoU(Im, Pn)) (7)

where I represents the number of all instances, Im represents the real point set of the mth
instance, and Pn represents the predicted point set of the nth instance. The calculation of
IoU is the same as that in semantic segmentation.

In addition to point-level evaluation, all instances with IoU higher than 0.5 were
counted and evaluated at the instance level using two metrics: Precisionins and Recallins.
The definitions are as follows:

Precisionins =
T
P

(8)

Recallins =
T
G

(9)

where T is the number of IoUs greater than 0.5 in predicted instances and manually marked
instances, P is the total number of predicted instances, and G is the number of manually
marked instances.

The measurements of each phenotypic parameter were evaluated by correlation analy-
sis. The error and accuracy of each parameter were quantified by calculating Root Mean
Square Error (RMSE) and determination coefficient R2 between the estimated values and
the manually measured values.

3. Results
3.1. Branch–Leaf Segmentation

The point clouds of 45 branch samples in the test dataset were segmented into branches
and leaves, and the results were visually and quantitatively evaluated. Figure 5 shows
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the results of semantic segmentation of branches and leaves with different attributes, i.e.,
branch length and number of leaves, and the mean IoU of branch and leaf segmentation.
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Figure 5. Visualization of branch–leaf semantic segmentation of branches with different attributes
in the test dataset using PointNet++. In each subgraph, the left side shows the manual labeling, the
middle shows the model prediction (branch and leaf points are in blue and red, respectively), and the
right side shows the difference between them (same and different points of classification are in black
and green, respectively).

By observing the results of branch–leaf segmentation, we found that the output
predicted by the model was very close to manual labeling. However, there were some
subtle differences in the junction of branches and leaves, especially at regions near the top
of the branch where the leaf clusters sheltered the branches. For instance, some leaves at
the top of a branch (Figure 5b) were misclassified as branches, while the branches attached
to the leaves (Figure 5e) were misclassified as leaves.

The quantitative evaluation results are displayed in the Table 3. The mean Precisionsem,
mean Recallsem, mean F1-score, and mean IoU of the semantic segmentation of branches and
leaves are 0.92 (Max: 0.99, Min: 0.73), 0.95 (Max: 0.99, Min: 0.85), 0.93 (Max: 0.99, Min: 0.79),
and 0.88 (Max: 0.98, Min: 0.68), respectively. There are no significant differences in the
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results of infield scanning and indoor scanning for branch–leaf segmentation. Additionally,
the segmentation results of this method for samples of different branch lengths and numbers
of leaves showed little difference, demonstrating good robustness (as shown in Figure 6).

Table 3. Evaluation of semantic segmentation of branches and leaves of samples in the test dataset.

Trait Mean Precisionsem Mean Recallsem Mean F1-Score Mean IoU

Infield Indoor All Infield Indoor All Infield Indoor All Infield Indoor All

Maximum 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98
Minimum 0.46 0.85 0.73 0.58 0.78 0.85 0.62 0.81 0.79 0.45 0.71 0.68

Mean 0.92 0.94 0.92 0.95 0.93 0.95 0.93 0.93 0.93 0.88 0.89 0.88
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Figure 6. Distribution of the branch–leaf segmentation evaluation metrics with different branch
lengths and numbers of leaves. Each subfigure shows mean Precisionsem, mean Recallsem, mean F1-
score, and mean IoU of each sample with different branch length (subfigures (a–d)) and leaf number
(subfigures (e–h)), respectively.

3.2. Single Leaf Segmentation

Based on the results of branch–leaf segmentation, we performed single leaf segmen-
tation for leaf point clouds using mean shift clustering with different radii. From the
examples presented in Figure 7, we found that after separating the branches and leaves
in the previous step, most leaves could be segmented into single leaves through mean
shift clustering. However, some small leaves with missing parts caused over-segmentation.
When the radius was too small, one leaf was mistakenly divided into multiple leaves, as
shown in Figure 7a. Conversely, when the radius was too large, two or more leaves were
grouped into a single leaf. This problem was more obvious where there were leaves at the
top of the branch, which were very small and close to each other, as shown in Figure 7c. We
found that setting the radius to 45 mm (as shown in Figure 7b) achieved a more balanced
segmentation effect.

To evaluate the segmentation effect, the instance-level precision (Precisionins), instance-
level recall (Recallins) and mean coverage (mCov) with different clustering radii were quan-
titatively evaluated. The segmentation results corresponding to different radii are shown
in Table 4. The results show that, using the radius of 45 mm for mean shift clustering could
better segment single leaves of pear tree branches. The single leaf segmentation of branches
in the test dataset with different attributes (branch length and number of leaves) and mCov
are shown in Figure 8. The results show that leaves can be separated from each other
effectively with the given radius. However, some large leaves were mistakenly divided
into two, as seen in Figure 8b,e.
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Radius/mm Precisionins Recallins mCov

35 0.79 0.74 0.76
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manual and automatic segmentation, respectively. Different leaves are represented by different colors.
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The quantitative evaluation results presented in Table 5 show that the Precisionins,
Recallins, and mCov of single leaf segmentation were 0.89 (Max:0.95, Min:0.68), 0.92 (Max:0.98,
Min:0.74), and 0.87 (Max:0.97, Min:0.71), respectively. As well, the results of samples
scanned indoors are better than infield for single leaf segmentation. For most samples, this
method also showed good robustness of single leaf segmentation (as shown in Figure 9).

Table 5. Evaluation of single leaf segmentation infield and indoors.

Precisionins Recallins mCov

Infield Indoor All Infield Indoor All Infield Indoor All

Maximum 0.96 0.98 0.95 0.98 0.99 0.98 0.96 0.98 0.97
Minimum 0.65 0.87 0.68 0.72 0.89 0.74 0.70 0.82 0.71

Mean 0.89 0.93 0.89 0.92 0.95 0.92 0.87 0.94 0.87
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Figure 9. Distribution of the single leaf segmentation evaluation metrics with branch length and
number of leaves. Each subfigure shows Precisionins, Recallins, and mean mCov of each sample with
different branch length (subfigures (a–c)) and leaf number (subfigures (d–f)), respectively.

3.3. Esitimation of Phenotypic Parameters

Based on the single leaf point cloud, the leaf inclination angle was calculated by plane
fitting, and the leaf length, width, and area parameters were calculated by midrib fitting
and triangulation. The estimated phenotypic parameters were compared with manual
measurements to evaluate their accuracy by correlation analysis, as shown in Figure 10.
The results show a high correlation between the estimated values and the measured values.
For leaf inclination angle, the R2 and RMSE were 0.94 and 4.44◦, respectively. The R2 and
RMSE of leaf length were 0.94 and 0.43 cm, respectively, while the R2 and RMSE of leaf
width were 0.91 and 0.39 cm, respectively. In addition, the R2 and RMSE of leaf area were
0.93 and 5.21 cm2, respectively. The midrib fitting method proposed in this study has
obtained higher accuracy in estimating leaf length than in width, which may be due to
leaf width estimation being more sensitive to curled leaves. In addition, the estimation
of leaf area was slightly underestimated. In order to reduce the amount of calculation,
we downsampled the original point cloud without changing its structure, which had no
effect on the estimation of other phenotypic parameters except the leaf area. As shown in
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Figure 10d, the discrepancy between estimated and measured leaf area may be caused by
the loss of boundary points of leaf point cloud after downsampling.
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4. Discussion
4.1. Comparison of Similar Studies

The branch–leaf segmentation by PointNet++ achieved relatively high accuracy for
pear trees. The mean IoU achieving in this study on branch–leaf segmentation reached 0.88,
higher than that in literature [15], which used SegNet with Kinect V2 camera, and obtained
mean IoU of 0.72. In addition to the processing method, terrestrial lidar is more effective
to acquire the relatively complete and sophisticated three-dimensional canopy scans of
(fruit) trees. However, the mean precision (0.95), recall (0.94), F1-score (0.95), and IoU (0.90)
of branch (stem)–leaf segmentation by Psegnet [25] were slightly higher than our results
(precision: 0.93, recall: 0.94, F1-score 0.93, and IoU: 0.88), owing to its special modules for
plants, the double-neighborhood feature extraction block, the double-granularity feature
fusion module, and the attention module. In the future, we will further improve accuracy
by developing the appropriate modules for fruit trees.

Moreover, the single leaf segmentation by mean shift clustering also obtained acceptable
results. In this study, the precision and recall of single leaf segmentation reached 0.89 and
0.92, higher than that in the literature [17], which obtained 0.78 and 0.87 (threshold = 8 mm)
by using a geometric distance-based k–d tree. This is also slightly higher than that by
Psegnet [25], which achieved highest precision of 0.90 and mCov of 0.85 (ours: 0.87) for
tomato leaf, as well as highest recall of 0.82 for sorghum leaf. This may be because Psegnet
is designed for segmenting point clouds of several different species of plants, while our
approach is specifically for pear trees.

In terms of leaf phenotypic parameter estimation, the correlation coefficients of leaf
length, leaf width, leaf inclination angle, and leaf area were 0.94, 0.91, 0.94, and 0.93, respec-
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tively. These are a little higher than the results for maize shoot in the literature [26], which
were 0.90, 0.82, and 0.94 for leaf length, leaf width, and leaf inclination angle. Additionally,
the correlation coefficients of leaf inclination angle and leaf area by our approach exceed
those estimated in the literature [31], which were 0.90 and 0.87. Therefore, the phenotypic
parameter estimation methods proposed in this study achieved high accuracy, especially
for leaf length and width, using a midrib fitting algorithm.

4.2. Limitations

For single leaf segmentation, the proposed method performs better for indoor samples
than infield. As shown in Tables 3 and 5, for branch–leaf segmentation, the mean F1-score
and mean IoU of infield and indoor samples were quite similar. At the same time, for single
leaf segmentation, the indoor samples outperformed the infield samples for all the three
metrics. In the branches’ dataset, point clouds in samples were occasionally incomplete
due to the overlapping among branches and leaves. In general, due to no wind influence
nor overlapping by other branches, the samples collected indoors were of higher quality
than infield, mainly in the completeness and accuracy. The difference in data quality
between infield and indoor samples mainly affected the single leaf segmentation, since
branch and leaf segmentation used deep learning models which were trained with a large
number of samples, including incomplete and non-smooth leaves. However, the single
leaf segmentation used clustering, and the size of the incomplete leaves was smaller than
the average size, so the clustering parameters were not appropriate for their segmentation,
resulting in the deviation. In the future, we will integrate the single leaf segmentation
with branch–leaf segmentation in the deep learning network to improve its robustness and
expand its applications.

In addition, the leaf phenotypic estimation in this paper is more suitable for relatively
complete leaves. In order to reduce the impact of branch and leaf occlusion on data
acquisition, multi-angle imaging and multi-station lidar scanning are widely used in the
construction of three-dimensional plant models. However, due to the serious overlap in
fruit trees’ canopies, defects in point clouds occur even with multi-station lidar scanning.
Incomplete leaves have a significant effect on estimation of phenotypic parameters. For
example, if there are missing points in the base or tip of the leaf, the leaf length, width, and
area estimated by the proposed midrib fitting algorithm will be underestimated. Currently,
point cloud repair is the common approach to solve this problem, and our next plan is
to repair the incomplete leaves to further improve the accuracy of estimation for leaf
phenotypic parameters.

5. Conclusions

In this paper, we proposed an automatic pipeline for branch–leaf segmentation and
leaf phenotypic parameter measurement for pear trees based on lidar point cloud. The
method segments branch–leaf point clouds based on the PointNet++ model, extracts single
leaf data by mean shift clustering algorithm, and estimates leaf inclination angle, length,
width, and area by plane fitting, midrib fitting, and triangulation. It achieved high accu-
racy in branch–leaf segmentation, single leaf extraction, and leaf phenotypic parameter
estimation. For branch–leaf segmentation, the mean Precisionsem, Recallsem, F1-score, and
IoU reached 0.93, 0.94, 0.93, and 0.88, respectively. For single leaf extraction, the Precisionins,
Recallins, and mean coverage (mCov) were 0.89, 0.92, and 0.87, respectively. The correla-
tions between the estimated leaf inclination angle, length, width, and area and manual
measurements were 0.94, 0.94, 0.91, and 0.93, respectively. The results demonstrate that the
proposed pipeline could efficiently and accurately measure pear leaf phenotypic param-
eters, which could provide supporting data for monitoring pear tree growth, simulating
canopy photosynthesis, and optimizing orchard management.
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