Ultrasonic Features for Evaluation of Adhesive Joints: A Comparative Study of Interface Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Signal Modeling
2.3. Ultrasonic Non-Destructive Evaluation
2.4. Determination and Extraction of Ultrasonic Features
- Peak-to-peak amplitude;
- Ratio coefficients;
- Attenuation;
- Maximum amplitude in the frequency domain;
- Absolute energy;
- Frequency value at the maximum amplitude;
- Absolute time of flight difference;
- Kurtosis (tailedness);
- Mean value of the amplitude in the frequency domain;
- Skewness;
- Standard deviation value in the time domain;
- Standard deviation value in the frequency domain;
- Variation coefficient in the time domain;
- Variation coefficient in the frequency domain.
3. Results and Discussion
4. Conclusions
- It is more difficult to correctly size inclusion-type defects in the adhesive layer compared to delaminations due to the similar acoustic properties of the defects;
- The lowest error for delamination detection is 2.2%, and for brass inclusions it is 11.4%. The maximum errors of the features that performed the best are 3.6% and 16.9%, respectively;
- Ultrasonic features that showed high performance for both types of defects are as follows: peak-to-peak amplitude , absolute time of flight , ratio coefficients , absolute energy , mean value of the amplitude in frequency domain , standard deviation value in time and frequency domains and , and variation coefficients in the time and frequency domain and ;
- In the case of brass inclusions, kurtosis at ti − 1 and maximum amplitude at frequency domain ti − 4 also showed quite high performance, while in the case of delaminations, the variation coefficient in time domain at ti − 2 and at ti − 3 time intervals showed high performance.
- The exploration of first interface reflection has the lowest possibility of correctly sizing the defect. However, the defect presence is identified. For the sizing, second and third interface reflections show better performance in the case of inclusions and delaminations, respectively. The fourth reflection is characterized by signal damping and a decrease in the performance of ultrasonic features.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samaitis, V.; Yilmaz, B.; Jasiuniene, E. Adhesive bond quality classification using machine learning algorithms based on ultrasonic pulse-echo immersion data. J. Sound Vib. 2023, 546, 117457. [Google Scholar] [CrossRef]
- Smagulova, D.; Mazeika, L.; Jasiuniene, E. Novel processing algorithm to improve detectability of disbonds in adhesive dissimilar material joints. Sensors 2021, 21, 3048. [Google Scholar] [CrossRef] [PubMed]
- Jasiūnienė, E.; Yilmaz, B.; Smagulova, D.; Bhat, G.A.; Cicėnas, V.; Žukauskas, E.; Mažeika, L. Non-Destructive Evaluation of the Quality of Adhesive Joints Using Ultrasound, X-ray, and Feature-Based Data Fusion. Appl. Sci. 2022, 12, 12930. [Google Scholar] [CrossRef]
- Spytek, J.; Ziaja-Sujdak, A.; Dziedziech, K.; Pieczonka, L.; Pelivanov, I.; Ambrozinski, L. Evaluation of disbonds at various interfaces of adhesively bonded aluminum plates using all-optical excitation and detection of zero-group velocity Lamb waves. NDT E Int. 2020, 112, 102249. [Google Scholar] [CrossRef]
- Darla, V.R.; Ben, B.S.; Sai Srinadh, K.V. Evaluation of strength and performance for a single lap bonded joint by insertion of structural elements in adhesive. Int. J. Adhes. Adhes. 2022, 118, 103240. [Google Scholar] [CrossRef]
- Jairaja, R.; Narayana Naik, G. Numerical studies on weak bond effects in single and dual adhesive bonded single lap joint between CFRP and aluminium. In Proceedings of the Sixth International Conference on Recent Advances in Composite Materials, Varanasi, India, 25–28 February 2019. [Google Scholar] [CrossRef]
- Yilmaz, B.; Smagulova, D.; Jasiuniene, E. Model-assisted reliability assessment for adhesive bonding quality evaluation with ultrasonic NDT. NDT E Int. 2022, 126, 102596. [Google Scholar] [CrossRef]
- Pyzik, P.; Ziaja-Sujdak, A.; Spytek, J.; O’Donnell, M.; Pelivanov, I.; Ambrozinski, L. Detection of disbonds in adhesively bonded aluminum plates using laser-generated shear acoustic waves. Photoacoustics 2021, 21, 100226. [Google Scholar] [CrossRef]
- Dumont, V.; Badulescu, C.; Stamoulis, G.; Adrien, J.; Maire, E.; Lefèvre, A.; Thévenet, D. On the influence of mechanical loadings on the porosities of structural epoxy adhesives joints by means of in-situ X-ray microtomography. Int. J. Adhes. Adhes. 2020, 99, 102568. [Google Scholar] [CrossRef]
- Zhou, W.; Ji, X.; Yang, S.; Liu, J.; Ma, L. Review on the performance improvements and non-destructive testing of patches repaired composites. Compos. Struct. 2021, 263, 113659. [Google Scholar] [CrossRef]
- Rique, A.M.; Machado, A.C.; Oliveira, D.F.; Lopes, R.T.; Lima, I. X-ray imaging inspection of fiberglass reinforced by epoxy composite. Nucl. Instrum. Methods Phys. Res. B 2015, 349, 184–191. [Google Scholar] [CrossRef]
- Rucka, M. Failure monitoring and condition assessment of steel-concrete adhesive connection using ultrasonic waves. Appl. Sci. 2018, 8, 320. [Google Scholar] [CrossRef]
- Dourado, T.C.; Alvarenga, A.V.; Peters, F.C.; Mansur, W.J.; Costa-Félix, R.P.B. Simultaneous use of pulse-echo and through-transmission methods in determining a combined reflection coefficient. Appl. Acoust. 2022, 192, 108700. [Google Scholar] [CrossRef]
- Malinowski, P.H.; Tserpes, K.I.; Ecault, R.; Ostachowicz, W.M. Mechanical and non-destructive study of CFRP adhesive bonds subjected to pre-bond thermal treatment and de-icing fluid contamination. Aerospace 2018, 5, 36. [Google Scholar] [CrossRef]
- Yilmaz, B.; Asokkumar, A.; Jasiūnienė, E.; Kažys, R.J. Air-coupled, contact, and immersion ultrasonic non-destructive testing: Comparison for bonding quality evaluation. Appl. Sci. 2020, 10, 6757. [Google Scholar] [CrossRef]
- Vijaya Kumar, R.L.; Bhat, M.R.; Murthy, C.R.L. Some studies on evaluation of degradation in composite adhesive joints using ultrasonic techniques. Ultrasonics 2013, 53, 1150–1162. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, J.; Matysiak, W.; Sawczuk, W.; Wieczorek, D.; Sędłak, K.; Nowak, M. Quality Tests of Hybrid Joint–Clinching and Adhesive—Case Study. Appl. Sci. 2022, 12, 11782. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Ulbrich, D.; Sędłak, K.; Nowak, M. Adhesive Joints of Additively Manufactured Adherends: Ultrasonic Evaluation of Adhesion Strength. Materials 2022, 15, 3290. [Google Scholar] [CrossRef]
- Luo, K.; Chen, L.; Weng, H.; Li, J.C.; Liang, W. Adaptive time-reversal method for delamination detection of composite plates based on reconstruction algorithm for probabilistic inspection of defects. Mech. Syst. Signal Process. 2023, 196, 110336. [Google Scholar] [CrossRef]
- Kaewniam, P.; Cao, M.; Alkayem, N.F.; Li, D.; Manoach, E. Recent advances in damage detection of wind turbine blades: A state-of-the-art review. Renew. Sustain. Energy Rev. 2022, 167, 112723. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, Z.; Yang, X.; Wang, R.; Li, Y.; Xie, S. Visualization and quantitative evaluation of delamination defects in GFRPs via sparse millimeter-wave imaging and image processing. NDT E Int. 2024, 141, 102975. [Google Scholar] [CrossRef]
- Nicassio, F.; Cinefra, M.; Scarselli, G.; Filippi, M.; Pagani, A.; Carrera, E. Numerical approach to disbonds in bonded composite Single Lap Joints: Comparison between Carrera Unified Formulation and classical Finite Element modeling. Thin-Walled Struct. 2023, 188, 110813. [Google Scholar] [CrossRef]
- Titov, S.A.; Maev, R.G.; Bogachenkov, A.N. Pulse-echo NDT of adhesively bonded joints in automotive assemblies. Ultrasonics 2008, 48, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, S.; Alkhasli, I.; Schubert, F.; Tschöpe, C.; Wolff, M. A review of synthetic and augmented training data for machine learning in ultrasonic non-destructive evaluation. Ultrasonics 2023, 134, 107041. [Google Scholar] [CrossRef] [PubMed]
- Medak, D.; Posilović, L.; Subašić, M.; Budimir, M.; Lončarić, S. DefectDet: A deep learning architecture for detection of defects with extreme aspect ratios in ultrasonic images. Neurocomputing 2022, 473, 107–115. [Google Scholar] [CrossRef]
- Prakash, N.; Nieberl, D.; Mayer, M.; Schuster, A. Learning defects from aircraft NDT data. NDT E Int. 2023, 138, 102885. [Google Scholar] [CrossRef]
- Wojtczak, E.; Rucka, M. Damage imaging algorithm for non-destructive inspection of CFRP/steel adhesive joints based on ultrasonic guided wave propagation. Compos. Struct. 2022, 297, 115930. [Google Scholar] [CrossRef]
- Rao, J.; Yang, F.; Mo, H.; Kollmannsberger, S.; Rank, E. Quantitative reconstruction of defects in multi-layered bonded composites using fully convolutional network-based ultrasonic inversion. J. Sound Vib. 2023, 542, 117418. [Google Scholar] [CrossRef]
- Santos, M.; Santos, J. Adhesive Single-Lap Joint Evaluation Using Ultrasound Guided Waves. Appl. Sci. 2023, 13, 6523. [Google Scholar] [CrossRef]
- Kumar, S.; Sunny, M.R. A novel nonlinear Lamb wave based approach for detection of multiple disbonds in adhesive joints. Int. J. Adhes. Adhes. 2021, 107, 102842. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, Z. Quantitative characterization of disbonds in multilayered bonded composites using laser ultrasonic guided waves. NDT E Int. 2018, 97, 42–50. [Google Scholar] [CrossRef]
- Ren, B.; Lissenden, C.J. Ultrasonic guided wave inspection of adhesive bonds between composite laminates. Int. J. Adhes. Adhes. 2013, 45, 59–68. [Google Scholar] [CrossRef]
- Barus, M.; Welemane, H.; Nassiet, V.; Fazzini, M.; Batsale, J.C. Boron nitride inclusions within adhesive joints: Optimization of mechanical strength and bonded defects detection. Int. J. Adhes. Adhes. 2020, 98, 102531. [Google Scholar] [CrossRef]
- Solodov, I.; Kornely, M.; Philipp, J.; Stammen, E.; Dilger, K.; Kreutzbruck, M. Linear vs nonlinear ultrasonic testing of kissing bonds in adhesive joints. Ultrasonics 2023, 132, 106967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, S.; Zhou, Z. Detection of disbonds in multi-layer bonded structures using the laser ultrasonic pulse-echo mode. Ultrasonics 2019, 94, 411–418. [Google Scholar] [CrossRef]
- Xie, J.; Xu, C.; Wu, C.; Gao, L.; Chen, G.; Li, G.; Song, G. Visualization of defects in CFRP-reinforced steel structures using improved eddy current pulsed thermography. Autom. Constr. 2023, 145, 104643. [Google Scholar] [CrossRef]
Material | Length, mm | Width, mm | Thickness, mm |
---|---|---|---|
Aluminum joint | 280 | 215 | 3.36 |
Aluminum plate | 280 | 120 | 1.6 |
Adhesive film | 280 | 25 | 0.16 |
Defects | 12.7 | 12.7 | N/A |
Name of Signal Reflection | Time Moment for the Sample with Inclusions, µs | Time Moment for the Sample with Delaminations, µs |
---|---|---|
ts | 64.84 | 65.79 |
ti – 1 | 65.33 | 66.28 |
td – 1 | 65.35 | - |
td – 2 | 65.37 | - |
td – 3 | 65.39 | - |
tad – 1 | 65.48 | - |
tad – 2 | 65.62 | - |
ti – 2 | 65.82 | 66.77 |
ti – 3 | 66.31 | 67.26 |
ti – 4 | 66.80 | 67.75 |
No | Ultrasonic Feature | Mathematical Expression |
---|---|---|
1 | Peak-to-peak amplitude, | , , = 1,2,3,4 (interface reflections) |
2 | Ratio coefficients, | |
3 | Attenuation, | |
4 | Maximum amplitude at frequency domain, | , —Fourier Transform |
5 | Absolute Energy, | |
6 | Frequency value at the maximum amplitude, | |
7 | Absolute time of flight difference, | |
8 | Kurtosis, | —is a mean of , is a standard deviation, is the expected value of the quantity |
9 | Mean value of the amplitude in frequency domain, | , —is each datum of amplitudes at selected time interval, —is a number of observations |
10 | Skewness, | —is a mean of , is a standard deviation, is the expected value of the quantity |
11 | Standard deviation value in time domain, | —is each data of amplitudes at selected time interval, —is a mean value, N—is a number of observations |
12 | Standard deviation value in frequency domain, | |
13 | Variation coefficient in time domain, | |
14 | Variation coefficient in frequency domain, |
Ultrasonic Features | No Interface Reflection | Relative Error, % | C-Scans of Extracted Ultrasonic Features |
---|---|---|---|
ti − 2 and ti − 3 (2%) | 2.2 | ||
ti − 3 | 2.4 | ||
ti − 3 | 2.6 | ||
ti − 3 | 2.6 | ||
ti − 3 | 2.8 | ||
ti − 3 and ti − 4 (2%) | 2.9 | ||
ti − 4 | 2.9 | ||
ti − 2 | 3.0 | ||
ti − 2 | 3.3 | ||
ti − 2 | 3.5 | ||
ti − 2 | 3.6 | ||
ti − 2 | 3.6 |
Ultrasonic Features | No interface Reflection | Relative Error, % | C-Scans of Extracted Ultrasonic Features |
---|---|---|---|
ti − 2 and ti − 3 (2%) | 11.4 | ||
ti − 3 and ti − 2 | 12.3 | ||
ti − 4 | 14.0 | ||
ti − 1 | 15.7 | ||
ti − 3 and ti − 1 | 16.5 | ||
ti − 2 | 16.6 | ||
ti − 2 | 16.7 | ||
ti − 2 | 16.9 | ||
ti − 2 | 16.9 | ||
ti − 2 | 16.9 | ||
ti − 1 | 16.9 | ||
ti − 4 | 18.1 |
Ultrasonic Feature | No. of Interface Reflection | Brass Inclusions Sample | Delaminations Sample | ||
---|---|---|---|---|---|
Mean Error,% | Error Range,% | Mean Error,% | Error Range,% | ||
ti − 1 | - | - | 7.5 | ±1.6 | |
ti − 2 | 16.6 | ±1.3 | 3.6 | ±1.3 | |
ti − 3 | 18.4 | ±1.4 | 2.4 | ±1.1 | |
ti − 4 | 25.1 | ±2.2 | 5.2 | ±1.5 | |
ti − 1 and ti − 2 | - | - | 3.8 | ±1.1 | |
ti − 1 and ti − 3 | - | - | 28.3 | ±8.8 | |
ti − 2 and ti − 1 | - | - | 4.1 | ±1.5 | |
ti − 3 and ti − 1 | 16.5 | ±1.8 | 3.8 | ±1.1 | |
ti − 3 and ti − 2 | 12.3 | ±2.4 | 5.4 | ±1.2 | |
ti − 4 and ti − 1 | 27.9 | ±3.1 | 11.7 | ±3.5 | |
ti − 4 and ti − 2 | 60.8 | ±10.1 | 6.3 | ±1.6 | |
ti − 1 and ti − 2 | - | - | 6.7 | ±1.8 | |
ti − 2 and ti − 3 | - | - | 34.9 | ±17.6 | |
ti − 2 | 16.9 | ±1.5 | 5.0 | ±1.2 | |
ti − 3 | 21.7 | ±2.2 | - | - | |
ti − 1 | 16.9 | ±1.2 | 4.9 | ±1.3 | |
ti − 2 | 21.5 | ±1.7 | 3.6 | ±1.4 | |
ti − 3 | 25.4 | ±2.0 | 6.8 | ±1.6 | |
ti − 4 | 36.2 | ±3.3 | 27.5 | ±16.3 | |
ti − 2 | - | - | 3.9 | ±1.4 | |
ti − 4 | 47.4 | ±5.1 | - | - | |
ti − 2 and ti − 3 (2%) | 11.4 | ±2.7 | 2.2 | ±1.4 | |
ti − 3 and ti − 4 (2%) | - | - | 2.9 | ±1.5 | |
ti − 1 and ti − 2 (10%) | 47.2 | ±8.3 | - | - | |
ti − 2 and ti − 3 (10%) | 48.8 | ±8.5 | - | - | |
ti − 2 and ti − 3 (−10%) | 36.4 | ±4.6 | - | - | |
ti − 3 and ti − 4 (−10%) | 38.3 | ±2.8 | 38 | ±14.2 | |
ti − 1 | 15.7 | ±6.2 | 8.1 | ±2.0 | |
ti − 2 | - | - | 18.6 | ±3.5 | |
ti − 4 | 19.7 | ±1.3 | 5.5 | ±1.7 | |
ti − 1 | - | - | 6.5 | ±1.7 | |
ti − 2 | 16.9 | ±1.3 | 3.9 | ±1.5 | |
ti − 3 | 18.5 | ±1.3 | 2.6 | ±1.3 | |
ti − 4 | 24.3 | ±2.3 | 6.6 | ±1.8 | |
ti − 1 | - | - | 8.3 | ±1.9 | |
ti − 2 | 19.0 | ±3.7 | - | - | |
ti − 4 | 18.1 | ±2.2 | - | - | |
ti − 1 | - | - | 16 | ±8.8 | |
ti − 2 | 16.9 | ±1.3 | 3.5 | ±1.4 | |
ti − 3 | 18.9 | ±1.6 | 2.8 | ±1.0 | |
ti − 4 | 25.2 | ±2.1 | 4.0 | ±0.9 | |
ti − 1 | - | - | 17.1 | ±9.1 | |
ti − 2 | 16.7 | ±1.2 | 3.0 | ±1.1 | |
ti − 3 | 20.2 | ±2.0 | 4.5 | ±1.3 | |
ti − 4 | 30.7 | ±3.0 | 8.0 | ±1.4 | |
ti − 1 | - | - | 36.3 | ±15.3 | |
ti − 2 | 19.9 | ±2.0 | 3.3 | ±1.0 | |
ti − 3 | 19.8 | ±1.9 | 2.6 | ±1.0 | |
ti − 4 | 30.5 | ±2.3 | 5.2 | ±1.1 | |
ti − 2 | - | - | 36.1 | ±17.6 | |
ti − 3 | - | - | 29.9 | ±9.4 | |
ti − 4 | 14.0 | ±2.7 | 2.9 | ±0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smagulova, D.; Yilmaz, B.; Jasiuniene, E. Ultrasonic Features for Evaluation of Adhesive Joints: A Comparative Study of Interface Defects. Sensors 2024, 24, 176. https://doi.org/10.3390/s24010176
Smagulova D, Yilmaz B, Jasiuniene E. Ultrasonic Features for Evaluation of Adhesive Joints: A Comparative Study of Interface Defects. Sensors. 2024; 24(1):176. https://doi.org/10.3390/s24010176
Chicago/Turabian StyleSmagulova, Damira, Bengisu Yilmaz, and Elena Jasiuniene. 2024. "Ultrasonic Features for Evaluation of Adhesive Joints: A Comparative Study of Interface Defects" Sensors 24, no. 1: 176. https://doi.org/10.3390/s24010176
APA StyleSmagulova, D., Yilmaz, B., & Jasiuniene, E. (2024). Ultrasonic Features for Evaluation of Adhesive Joints: A Comparative Study of Interface Defects. Sensors, 24(1), 176. https://doi.org/10.3390/s24010176