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Abstract: Condition monitoring of rotating shafts is essential for ensuring the reliability and optimal
performance of machinery in diverse industries. In this context, as industrial systems become increas-
ingly complex, the need for efficient data processing techniques is paramount. Deep learning has
emerged as a dominant approach due to its capacity to capture intricate data patterns and relation-
ships. However, a prevalent challenge lies in the black-box nature of many deep learning algorithms,
which often operate without adhering to the underlying physical characteristics intrinsic to the stud-
ied phenomena. To address this limitation and enhance the fusion of data-driven methodologies with
the fundamental physics of the system under study, this paper leverages physics-informed neural
networks (PINNs). Specifically, a simple but realistic numerical case study of an extended Jeffcott
rotor model, encompassing damping effects and anisotropic supports for a more comprehensive
modelling, is considered. PINNs are used for the estimation of five parameters that characterize
the health state of the system. These parameters encompass the radial and angular position of
the static unbalance due to the disk installed on the shaft, the stiffness along the principal axes of
elasticity, and the non-rotating damping coefficient. The estimation is conducted solely by exploiting
the displacement signals from the centre of the disk and, to showcase the efficacy and precision
provided by this novel methodology, various scenarios involving different constant rotational speeds
are examined. Additionally, the impact of noisy input data is also taken into account within the
analysis and the performance is compared to that of traditional optimization algorithms used for
parameters estimation.

Keywords: condition monitoring; rotating shaft; physics-informed neural network; parameters estimation

1. Introduction

Rotating shafts are elements of engineering systems that play a paramount role in the
transmission of power, encompassing speed and torque, from one point to another [1,2].
They are typically designed to endure substantial loads and to operate at high velocities,
underscoring the need for precise alignment, equilibrium, and freedom from imperfections.
These considerations are significant not only for enhancing the overall system performance,
but also for improving its safety and reliability [3,4]. To attain this objective, the practice of
condition monitoring (CM) for rotating shafts allows continuously evaluating the shaft con-
dition and performance and detecting any indications of malfunction or deterioration [5,6].
Through the application of CM methodologies, potential issues can be promptly identified,
and maintenance or repair actions can be driven to prevent accidents. This approach has
shown to effectively mitigate the risk of unexpected downtime, reinforcing the overall sys-
tem reliability [7,8]. Furthermore, the widespread and cost-effective availability of sensors
has revolutionized the acquisition of diagnostic signals, such as accelerations, strains, and
elastic waves [9]. However, the availability of big data is itself a new layer of complexity,
especially in the realm of signal processing. That is, the rapid expansion of the amount of ac-
quired data has introduced the need for (i) improved hardware and software performance,

Sensors 2024, 24, 207. https://doi.org/10.3390/s24010207 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010207
https://doi.org/10.3390/s24010207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8926-3736
https://orcid.org/0000-0002-9841-5778
https://doi.org/10.3390/s24010207
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010207?type=check_update&version=2


Sensors 2024, 24, 207 2 of 14

and (ii) developing tools to deal with confounding factors, including those unrelated to the
system health state, such as environmental and operational conditions [10,11].

To tackle these challenges, deep learning has stood as a pivotal technological ad-
vancement in the CM of rotating machines, offering multifaced contributions of significant
importance [12]. This approach has excelled in automatically extracting intricate patterns
and features from raw sensor data, enhancing the precision and reliability of fault detection
and anomaly characterization. As an example, the work in [13] applied deep learning
to enhance wind turbine CM, addressing the data surge from increased wind farm units.
By combining convolutional neural networks (CNNs) [14] and recurrent neural networks
(RNNs) [15], it efficiently extracted features, reduced dimensionality, and provided effective
CM, offering both real-time unit state checks and early warning capability, even amidst
accidental parameter changes. In [16], a CM model based on CNNs for automatic fault
detection in rotating equipment was developed. The model, utilizing data from a single
vibration sensor on the motor-drive end bearing, achieved accuracies of 99.58% and 97.3%
when applied to two different databases under controlled ambient conditions. Another
example was presented in [17], where the authors proposed a novel deep learning algo-
rithm for detecting rotor unbalance in industrial machinery. The algorithm, extracting
important vibration signatures such as fast Fourier transform (FFT) and short-time Fourier
transform (STFT), combined the depth of ResNet [18] and the feature extraction capability
of CNN. This hybrid approach surpassed the performance of both individual models.
The study involved two analyses: binary detection of balanced vs. unbalanced cases and
multilevel detection of the degree of unbalance. The work in [19] addressed planetary
gearbox fault detection by representing baseline vibration signals using the varying in-
dex coefficient autoregression (VICAR) model. The authors proposed a modified VICAR
(MVICAR) model to effectively incorporate rotating speed into the representation while
maintaining nonlinear modeling capacity. Experimental results demonstrated the superi-
ority of the MVICAR model over autoencoders, expanded VICAR (EVICAR), and linear
parameter-varying autoregression models in planetary gearbox fault detection. In [20], a
semi-supervised fault diagnosis approach for wind turbines was introduced. The method
utilized a deep neural network with adversarial learning and incorporated a metric-guided
feature enhancement technique. Despite having a limited number of annotated samples,
the methodology exhibited superior fault diagnosis accuracy in experiments conducted on
a wind turbine fault dataset.

However, in the context of CM, the developed methods have predominantly relied on
black-box deep learning algorithms, lacking transparency in how input data are processed
and whether the network behavior aligns with the physics of the problem [21]. Existing
approaches to address this issue involve either post-training explainability algorithms or
more intricate physics-based deep learning models. The former, while debunking network
behavior, fails to provide evidence of adherence to physical laws [22–25]. On the other
hand, the latter ensures predictions align with the physics by incorporating regularization
terms representing known physical laws during training. These terms are integrated into
the network loss function, specifically at the stage where it quantifies the disparity between
predicted and actual outcomes. This critical addition serves to guide the neural network
towards solutions that not only capture intricate patterns from data but also adhere rig-
orously to the established physical laws, enhancing the reliability and interpretability of
physics-informed neural network (PINN) predictions. The regularization terms act as foun-
dational constraints, influencing the network learning to prioritize solutions that respect
the governing physics throughout the training iterations. Moreover, physics-informed
algorithms offer a distinct advantage by providing accurate predictions even in the pres-
ence of scarce data, a capability not shared by traditional deep learning methods. Notably,
physics-informed algorithms are versatile tools applicable in various contexts, including
data-driven solutions for partial differential equations, discovery of physical laws, and
parameter estimation [26–28]. However, within the CM domain, few contributions have
integrated physical knowledge effectively into the training process of deep learning models.
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In [29], the authors introduced a novel approach for fault detection in gearboxes using
long-short term memory (LSTM) neural networks. Given a lack of data from faulty states,
the authors proposed a physics-informed hyperparameter selection strategy for LSTM iden-
tification, emphasizing maximizing the discrepancy between healthy and physics-informed
faulty states. Case studies on detecting gear tooth crack and tooth wear demonstrated that
the approach outperformed traditional methods based on minimizing validation mean
squared error (VAMSE). The work in [30] presented a physics-informed deep learning
method for bearing fault detection that combined a threshold model and a CNN. The ap-
proach was validated using data from bearings on an agricultural machine and a laboratory
test stand in the Case Western Reserve University Bearing Data Centre. In [31], a method
for identifying unbalance faults in rotary systems using physics-guided neural networks
(PGNNs) was proposed. The approach involved the use of a standard neural network
to localize the nodal position of the experimental fault, followed by PGNN to quantify
the unbalance magnitude and phase angle. Instead, the work in [32] introduced a novel
physics-informed convolution long-short-term memory (LSTM-CNN) network for rotor
unbalance and shaft cracks detection and localization. In particular, the physics were taken
into account through the construction of a neural network model which mimicked a finite
element (FE) resolution of the problem.

To the best of the authors’ knowledge, still no efforts have been made for the direct
estimation of multiple parameters characterizing the health state of a rotating shaft system
by leveraging PINNs. In this work, PINNs are utilized to estimate critical health state
parameters in a simple but realistic numerical case of an extended Jeffcott rotor model. This
model incorporates damping effects and anisotropic supports for a more comprehensive
representation. The parameters under consideration include the radial and angular position
of the static unbalance caused by the disk on the shaft, stiffness along the principal axes of
elasticity, and the non-rotating damping coefficient. The estimation is exclusively based
on the displacement signals from the disk centre. Note that this estimation not only
optimizes the performance of machineries, enhancing efficiency and reliability, but also
enables predictive maintenance by identifying potential faults early on. To highlight the
effectiveness and precision of the proposed methodology, various scenarios with different
constant rotational speeds are examined, and the performance is compared to that of
traditional optimization algorithms used for parameters estimation. Furthermore, the
analysis accounts for the impact of noisy input data. It is important to note that the
proposed work presents a proof of concept, demonstrating the effectiveness of the proposed
methodology through simulation experiments in a controlled environment. The transition
from simulations to real-world applications is highlighted, emphasizing the commitment to
practicality. Subsequent efforts will focus on rigorous experimental validation and testing
on more complex systems to enhance the approach versatility and robustness.

The main innovation of this work lies in integrating established physical knowledge,
describing the fundamental dynamics of rotating shaft systems, into the neural network
training process. This incorporation serves to guide the training, enhancing the robustness
and reliability in the system health state parameter estimation. Furthermore, the estimation
relies exclusively on raw time-domain displacements at the disk centre, minimizing the
requirement for numerous sensors and simplifying the overall preprocessing steps.

The paper is organised as follows: Section 2 offers a brief overview of the necessary the-
oretical foundations about PINNs for parameter estimation; Section 3 shortly presents the
case study and then shows in detail the implementation and the results of the PINN for the
system health state characterization. Finally, Section 4 provides some concluding remarks.

2. Methodology

The proposed framework hinges upon the use of PINNs to estimate the unknown
parameters characterizing the dynamics of a rotating shaft system. The innovative aspect
in this methodology stems from the tailored and specific application of PINNs, addressing
the challenges and requirements associated with accurately estimating health parameters
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in the context of rotating shaft systems. Notably, PINNs represent deep learning tools
that combine NNs with the system governing equations, and are particularly useful when
data might be limited or noisy, and where the underlying physics of the problem is well
understood [26].

Assume that a generic physical system is governed by the n-th order ordinary differ-
ential equations (ODEs) shown in Equation (1):

u(n) = F
(

t, u, u′, u′′, . . . , u(n−1), λ
)

(1)

where t refers to the system independent variable, u =
[
u1(t), u2(t), . . . , up(t)

]
denotes the

state vector consisting of p components defined in the domain
[
t0, t f

]
, and λ = [λ1, λ2, . . . , λk]

represents the vector made of the k unknown parameters describing the system state. Subse-
quently, considering the NN universal approximation theorem [33], an NN can be exploited
to obtain an approximation û = N(W, b, λ) of the state vector u, such that û ≈ u. More
specifically, W and b denote the weight and bias matrices of the NN, respectively, and their
values are the result of a training process [34], as well as for the parameter vector λ. Note that,
since û is a function, its derivatives concerning the independent variable t can be computed
during the training process through automatic differentiation (AD) [35,36]. Then, a function g
outlining the approximation of Equation (1) can be defined, as reported in Equation (2):

g = û(n) − F
(

t, û, û′, û′′ , . . . , û(n−1), λ
)

(2)

To enable the neural network to fine-tune the parameters W, b, and λ in order to
(i) fulfil the underlying ODEs describing the system behaviour and (ii) to fit the available
data (i.e., gathered measurements, in which the state vector u is known), two different loss
functions are considered, as shown in the following Equations (3) and (4).

L f =
1

Ne
·

Ne

∑
i=1

∣∣∣g(ti
e

)∣∣∣2 (3)

Lu =
1

Ne
·

Ne

∑
i=1

∣∣∣u(ti
e

)
− û

(
ti
e

)∣∣∣2 (4)

where L f denotes the loss for the ODEs fulfilling while Lu is the loss of the observed
data; ti

e indicates the generic i-th element of the vector te, made of N f elements inside the

domain
[
t0, t f

]
, in which L f and Lu are evaluated. Specifically, the acquisition time of the

measured state vector u is typically employed as the vector te. These loss functions are
subsequently integrated to yield the loss term L, as presented in Equation (5):

L= α·L f + β·Lu (5)

where α and β denote two coefficients employed to assign greater weight either to the
contributions derived from the accessible data or those related to the system physics.
Consequently, the objective of minimizing L is enforced, enabling the PINN to infer the
unidentified parameters that define the system dynamics. Notably, the appropriate values
for the coefficients α and β are determined through an iterative trial-and-error process.
A scheme showing how the PINN is trained is presented in Figure 1. The input of the
PINN is represented by the generic time instant ti

e, and its output is the corresponding
approximation of the components of the measured state vector u. In each training iteration,
the PINN output is compared with the actual value of the components of the state vector
for all the time instants ti

e within the vector te, resulting in the loss term Lu. Simultaneously,
the PINN outputs are differentiated automatically to obtain the various terms of the n-th
order ODEs described in Equation (1). This process enables the derivation of the residual g
of the physics equation, from which the loss term L f is computed. The two losses are then
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combined to form the total loss term L, which is the metric to be minimized. Note that the
hyperparameters of the PINN to be optimized are not only the weights W and biases b but
also, and significantly, the parameter vector λ describing the system health state.
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Figure 1. Scheme showing how a physics-informed neural network is trained to estimate the
parameters vector λ of a system described by ODEs.

3. Case Study
3.1. Extended Jeffcott Rotor with Unknown System Parameters

The PINN approach described in the Section 2 is here applied on a numerical case
study of a rotating shaft system in which the dynamics are simulated with the use of an
extended Jeffcott rotor model [37]. The system, illustrated in Figure 2, consists of a 1 m long
rotating shaft (i.e., l = 1 m) made of aluminium (Young’s modulus E set to 70,000 MPa,
and density ρ equal to 2700 kg·m−3) and supported at both ends. It has a circular cross
section with a diameter of 20 mm, and it incorporates a disk (representing, for instance, a
flywheel, fan, turbine, gear, etc.) that is mounted at distances l1 and l2 from the respective
supports. The shaft rotates at a velocity Ω = dϑ(t)

dt , in which ϑ(t) denotes the angle defined
with respect to the x axis of the right-handed xyz reference frame which is fixed in space. In
this reference frame, the disk lies within the xy plane, and the z axis is aligned with the line
connecting the two supports. Without any loss of generality, the disk is here considered
to be positioned at the midpoint of the shaft, i.e., l1 = l2 = l/2. Moreover, the disk centre
of mass P is displaced from the axis of rotation, whose trace in the disk plane is identified
with the point C, generating a static unbalance defined by the distance ε and the angle
φ = ϑ(0). This unbalance causes the point C to displace from the line joining the supports
leading the shaft to whirl around it.

The numerical model used to compute the rotor dynamics consists of a system of two
second-order ODEs with a state vector of two components (making reference to Section 2,
n = 2 and p = 2, respectively), as reported in Equations (6) and (7):[

m 0
0 m

]{ ..
xc..
yc

}
+

[
cn + cr 0

0 cn + cr

]{ .
xc.
yc

}
+

[
kx Ω·cr

−Ω·cr ky

]{
xc
yc

}
=

{
fx
fy

}
(6)

{
fx
fy

}
=

 md·ε·
(

Ω2·cos(Ω·t + φ) +
.

Ω·sin(Ω·t + φ)
)

md·ε·
(

Ω2·sin(Ω·t + φ)−
.

Ω·cos(Ω·t + φ)
)
− m·g

 (7)
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where xc and yc denote the x and y coordinates of the point C, respectively, and represent
the components of the state vector (i.e., u = [xc, yc]); cn and cr are the equivalent viscous
damping terms of the stationary and rotating parts of the system, respectively; m represents
the summation of the disk mass md and the shaft equivalent mass at the disk location me

s;
g indicates the gravity acceleration; kx and ky are the system stiffnesses along the x and y
axes, respectively, that are assumed to coincide with the axes of the ellipse of elasticity, i.e.,
the principal axes of elasticity of the supporting structure. Notably, the rotating damping
cr is here considered to be coincident to the contribution given by the shaft material
properties, thus neglecting any potential additional term, and it is computed exploiting the
approximation of a linear system [37], i.e., cr = 2ξr

√
ks·ms. Here, ξr denotes the rotational

damping coefficient, that is assumed to be 0.001, ms represents the mass of the shaft, while
ks =

48·E·I
l3 denotes the shaft flexural stiffness, with I indicating the moment of inertia of

the shaft cross section. The disk mass md is considered to be equal to 2 kg, while the shaft

equivalent mass at the disk location me
s is computed as me

s = ks ·δ
g , in which δ = 5·ms ·g·l3

384·E·I
denotes the static displacement of the shaft at the disk location due to the shaft weight. The
stiffnesses kx and ky are the combination of the shaft stiffness ks and those of the supports
kx

b and ky
b along the x and y axes, respectively. That is, 1

kx
= 1

ks
+ 1

kx
b

and 1
ky

= 1
ks
+ 1

ky
b
.

However, determining the stiffness values of the supports can be challenging for different
reasons, e.g., when they have complex geometries and interactions, due to misalignments
or imperfections in installation, when the support materials are not well defined or uniform,
and they can change due to degradation over time [38]. A similar reasoning applies for
the non-rotating damping and for the static unbalance. Hence, in this work, ε, φ, cn, kx,
and ky represent the components of the parameter vector λ, and their values are estimated
through a PINN. Such parameters are selected because tracking their value is essential for
maintaining the performance, reliability, and safety of rotating machinery.
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Figure 2. Scheme of the considered rotating shaft system with the disk geometrical centre (point C)
and static unbalance (point P) highlighted.

Figure 3 shows the model responses xc and yc obtained by solving Equations (6) and (7)
with a Runge-Kutta 4/5 integration method [39] in the time range [0, 10] s. In the simulated
scenario, a constant rotational speed of Ω = 30 rad·s−1 is imposed, and kx = 7.76 N·mm−1,
ky = 6.71 N·mm−1, cn = 7.0 × 10−3 N·s·mm−1, ε = 8 mm, φ = 10 deg. No artificial noise
is added. Figure 4 shows the scatter plot of the position of the disk centre C in the xy plane
over time.
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Figure 3. Example of the model responses xC and yC in a representative scenario with
Ω = 30 rad·s−1, ε = 8.00 mm, φ = 10.00 deg, cn = 7.00 × 10−3 N·s·mm−1, kx = 7.76 N·mm−1, and
ky = 6.71 N·mm−1, without adding artificial noise.
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Figure 4. Visualization in the x − y plane of the disk centre position (xC, yC) over time t for a
scenario in which a constant rotational speed of Ω = 30 rad·s−1 is imposed and where ε = 8.00 mm,
φ = 10.00 deg, cn = 7.00× 10−3 N·s·mm−1, kx = 7.76 N·mm−1, ky = 6.71 N·mm−1, without adding
artificial noise.

3.2. System State Characterization through Physics-Informed Neural Networks

A PINN is then exploited to estimate the unknown parameters of the analysed rotating
shaft system, i.e., to estimate the parameter vector λ =

[
ε, φ, cn, kx, ky

]
. Notably, the

employed NN architecture consists of 1 input neuron that takes in the generic time instant
t, 1 hidden layer made of 200 neurons, and 2 output neurons to predict the values of xC and
yC. Moreover, the hyperbolic tangent tanh activation function [40] is used in the hidden
layer, while the output layer embeds a linear activation function. The true system responses
xC and yC required for training the PINN are numerically obtained with the Runge-Kutta
4/5 integration method in the time range [0, 1] s (i.e., t0 = 0 s and t f = 1 s). Within this
range, the true solution is sampled with a sampling frequency of 10 kHz, which means
that 10,001 equally spaced points are considered in time. The same time instants are also
considered for building the vector te that is used for training (i.e., N f = 10,001). It is worth
noting that various sampling frequency values were examined in this study. Specifically,
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the investigation covered a sampling frequency range of [1, 10] kHz with increments of
3 kHz. Due to the similarity in outcomes from the analysis, these results are omitted here
for the sake of conciseness.

A representative scenario is examined to assess the efficacy of the proposed methodology.
The scenario involves the imposition of a constant rotational speed of Ω = 45 rad·s−1, alongside
the following unknown parameters: ε = 8.00 mm, φ = 10.00 deg, cn = 7.00 × 10−3 N·s·mm−1,
kx = 5.53 N·mm−1, ky = 7.25 N·mm−1. No artificial noise is added to the system responses.
The PINN is trained on an AMD Ryzen 9 5900HX 3.30 GHz processor using a limited-memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimization algorithm [41]. The learning rate
is set to η = 0.01, while both the coefficients of the loss, α and β, are fixed at 1. The training
process comprises 10, 000 iterations. Moreover, the arbitrary initial guess set for the unknown
parameters is ε = 0.00 mm, φ = 0.00 deg, cn = 0.001× 10−3 N·s·mm−1, kx = 1.00 N·mm−1,
ky = 2.00 N·mm−1. The training process, as depicted in Figure 5, illustrates the progressive
reduction of the training loss as the number of iterations increases. Instead, Figure 6
shows how the trained PINN is able to fit the available data to estimate the unknown
parameters, showing a comparison between the true solution and the one obtained with the
PINN. The outcome reveals that the approximation of the state vector offered by the PINN
closely aligns with the actual vector, showcasing marginal disparities primarily observed
in the state variable yC during the initial time instants. Finally, the true value and the
correspondent PINN estimation for all the system unknown parameters is shown in Table 1.
What emerges is that all the parameters are estimated by the PINN with a remarkable
accuracy, presenting the best performance in identifying the system stiffness values kx
and ky, where the relative error in the estimation remains below 0.70%. Notably, among
the parameters under estimation, the angle φ of the static unbalance and the non-rotating
damping cn prove to be the most challenging. This observation finds potential justification
in the relatively subdued impact these parameters exert on the state variables compared
to their counterparts. Nevertheless, even in these instances, the relative error remains
constrained within 5.80%.

In order to assess the robustness of the PINN to external influences affecting input data
(e.g., measurement noise, environmental vibrations, etc.), the same scenario is revisited
while maintaining consistent training process conditions (i.e., algorithm used, learning rate,
initial parameters guess, etc.). In this context, the input variables xC and yC, employed
for the estimation of system parameters, are subjected to a perturbation through the
introduction of supplementary numerical noise with a signal-to-noise ratio (SNR) of 20 dB.
The data fitting performed by the PINN and the parameters estimation are reported in
Figure 7 and Table 2, respectively. The PINN approximation of the state variables xC and yC
appears to closely match the true solution. That is, the PINN manages to smooth out all the
perturbances introduced by the added numerical noise, thus acting as a filter. The outcomes
demonstrate that the PINN continues to function as a dependable tool for characterizing
the health state of the system, even when confronted with external disturbances within the
input data. Notably, no indications of a significant diminished algorithm performance are
discernible, with all parameter estimations retaining a relative error of less than 8.00%.

Table 1. True value and the correspondent PINN estimation for all the system unknown parameters
related to a scenario in which a constant rotational speed of Ω = 45 rad·s−1 is imposed; no noise
added to the processed system responses.

Unknown Parameter True Value PINN Estimation Relative Error (%)

ε [mm] 8.00 7.87 1.62
φ [deg] 10.00 9.42 5.80

cn [N·s·mm−1] 7.00 × 10−3 6.70 × 10−3 4.29
kx [N·mm−1] 5.53 5.54 0.18
ky [N·mm−1] 7.25 7.20 0.69
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Figure 6. True and PINN solutions of the state variables xC and yC for a scenario in which a
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Figure 7. True and PINN solutions of the state variables xC and yC for a scenario in which a
constant rotational speed of Ω = 45 rad·s−1 is imposed and where ε = 8.00 mm, φ = 10.00 deg,
cn = 7.00 × 10−3 N·s·mm−1, kx = 5.53 N·mm−1, ky = 7.25 N·mm−1, adding an artificial noise with
a SNR = 20 dB.



Sensors 2024, 24, 207 10 of 14

Table 2. True value and the correspondent PINN estimation for all the system unknown parameters
related to a scenario in which a constant rotational speed of Ω = 45 rad·s−1 is imposed; noise added
to the processed system responses with an SNR = 20 dB.

Unknown Parameter True Value PINN Estimation Relative Error (%)

ε [mm] 8.00 7.91 1.12
φ [deg] 10.00 9.30 7.00

cn [N·s·mm−1] 7.00 × 10−3 6.45 × 10−3 7.86
kx [N·mm−1] 5.53 5.54 0.18
ky [N·mm−1] 7.25 7.29 0.55

Lastly, an additional example is presented below to assess the estimation capabilities
of the PINN when fed with data pertaining to a scenario marked by distinct imposed
conditions and health states. The scenario encompasses the application of a constant
rotational speed of Ω = 35 rad·s−1, accompanied by the following unknown parame-
ters: ε = 12.00 mm, φ = 20.00 deg, cn = 5.00 × 10−3 N·s·mm−1, kx = 7.76 N·mm−1,
ky = 6.14 N·mm−1. Moreover, an artificial noise with an SNR of 30 dB is added to the
input data, and the same training conditions of the previous scenarios are kept. The true
and PINN solutions of the state variables xC and yC are reported in Figure 8, and the
estimation of the unknown parameters is shown in Table 3. As for the previous scenario,
the PINN approximation of the state variables xC and yC shows a strong correspondence
with the true solution. The unknown parameters are satisfactorily estimated even in this
scenario. The lowest relative estimation error characterizes the system stiffnesses kx and ky,
i.e., 0.52% and 0.16%, respectively, while the non-rotating damping cn is identified with a
9.80% error.
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Figure 8. True and PINN solutions of the state variables xC and yC for a scenario in which a
constant rotational speed of Ω = 35 rad·s−1 is imposed and where ε = 12.00 mm, φ = 20.00 deg,
cn = 5.00 × 10−3 N·s·mm−1, kx = 7.76 N·mm−1, ky = 6.14 N·mm−1, adding an artificial noise with
an SNR = 30 dB.

Table 3. True value and the correspondent PINN estimation for all the system unknown parameters
related to a scenario in which a constant rotational speed of Ω = 35 rad·s−1 is imposed; noise added
to the processed system responses with an SNR = 30 dB.

Unknown Parameter True Value PINN Estimation Relative Error (%)

ε [mm] 12.00 11.96 0.33
φ [deg] 20.00 21.17 5.85

cn [N·s·mm−1] 5.00 × 10−3 5.49 × 10−3 9.80
kx [N·mm−1] 7.76 7.72 0.52
ky [N·mm−1] 6.14 6.13 0.16

3.3. Comparison with Traditional Optimization Algorithms for Parameters Estimation

The potentialities and limitations of the proposed framework are then identified by
comparing its performance to that of traditional optimization algorithms. To this purpose,
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a gradient-based optimization algorithm [42] and a genetic algorithm [43] are employed to
estimate the parameter vector λ =

[
ε, φ, cn, kx, ky

]
. The gradient-based optimization algo-

rithm leverages the fmincon nonlinear solver implemented in MATLAB. The optimization
problem searches the target parameters within prescribed bounds, and a step tolerance
of 1 × 10−10 is used for improved performance. Instead, the genetic algorithm used for
estimating the unknown parameters is based on the ga MATLAB function. Population
size of 200 and elite count of 2 are selected though trial and error. Crossover is applied
through the built-in function crossoverscattered, while the selected mutation function is
mutationadaptfeasible. Optimization is stopped according to the default early stopping
criteria, or when 2000 generations are reached. Regardless of the optimzation algorithm
employed, the loss function used to drive the optimization process involves the solution of
the ODEs in Equations (6) and (7) to minimize the error between the computed and the
observed displacement time history. As done for the PINN, the ODEs are solved using the
Runge-Kutta 4/5 integration method.

First, the representative scenario involving the imposition of a constant rotational
speed of Ω = 45 rad·s−1, alongside the following unknown parameters: ε = 8.00 mm,
φ = 10.00 deg, cn = 7.00 × 10−3 N·s·mm−1, kx = 5.53 N·mm−1, and ky = 7.25 N·mm−1 is
analysed. The results are shown in Table 4. Parameter φ is estimated with less accuracy
than the PINN estimate shown in Table 1, while the accuracy is preserved for all the other
variables. However, the optimization algorithms are much faster than the neural network-
based framework, and the gradient-based algorithm allows for real-time estimation.

Table 4. True value and the correspondent optimization algorithms estimations related to a scenario
in which a constant rotational speed of Ω = 45 rad·s−1 is imposed; no noise added to the processed
system responses.

Unknown
Parameter True Value

Gradient-Based Method Genetic Algorithm

Estimation Relative Error (%) Estimation Relative Error (%)

ε [mm] 8.00 8.00 0.00 7.60 5.00
φ [deg] 10.00 0.02 99.80 20.53 105.30

cn [N·s·mm−1] 7.00 × 10−3 6.09 × 10−3 13.00 7.06 × 10−3 0.86
kx [N·mm−1] 5.53 5.66 2.35 5.39 2.53
ky [N·mm−1] 7.25 7.36 1.52 7.25 0.00

The parameters are then estimated in the case of noise with SNR of 20 dB affecting
the input variables xC and yC. The results are shown in Table 5. Similar considerations to
those already reported above regarding the same scenario, but unaffected by noise, can be
drawn out.

Table 5. True value and the correspondent optimization algorithms estimation related to a scenario in
which a constant rotational speed of Ω = 45 rad·s−1 is imposed; noise added to the processed system
responses with an SNR = 20 dB.

Unknown
Parameter True Value

Gradient-Based Method Genetic Algorithm

Estimation Relative Error (%) Estimation Relative Error (%)

ε [mm] 8.00 7.99 0.12 7.40 7.50
φ [deg] 10.00 0.01 99.90 1.92 80.80

cn [N·s·mm−1] 7.00 × 10−3 6.09 × 10−3 13.00 4.84 × 10−3 30.86
kx [N·mm−1] 5.53 5.66 2.35 5.66 2.35
ky [N·mm−1] 7.25 7.35 1.38 7.30 0.69

Finally, the last scenario presented in Section 3.2 is also analysed. That is, a constant
rotational speed of Ω = 35 rad·s−1 is considered, accompanied by the following unknown
parameters: ε = 12.00 mm, φ = 20.00 deg, cn = 5.00 × 10−3 N·s·mm−1, kx = 7.76 N·mm−1,
ky = 6.14 N·mm−1. An artificial noise with an SNR of 30 dB is added to the input data.
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The results are shown in Table 6. The optimization algorithms perform similarly to the
PINN-based framework in this scenario, with the advantage of allowing for real-time
parameters estimation.

Table 6. True value and the correspondent optimization algorithms estimation related to a scenario in
which a constant rotational speed of Ω = 35 rad·s−1 is imposed; noise added to the processed system
responses with an SNR = 30 dB.

Unknown
Parameter True Value

Gradient-Based Method Genetic Algorithm

Estimation Relative Error (%) Estimation Relative Error (%)

ε [mm] 12.00 11.8 1.67 10.2 15.00
φ [deg] 20.00 19.56 2.20 19.8 1.00

cn [N·s·mm−1] 5.00 × 10−3 5.41 × 10−3 8.20 4.98 × 10−3 0.40
kx [N·mm−1] 7.76 7.76 0.00 7.53 2.96
ky [N·mm−1] 6.14 6.10 0.65 6.12 0.33

4. Conclusions

This paper has introduced a novel approach employing PINNs for estimating un-
known parameters characterizing the health state of rotating shaft systems. The investiga-
tion has focused on a realistic numerical case study involving an extended Jeffcott rotor
model, which has incorporated damping effects and anisotropic supports. The parameters
considered have encompassed the radial and angular position of static unbalance caused
by a shaft-mounted disk, stiffness values along the principal axes of elasticity, and the non-
rotating damping coefficient. The estimation has relied exclusively on displacement signals
from the disk centre, and various scenarios, incorporating different constant rotational
speeds, have been thoroughly examined. Results have revealed the implemented PINN
accuracy in estimating these parameters, demonstrating minimal relative errors even in the
presence of substantial data noise. Moreover, the comparison with the estimates obtained
using traditional optimization methods have revealed that PINNs slightly outperform
gradient-based and genetic methods in terms of estimation accuracy, despite the longer
processing time. Beyond optimizing machinery performance and enhancing efficiency and
reliability, the proposed estimation method has facilitated predictive maintenance by early
fault identification.

The simulation experiments outlined in this paper establish a compelling proof of
concept, showcasing the effectiveness of our proposed approach within a controlled envi-
ronment. It is crucial to acknowledge that, while these simulations offer valuable insights,
the next step involves experimental verification to ensure the real-world applicability of
our methodology. Subsequent efforts will be dedicated to conducting experimental studies
on more intricate case scenarios, aiming to provide a robust validation and refinement of
our proposed approach.
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