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Abstract: Monitoring the biochemical pigment contents in individual plants is crucial for assessing
their health statuses and physiological states. Fast, low-cost measurements of plants’ biochemical
traits have become feasible due to advances in multispectral imaging sensors in recent years. This
study evaluated the field application of proximal multispectral imaging combined with feature
selection and regressive analysis to estimate the biochemical pigment contents of poplar leaves.
The combination of 6 spectral bands and 26 vegetation indices (VIs) derived from the multispectral
bands was taken as the group of initial variables for regression modeling. Three variable selection
algorithms, including the forward selection algorithm with correlation analysis (CORR), recursive
feature elimination algorithm (RFE), and sequential forward selection algorithm (SFS), were explored
as candidate methods for screening combinations of input variables from the 32 spectral-derived initial
variables. Partial least square regression (PLSR) and nonlinear support vector machine regression
(SVR) were both applied to estimate total chlorophyll content (Chla+b) and carotenoid content (Car)
at the leaf scale. The results show that the nonlinear SVR prediction model based on optimal variable
combinations, selected by SFS using multiple scatter correction (MSC) preprocessing data, achieved
the best estimation accuracy and stable prediction performance for the leaf pigment content. The
Chla+b and Car models developed using the optimal model had R2 and RMSE predictive statistics of
0.849 and 0.825 and 5.116 and 0.869, respectively. This study demonstrates the advantages of using
a nonlinear SVR model combined with SFS variable selection to obtain a more reliable estimation
model for leaf biochemical pigment content.

Keywords: multispectral; plant physiological and biochemical parameters; sequential forward
selection algorithm; support vector machine regression

1. Introduction

Plant biochemical pigment contents, including chlorophyll and carotenoid contents,
are crucial bio-indicators of plant physiology and functional processes up to the forest
ecosystem level, including the light-harvesting reactions of photosynthesis, stress avoid-
ance, and defense [1,2]. The accurate measurement of total chlorophyll content (Chla+b)
and carotenoid content (Car) at the leaf scale is of great importance for stress detection,
growth status diagnosis, and studying the mechanisms of interaction between plants and
the environment [3–6]. In addition, the biochemical pigment contents can affect the pho-
tosynthesis potential and growth rate of plants, directly relating to primary production
and biomass accumulation [7]. As one of the most important forest tree species, poplar
trees are widely cultivated for their economic and ecological benefits [8]. Quantifying
photosynthetic activity at the leaf scale can provide important information on the growth
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status of poplar trees and further provide a scientific basis for the rational utilization and
protection of forest resources [9,10].

The unique absorption characteristics of chlorophyll and carotenoid in the visible
range make it possible to estimate their contents with spectroscopic techniques using
hyper- or multi-spectral data [11]. In the early stages of estimation of non-destructive
plant biochemical traits, non-imaging spectrometer technology was the main approach
for in situ biochemical monitoring [12]. However, due to the inconsistency between the
positions of sampling acquisition and spectral measurement on plant leaf surfaces based
on five-point sampling, the non-imaging spectrometer was unable to accurately describe
the distribution of biochemical content on the leaf surface. In recent years, hyperspectral
spectroscopy imaging has been widely used for its ability to provide highly relevant and
detailed spectral information on biochemical properties [13–16]. However, hyperspectral
data suffer from data redundancy and band autocorrelation, termed “high dimensional
disaster” [12]. Multispectral imaging sensors typically consist of four to a dozen broadband
wavelength channels. For applications that do not require the whole spectral range in
visible light or near-infrared bands (VIS-NIR), the detection performance of a multispectral
sensor with tailor-made bands associated with the target property is as good as that of a
hyperspectral sensor [17,18]. Additionally, multispectral imaging devices are more cost-
effective. Therefore, multispectral imaging technology is better suited for monitoring
biochemical traits to meet the need for a method with low cost and rapid response.

Due to the flexibility and feasibility of portable multispectral imaging devices, it is
becoming more common for the scientific community to obtain proximal remote sensing
data. Proximal remote sensing provides sub-millimeter or millimeter spatial resolution and
higher temporal frequency than aerial and satellite data, which is particularly interesting
for forestry management and precision agriculture [19–22]. By capturing images in close
proximity to the plants, portable multispectral imaging devices enable more accurate
monitoring of the physiological status and stress-related responses. Multiple spectral bands,
or a single established vegetation index, contain relatively little information; thus, several
studies have modeled the inversion of biochemical parameters by whole spectral bands
or the combination of multiple vegetation indices derived from proximal multispectral
images. Pan [23] extracted leaf chlorophyll concentration from nineteen-band multispectral
images by utilizing PLSR analysis. The successive projections algorithm was implemented
to determine optimal variables from whole spectral bands. Chungcharoen [24] estimated
leaf SPAD using five-band multispectral images accompanied by four inversion modeling.
The stepwise multiple linear regression was applied to variable selection for forty-four
candidate variables derived from the multispectral images. Although the combination of
spectral bands and vegetation indices can provide enhance spectral information, which
is particularly valuable for multispectral imaging, the determination of sensitive spectral
bands and indices is still a disturbing issue.

For the estimation of biochemical parameters, the combinations of spectral bands
or indices used in most of the studies generally included a limited number of individual
vegetation indices [13,19,25]. However, discrepancies exist in the selection of spectral
bands or indices for modeling. Influencing factors such as optical spectrum-dividing
mode, spectral bandwidth, signal-to-noise ratio, imaging distance, and lighting conditions
contribute to variations in sensitive spectral bands [20]. Consequently, directly applying
sensitive variables taken from different spectroscopy data for modeling with specific
spectral data may not achieve optimal estimation accuracy in practice. In addition, although
several studies have indicated that proximal multispectral imaging is a promising technique
for quantifying biochemical traits [18,23,24], its potential is not fully realized due to the
inadequacy of spectral information recorded by multispectral channels with broadband. To
enhance multispectral information, the pseudo-hyper-spectrum can be established by the
combination of spectral bands and vegetation indices associated with biochemical pigment
contents that are derived from the multispectral bands. Meanwhile, it is also necessary to
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select the relevant feature variables derived from multispectral bands for the modeling of
biochemical parameters in order to improve multispectral detection capabilities.

Feature variable selection can adaptively select the optimal subset to match target vari-
ables, reduce data dimensionality, and improve modeling accuracy and generalization [26].
At present, feature variable selection algorithms can be divided into three categories: filter,
wrapper, and embedded [27–29]. Variable selection based on the filtering algorithm is
independent of the model-training process. The filtering algorithm uses some evaluation
criteria to screen out highly relevant variables with target parameters, such as correlation
coefficient, mutual information, information entropy, etc. The wrapper algorithm takes
into account both the induction learner’s performance and the importance of the variables.
The algorithm evaluates the merits of feature variables through the evaluation function
of the induction learner, which can select “tailor-made” variables for each model. The
generation procedure for finding the best input variable combination based on the wrapper
includes forward or backward searches, recursive feature selection, randomized search,
etc. For embedding algorithms, variable selection is embedded into the model-training
process through methods such as random forest, lasso, etc. Whatever the models are, their
success depends upon the quality of the dataset, the selection of the feature variables, and
the availability of effective method validation [30].

The objectives of this study were to evaluate the field application of proximal mul-
tispectral images that came with regression models based on the combination of input
variable selected by different variable selection algorithms in order to predict the bio-
chemical pigment contents of poplar leaves. The specific objectives were: (1) to select the
spectral bands and vegetation indices derived from the proximal multispectral reflectance
which were relevant to leaf Chla+b and Car based on three variable selection algorithms
(CORR, RFE, and SFS); (2) to compare the accuracy of two linear and non-linear regression
models (PLSR and SVR) based on the input variable combinations obtained through the
variable selections; and (3) to evaluate the stability of the models based on optimal variable
combination via leaf Chla+b and Car mapping analysis. This study can provide a technical
basis for monitoring leaf biochemical parameters using proximal multispectral imaging.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Sample Collection and Image Acquisition

The samples were obtained from Pan’an Lake Wetland Park (34◦22′33.7′′ N; 117◦23′21.8′′ E,
elevation 30 m a.s.l.), Xuzhou, China. To obtain the dataset of pigment contents with variations,
the collection of poplar leaf samples was conducted based on the work of Shen Xin et al. [31],
which considered the heterogeneity of biochemical contents in poplar leaves caused by
differences in solar radiation in different positions in the canopy. In this study, the poplar
leaves were divided into three layers according to height, and the leaf samples for the pigment
content analyses were collected from the different height layers. For each layer of sampling,
several mature leaves were randomly selected in various directions near the edge of the tree
crown. The procedure for data acquisition and data analysis is shown in Figure 1.

Using the MS600 multispectral instrument (Yusense, Inc., Qingdao, China), we obtained
multispectral images of the leaves placed within the camera’s field of view. The multispectral
instrument (MSI) contained six single-broadband channels with center wavelengths and
spectral resolutions of 450@35 nm, 555@27 nm, 660@22 nm, 720@10 nm, 750@10 nm and
840@30 nm [32]. The corresponding spectral response curve is depicted in Figure 1. The field
of view and pixel resolution were HFOV 49.5◦ × VFOV 38.1◦, and 1280 × 960. The image
bit depth was 16bit with the ‘tif’ storage format. Under sunny and cloud-free conditions,
proximal multispectral images of 64 poplar leaves were collected outdoors from 11:00 to 13:00
on 17 October 2022. The leaf samples were tiled in batches according to layer height on a black
background board. All multispectral images were captured at a height of 1.8 m by the camera.
A reference whiteboard was positioned flat on the ground for each group image’s reflectance
calibration. The overall technical processes are shown in Figure 2.
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Figure 2. All key steps involved in processing proximal multispectral images for the purpose of
acquiring leaf data, preprocessing images, building and selecting feature variables, validating the
model, and predicting mapping at the leaf scale.

2.1.2. Leaf Biochemical Measurements

The collected leaf samples were placed into an insulator before being sent for labora-
tory biochemical content analysis. The wet lab extraction technique was used to determine
the chlorophyll and carotenoid concentrations per unit area of the leaves [33]. A leaf borer
(diameter = 10 mm) was used to clip the fresh leaves. The pigment content for each leaf was
extracted from 0.1g of fresh leaf with 10 mL 95% ethanol. After extraction, the absorbance
of the extracts was measured with a UV–VIS spectrophotometer (MAPADA UV-1800PC,
Shanghai, China), and the contents were determined and presented as the total chlorophyll
content (Chla+b) and carotenoid content (Car). The absorbance (A) of the samples was mea-
sured at 665 nm (for chlorophyll a), 649 nm (for chlorophyll b), and 470 nm (for carotenoid)
using the spectrophotometer [34].

Chlorophyll a (mg/L) = 13.95A665 − 6.88A649, (1)

Chlorophyll b (mg/L) = 24.96A649 − 7.32A665, (2)

Total Chlorophll (mg/L) = Chla + Chlb = 18.08A649+6.63A665, (3)

Total Carotenoid (mg/L) =
1000A470 − 2.05Chla − 114.8Chlb

245
. (4)
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The units used for the chlorophyll and carotenoid were subsequently converted to
µg/cm2 using data on the volume of leaf pigment extract and the leaf disc area.

Pigment content (µg/cm 2) =
C (mg/L) × n × V (mL)

leaf area (cm 2
) . (5)

where C represents total chlorophyll or carotenoid concentration. n and V are the ethanol
volume concentration and volume, respectively. Only the total chlorophyll and carotenoid
were used in this study.

2.2. Image Pre-Processing

The leaf reflectance was acquired by the flat field radiometric calibration method,
and the process was completed using ENVI 5.3. software (Exelis Inc., Herndon, VA,
USA). Since only pixels belonging to the plant leaf area contained useful information,
leaves were segmented from the background by eliminating all non-vegetation spectra.
Considering high reflection levels in the near-infrared range on plant leaves, segmentation
was performed by calculating the reflectance value at 840 nm for each image. The reflectance
threshold value was set to 0.25 for the 840 nm images, and the respective mask images
were used to segment each image individually. Each leaf was labeled in the segmented
images for further data analysis.

To reduce the effects of specular reflection and leaf inclination, the images were
processed by multiple scatter correction (MSC) [35]. MSC can eliminate spectral differences
caused by different scattering levels and correct the baseline shift issue of spectral data
through the “ideal spectrum”, thereby enhancing the correlation between spectra and lab
data [36]. In this study, the ideal spectrum was determined by calculating the spectral
average value of all leaf pixels in each group image, aiming to minimize variations.

In this study, the ideal spectrum was determined by calculating the spectral average
value of all leaf pixels in each group image, aiming to minimize variations.

Vegetation indices have been widely used in ecological research for estimating and
monitoring plant biochemical parameters, especially for photosynthetic pigments including
chlorophyll and carotenoid [30,37]. Using the spectral reflectance data, we calculated
26 published vegetation indices. The indices included most of the existing vegetation
indices related to pigment contents that could be calculated by the six bands of MSI, and
the majority of the indices included were developed at the leaf scale [3]. The vegetation
index formulas which were applied are presented in Table 1. The initial set of variables was
established by the combination of 6 spectral bands and 26 vegetation indices derived from
the multispectral bands. With the significance of the vegetation indices, the pseudo-hyper-
spectrum could be formed to provide sufficient spectral information for the modeling of
leaf pigment content.

Table 1. Summary of spectral parameters, wavebands, and citations for chlorophyll and carotenoid at
the leaf scale.

Vegetation Index Abbreviation Formulation Reference

Blue green pigment index BGI Blue/Green [38]
Chlorophyll index using

green reflectance CIgreen (NIR/Green) − 1 [39]

Chlorophyll index using red
edge reflectance CIred-edge (NIR/Edge1) − 1 [39]

Chlorophyll vegetation index CVI NIR × (RED/Blue2) [40]
Datt Datt (NIR − Edge1)/(NIR − Red) [41]

Green leaf index GLI (2 × Green − Red − Blue)/
(2 × Green + Red + Blue) [42]

Green normalized difference
vegetation index GNDVI (NIR − Green)/(NIR + Green) [43]
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Table 1. Cont.

Vegetation Index Abbreviation Formulation Reference

Green-red NDVI GRNDVI (NIR − Green − Blue)/
(NIR + Green + Blue) [44]

Leaf chlorophyll index LCI (NIR − Edge1)/(NIR + Red) [41]
Modified NDVI mNDVI (NIR − Red)/(NIR + Red − 2 × Blue) [3]

Modified simple ratio MSR [(NIR/Red) − 1)]/(
√

NIR/Red + 1] [45]

Modified red-edge simple ratio MSRred-edge
(NIR − Edge1 − 1)/
(
√

NIR − Edge1 + 1 ) [45]

MERIS terrestrial chlorophyll index MTCI (Edge2 − Edge1)/(Edge1 − Red) [46]
Normalized difference red edge index NDRE (NIR − Edge1)/(NIR + Edge1) [47]
Normalized difference vegetation index NDVI (NIR − Red)/(NIR + Red) [48]

Green NDVI NDVIg (Edge2 − Green)/(Edge2 + Green) [43]
Normalized green-red difference index NGRDI (Green − Red)/(Green + Red) [38]
Normalized pigment chlorophyll index NPCI (Red − Blue)/(Red + Blue) [49]
Normalized difference vegetation index PPR (Green − Blue)/(Green + Blue) [50]

Pigment specific simple ratio PSSR NIR/Red [51]
Renormalized difference

vegetation index RDVI (NIR − Red)/(
√

NIR + Red) [52]

Red edge normalized difference
vegetation index RENDVI (Edge2 − Edge1)/(Edge2 + Edge1) [43]

Structure insensitive pigment index 2 SIPI2 (NIR − Blue)/(NIR − Red) [51]
Simple ratio vegetation index 450/660 SR450/660 Blue/Red [49]
Simple ratio vegetation index 750/555 SR750/555 Edge2/Green [39]

Vogelmann red edge index 1 VOG1 Edge2/Edge1 [49]

2.3. Variable Selection

The purpose of variable selection is to identify the most accurate target property
with the fewest variables and to reduce the model’s computational cost. As mentioned
above, the initial set of variables included 6 spectral bands and 26 vegetation indices.
Due to data redundancy and variable autocorrelation, it was impractical to utilize all of
these variables for prediction modeling. Therefore, variable selection was applied as an
initial stage of prediction modeling. Before variable selection, all variables in the initial
set were normalized to compensate for the scale variations. In this study, three variable
selection algorithms were applied to select an optimum variable subset for prediction
modeling. All three variable selection algorithms selected the optimal combination of input
variables with respect to their respective evaluation functions and by using their respective
search strategies.

2.3.1. Forward Filtering Algorithm with Correlation Analysis (CORR)

For the variable selection, we generally adopted the ‘Top-N’ strategy for feature vari-
ables, which directly removes low-correlation and unrelated variables with target properties
from an initial set of variables through an empirical threshold based on correlation analysis.
However, the n-top variables may not be the optimum subset for modeling due to the
variable autocorrelation. For the whole initial set of variables, we established how many
variables would be the optimal choice for modeling. A proposed approach called CORR
was used to determine the optimal combination of variables and their quantity by a specific
criterion rather than empirical threshold values. The CORR adopted a forward search
method, which selected the variables with high relevance to target parameters as the input
and iteratively added variables according to the order of absolute values of the correlation
coefficient until all variables had been traversed. Adding candidate variables to the sorting
order can avoid the removal of highly relevant variables. In this study, the partial least
square method (PLS) and a support vector machine with a radial basis kernel (SVM) were
applied as induction learners, and their root mean square error was used as the criterion
to be minimized. A grid search with 5-fold repetition cross-validation was employed to
determine the optimal parameters for the induction learners at each loop of CORR.
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2.3.2. Sequential Forward Selection Algorithm (SFS)

The sequential forward selection algorithm extends the variable subset from an initial
set of variables in each iteration with the variable that increases the model performance the
most [29]. SFS starts with an empty subset and adds variables to the subset in order to select
the input variable combination with the best merit value based on the evaluation function.
This iterative process should be performed until either the max variable number is reached
or the merit value of the variable combination in the current iteration is worse than the
merit value of the best input variable combination in the previous iteration [53,54]. In this
study, a linear model regression learner (LM) and a support vector machine with a radial
basis kernel (SVM) were utilized as induction learners, and their root mean square error
was used as the criterion to be minimized. Resampling techniques were utilized in each
iteration of the procedure to stabilize the feature rankings. Here, 5-fold cross-validation
repetitions were employed.

2.3.3. Recursive Feature Elimination Algorithm (RFE)

The recursive feature elimination algorithm is an iterative algorithm that works back-
ward from an initial set of variables based on variable importance ranking [28]. RFE
starts with all variables and repeatedly constructs an induction learner to recursively
eliminate unimportant variables. The variables are sorted based on the weight of the
induction learner, and the variable with the lowest-ranking score is eliminated at each loop
of RFE [55]. The purpose is to find the variable subset that has the best merit value based
on the evaluation function of the induction learner. In this study, RFE utilized the same
criterion and induction learner as SFS.

2.4. Prediction Model
2.4.1. Partial Least Square Regression (PLSR)

PLSR is a linear nonparametric model used for constructing a predictive model when
input variables are many and highly colinear [13]. Partial least square regression combines
the characteristics of principal component analysis, canonical correlation analysis, and
linear regression analysis in the modeling process. PLSR reduces predictors to a small set
of independent latent factors, which serve as new predictors, and regresses the response
variables on these new predictors [56,57]. To determine the number of factors used in the
model, a grid search was applied to select the optimal parameter for this study.

2.4.2. Support Vector Machine Regression (SVR)

SVR is a nonparametric model that does not contain assumptions about the data
distribution [13]. The method mathematically transfers the regression problem into a
feature space with higher dimensionality than the original data space to facilitate a linear
solution to an otherwise non-linear problem [57,58]. In this study, we used the radial basis
function kernel in combination with a grid search for the optimization of C and γ. In order
to avoid overfitting, C was set to vary from 0.1 to 10, and was combined with γ from 0.005
to 1 in the grid search.

In this study, we investigated proximal multispectral imaging techniques for the
detection of the biochemical parameters of poplar leaves using variable selection and
regression analysis. Linear and nonlinear regression analyses were implemented using
an optimal combination of spectral bands and indices as the independent variable, and
the poplar leaf pigment content as the dependent variable. The variable selection and
regression modeling were performed using R package ‘mlr3fselect’ and ‘caret’.

2.5. Model Validation

To test how accurately the models predicted the values of biochemical contents at the
leaf scale, the coefficients of determination (R2) and root mean square error (RMSE) were
selected to display the error in the predicted value of the leaf pigment contents. Leave-one-
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out cross-validation (LOOCV) was utilized to obtain the merits in this study. These metrics
were calculated as follows:

R2 =
∑n

i=1 (yi − Yi)
2√

∑n
i=1 (yi − y)

√
∑n

i=1 (Yi − Y)
, (6)

RMSE =

√
1
n∑n

i=1 (yi − Y)2. (7)

where n represents the number of samples and yi and Yi represent the ith measured and
ith predicted value, respectively. y and Y represent the average measured and average
predicted value, respectively.

3. Results
3.1. Statistical Analysis

Figure 3 shows the statistical characteristics of the leaf pigment content values obtained
from the laboratory reference analysis. The analysis involved sixty-four poplar leaf samples.
The range of leaf chlorophyll content (Chla+b) values was 2.35–54.25, with a mean of 26.96 and a
standard deviation of 13.02. For leaf carotenoid content (Car), the range was 2.12–9.54, with a
mean of 6.10 and a standard deviation of 2.05. Both datasets appeared to have approximately
normal distribution, with coefficients of variation of 48% for Chla+b and 33.6% for Car. The high
variabilities of the pigment content levels were helpful for modeling purposes in this study.

All samples were divided into four groups according to their pigment content levels. The
average pigment content for each group was analyzed to observe changes in the image’s spectral
reflectance with the varying content levels. In Figure 4, the multispectral reflectances of the
six bands preprocessed by MSC are depicted in a polygonal map. The spectral reflectances of
poplar leaves decreased in the green (555 nm), red (660 nm), and red edge (720 nm) bands as
Chla+b and Car increased. The reason for this phenomenon was that the increased leaf Chla+b
and Car level led to heightened absorption in the visible light region, resulting in decreased
leaf reflectance. Previously, vegetation indices, specifically a green peak and red edge in the
visible light region, were identified and utilized for Chla+b estimation [59]. For the blue (450 nm)
band, there was almost no discrepancy in reflectance under different pigment content levels.
The reason might be the low signal-to-noise ratio in the blue channels of the MSI. From the red
edge (750 nm) to the near infrared (840 nm), there was no significant change in reflectance. This
observation aligned with the fact that the leaf reflectance was not affected by photosynthetic
pigments in the near infrared, maintaining a consistently high reflectance level [11].

As mentioned in Section 2.2., the candidate variables for prediction modeling consisted
of 32 variables, including 6 spectral bands and 26 vegetation indices. Figure 5 shows the
ranks of variables based on the absolute value of Pearson’s correlation between the variables
and the leaf pigment contents. Two types of variable data were considered, including no-
preprocessing original data (OS) and preprocessing data using multiple scatter correction
(MSC). According to the distribution of pigment content in poplar leaves, the variables with the
highest correlation coefficient with Chla+b and Car for OS data were both MTCI, with values
of 0.869 and 0.814, respectively. For MSC data, the variables with the highest coefficients with
Chla+b and Car were VOG1 (0.884) and CIre (0.827), respectively. After MSC preprocessing,
the number of variables with Pearson’s coefficients greater than 0.85 increased from 8 to 11 for
Chla+b, while the number of variables with Pearson’s coefficients greater than 0.80 increased
from 7 to 13 for Car. These results indicate that MSC preprocessing can enhance the spectral
variable information related to the leaf pigment contents of poplar leaves. Furthermore, the
overall correlation between Chla+b and spectral variables was higher than that of Car. The
spectral indices presented in this paper, typically used for Chla+b inversion [3], were found
to be highly relevant to Car in this study. This was primarily due to the broadband spectral
overlap of carotenoid and chlorophyll absorption. For the spectral indices’ formulas with
high relevance to the leaf pigment contents, most of them were related to the responses of the
green, red, and red edge bands.
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3.2. Input Variable Selection

A total of 32 variable candidates, including 6 bands and 26 indices, were established to
select the input variables combination suitable for estimating leaf pigment contents. Three



Sensors 2024, 24, 217 10 of 19

variable selection algorithms were implemented in this paper: CORR, RFE, and SFS. The root
mean square error (RMSE) of the induction learner was utilized as the evaluation function.

Figure 6 shows the RMSE curves of the CORR algorithm combined with two induction
learners. The variables at the x-axis were arranged in the same order as that depicted in
Figure 4. The RMSE curve displayed fluctuations as the number of variables increased, and
an overall decrease was observed in RMSE when using MSC data preprocessing. The optimal
combination of input variables for modeling could be determined by identifying the set of
variables before the point where the RMSE was the lowest. For OS data, PLS-CORR selected 6
and 12 input variables relevant to Chla+b and Car, respectively, while SVM-CORR selected 18
for both. With MSC preprocessing, PLS-CORR identified 8 and 11 optimal input variables
for Chla+b and Car, while SVM-CORR selected 31 and 30, respectively. It is noteworthy that
SVM-CORR identified a larger number of variables compared to PLS-CORR, suggesting that
it was less effective in terms of reducing data dimensionality. Overall, the CORR algorithm
can serve as a guide for feature variable selection when employing the ‘Top-N’ approach.

Unlike the CORR filtering algorithm, RFE and SFS are wrapper algorithm. They em-
ployed interior feature ranking to screen the optimal variables combination by determining
induction learner performance. RFE and SFS removed the least important variable and
recalculated the rankings for the remaining variables at each iteration until the optimal
combination of variables was selected based on the evaluation function of the instruction
learner. Table 2 presents the final variable selection results of different algorithms. For OS
data, LM-RFE selected 5 and 4 variables for Chla+b and Car, while SVM-RFE selected 24
and 15, respectively. Using MSC data, LM-RFE selected 5 and 6 variables for Chla+b and
Car, while SVM-RFE selected 15 and 25, respectively. For both data treatment types and
for both leaf pigment contents, LM-SFS and SVM-SFS selected seven and three variables,
respectively. The optimal variable combination selected by SVM-SFS included at least two
variables with high correlation and one variable with low correlation. These results suggest
that SFS, particularly SVM-based SFS, effectively reduces data dimensionality.

Table 2. The results of input variable selection based on different algorithms.

Type
Variable
Selection

Algorithm

Chla+b (µg/cm2) Car (µg/cm2)

Number of
Variables Input Variables Number of

Variables Input Variables

OS

pls-corr 6 MTCI VOG1 RENDVI
NDRE CIre LCI 12

MTCI CIre NDRE VOG1
Datt CVI RENDVI LCI

MSRre CIg SR750_555 BGI

svm-corr 18

MTCI VOG1 RENDVI
NDRE CIre LCI MSRre Datt
CVI CIg SR750_555 NDVIg
GNDVI PPR BGI GRNDVI

SR450_660 RDVI

18

MTCI CIre NDRE VOG1
Datt CVI RENDVI LCI

MSRre CIg SR750_555 BGI
PPR NDVIg GNDVI

GRNDVI GLI SR450_660

lm-rfe 5 NDRE LCI CIre VOG1
NDVI 4 NDRE LCI CIre VOG1

svm-rfe 24

RENDVI VOG1 MTCI
NDRE CIre LCI MSRre Datt
CIg CVI SR750_555 NDVIg
GNDVI PPR BGI GRNDVI
SIPI2 mNDVI PSSR RDVI

MSR NDVI SR450_660
NPCI

15

RENDVI VOG1 MTCI
NDRE CIre LCI Datt CVI

CIg MSRre SR750_555 BGI
PPR NDVIg GNDVI

lm-sfs 10 B2 B4 B5 BGI GNDVI LCI
MSRre MTCI PPR VOG1 20

B2 BGI CIg CIre GNDVI
GRNDVI LCI MSR MSRre
NDVI NDVIg NPCI PPR

PSSR RDVI RENDVI SIPI2
SR450_660 SR750_555 VOG1

svm-sfs 7 CIg CVI LCI MSRre
RENDVI SR450_660 VOG1 7 BGI CIg GNDVI NDVIg

PPR RENDVI SR450_660
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Table 2. Cont.

Type
Variable
Selection

Algorithm

Chla+b (µg/cm2) Car (µg/cm2)

Number of
Variables Input Variables Number of

Variables Input Variables

MSC

pls-corr 8 VOG1 LCI RENDVI CIre
CIg NDRE MTCI SR750_555 11

CIre B4 NDRE CIg LCI
VOG1 MTCI RENDVI CVI

B2 Datt

svm-corr 31

CIre B4 NDRE CIg LCI
VOG1 MTCI RENDVI CVI
B2 Datt SR750_555 MSRre
GNDVI NDVIg GRNDVI
GLI BGI PPR PSSR MSR
NDVI B3 RDVI mNDVI
SR450_660 NPCI SIPI2

NGRDI B5 B6

30

CIre B4 NDRE CIg LCI
VOG1 MTCI RENDVI CVI
B2 Datt SR750_555 MSRre
GNDVI NDVIg GRNDVI
GLI BGI PPR PSSR MSR
NDVI B3 RDVI mNDVI
SR450_660 NPCI SIPI2

NGRDI B5

lm-rfe 5 MSR NDVI PSSR LCI NDRE 6 MSR NDVI PSSR NDRE
PPR mNDVI

svm-rfe 15

VOG1 LCI RENDVI CIg
GRNDVI NDRE CIre

SR750_555 NDVIg GNDVI
B2 MTCI MSRre B4 Datt

25

CIg RENDVI VOG1 LCI B2
B4 GRNDVI NDRE CIre

NDVIg GNDVI SR750_555
MTCI CVI Datt MSRre BGI

PPR GLI B6 NDVI PSSR
MSR B3 RDVI

lm-sfs 9
CIg Datt GNDVI MSR
MTCI NDVIg NGRDI

SR750_555 VOG1
10

B2 B5 B6 CIg CIre GLI
MSRre MTCI NDRE

RENDVI
svm-sfs 3 B6 MTCI VOG1 3 B4 B6 RENDVI
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With the significance of the vegetation indices, the initial variable set, called the
pseudo-hyper-spectrum, could be formed to enhance multispectral information. This initial
variable set allowed for the selection and modeling of feature variables relevant to the
target parameters, thereby improving multispectral detection capabilities. The results
pointed out that the ability to reduce data dimensionality among various variable selection
algorithms showed significant differences. The SFS was superior to CORR and RFE in this
regard. Specifically, SVM-SFS identified an optimal variable combination from the initial
set, retaining only three specified variables with sufficient significance to account for leaf
Chla+b and Car.

3.3. Model Comparation

According to the variable selection process, an optimal variable combination can
provide acceptable accuracy when an appropriate regression model is utilized. Linear PLSR
and nonlinear SVR were both utilized to train the models to estimate the pigment contents
of poplar leaves. Figure 7 depicts the R2 of model fits which was achieved suing the PLSR
and SVR. In comparison to the results using the whole initial variable set from the OS and
MSC data, CORR slightly improved the estimation accuracy, while the models combined
with RFE exhibited the lowest accuracy for both pigment contents. This indicated that RFE
was not suitable for selecting feature variables when only continuous variables were used
in regression modeling. The model fit results revealed that lm-sfs and svm-sfs was the most
effective variable selection algorithms in terms of improving estimation accuracy for OS
and MSC data, respectively.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 7. R2 of multiple models (a) Chla+b, (b) Car. ‘-’ represents no variable selection. Whole candi-
date variables were utilized as input variables for modeling. 

Tables 3 and 4 present the accuracy of the validation results by comparing regression 
models combined with different variable selections. The PLSR combined with lm-sfs pro-
duced the highest estimation accuracy for leaf pigment contents on OS data, while the 
nonlinear SVR combined with svm-sfs outperformed other methods using MSC data. Spe-
cifically, the nonlinear SVR combined with svm-sfs, which used MSC data, provided a 
good estimation capability, yielding an R2 of 0.849 and an RMSE of 5.116 for Chla+b, and 
an R2 of 0.825 and RMSE of 0.869 for Car. Another model, employing the PLSR combined 
with lm-sfs and OS data, estimated an R2 of 0.818 and an RMSE of 5.633 for Chla+b, and an 
R2 of 0.726 and RMSE of 1.089 for Car, respectively. These results also indicated that the 
accuracy of pigment content estimates in poplar leaves could be improved through MSC 
data preprocessing. Scatter plots depicting the models with the highest estimation accu-
racies using OS and MSC data are presented in Figure 8. 

Table 3. The validation accuracy of Chla+b model using LOOCV. 

Type Variable Selection 
Algorithm 

PLSR SVR 
R2 RMSE R2 RMSE 

OS 

- 0.760 6.452 0.759 6.480 
corr 0.759 6.454 0.787 6.089 

lm-rfe 0.726 6.884 0.737 6.728 
svm-rfe 0.772 6.304 0.773 6.280 
lm-sfs 0.815 5.649 0.769 6.352 

svm-sfs 0.774 6.247 0.813 5.694 

MSC 

- 0.796 6.207 0.823 5.566 
cor-fs 0.785 6.082 0.816 5.637 
lm-rfe 0.755 6.507 0.798 5.923 

svm-rfe 0.769 6.324 0.796 5.922 
lm-sfs 0.778 6.265 0.789 6.059 

svm-sfs 0.748 6.598 0.849 5.116 

Figure 7. R2 of multiple models (a) Chla+b, (b) Car. ‘-’ represents no variable selection. Whole
candidate variables were utilized as input variables for modeling.



Sensors 2024, 24, 217 13 of 19

Tables 3 and 4 present the accuracy of the validation results by comparing regression
models combined with different variable selections. The PLSR combined with lm-sfs
produced the highest estimation accuracy for leaf pigment contents on OS data, while
the nonlinear SVR combined with svm-sfs outperformed other methods using MSC data.
Specifically, the nonlinear SVR combined with svm-sfs, which used MSC data, provided a
good estimation capability, yielding an R2 of 0.849 and an RMSE of 5.116 for Chla+b, and
an R2 of 0.825 and RMSE of 0.869 for Car. Another model, employing the PLSR combined
with lm-sfs and OS data, estimated an R2 of 0.818 and an RMSE of 5.633 for Chla+b, and
an R2 of 0.726 and RMSE of 1.089 for Car, respectively. These results also indicated that
the accuracy of pigment content estimates in poplar leaves could be improved through
MSC data preprocessing. Scatter plots depicting the models with the highest estimation
accuracies using OS and MSC data are presented in Figure 8.

Table 3. The validation accuracy of Chla+b model using LOOCV.

Type Variable Selection
Algorithm

PLSR SVR

R2 RMSE R2 RMSE

OS

- 0.760 6.452 0.759 6.480
corr 0.759 6.454 0.787 6.089

lm-rfe 0.726 6.884 0.737 6.728
svm-rfe 0.772 6.304 0.773 6.280
lm-sfs 0.815 5.649 0.769 6.352

svm-sfs 0.774 6.247 0.813 5.694

MSC

- 0.796 6.207 0.823 5.566
cor-fs 0.785 6.082 0.816 5.637
lm-rfe 0.755 6.507 0.798 5.923

svm-rfe 0.769 6.324 0.796 5.922
lm-sfs 0.778 6.265 0.789 6.059

svm-sfs 0.748 6.598 0.849 5.116
‘-’ represents no variable selection; whole candidate variables were utilized as input variables. Bold indicates the
model which yielded the highest accuracy for two data types (OS and MSC).

Table 4. The validation results of Car model using LOOCV.

Type Variable Selection
Algorithm

PLSR SVR

R2 RMSE R2 RMSE

OS

- 0.654 1.229 0.645 1.251
corr 0.649 1.224 0.661 1.204

lm-rfe 0.630 1.258 0.624 1.268
svm-rfe 0.642 1.237 0.657 1.212
lm-sfs 0.726 1.089 0.657 1.215

svm-sfs 0.646 1.232 0.673 1.185

MSC

- 0.693 1.175 0.748 1.037
cor-fs 0.702 1.139 0.749 1.037
lm-rfe 0.648 1.228 0.691 1.156

svm-rfe 0.654 1.216 0.724 1.092
lm-sfs 0.739 1.058 0.804 0.919

svm-sfs 0.655 1.215 0.825 0.869
‘-’ represents no variable selection; whole candidate variables were utilized as input variables. Bold indicates the
model which yielded the highest accuracy for two data types (OS and MSC).
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Figure 8. Scatter plots of the optimal regression models evaluating the pigment contents. The first
column of the figure was obtained via the PLSR model using input variables selected by lm-sfs for
OS data, and the second column was obtained via the nonlinear SVR model using input variables
selected by svm-sfs for MSC data.

3.4. Leaf Parameter Mapping

To evaluate the stability of the models with the highest predictive ability, as mentioned
above, the pigment contents of poplar leaf samples from three layers at vertical direction
were visually mapped. The previous report indicated that the pigment content of poplar
leaves varied depending on their location within the poplar canopy and was influenced
by solar radiation conditions, with upper-canopy leaves generally having lower pigment
contents than lower-canopy leaves [31]. In this study, the distribution of pigment contents
in leaf samples from three layers within a poplar canopy (upper, middle, and lower layers)
was mapped using the PLSR based on optimal variables selected by lm-sfs (Figure 9a)
and the nonlinear SVR based on optimal variables selected by svm-sfs (Figure 9b). The
levels of Chla+b and Car are depicted in different colors, ranging from high (green) to low
(orange). The spatial t distribution of pigment contents in these leaves was visualized via
pixel analysis of multispectral images. The frequency histogram illustrates the distribution
of pigment contents for all pixels in each layer of the leaf samples. These results provide
insights into the heterogeneity of pigment contents in poplar leaf samples across different
layers. Additionally, the visualization results revealed significant differences in the distri-
bution of pigment content between poplar leaves and veins, as well as notable variations in
pigment distribution within some senescent leaves. This indicates that the distribution of
pigment content on the surface of a single leaf exhibited spatial inconsistency.
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Figure 9. Visualization maps for Chla+b (a) and Car (b) distribution at the leaf scale in three vertical
layers within a poplar canopy (I: upper canopy layer, II: middle canopy layer, III: lower canopy
layer). The first column in the figure was obtained via the PLSR model using input variable selected
by lm-sfs, and the second column was obtained via the nonlinear SVR model using input variable
selected by svm-sfs. Red line in the frequency histogram: lab measurement value; green line: average
predicted value of pixels.

As shown in the histogram maps (Figure 9), the average predicted value of image
pixels and the corresponding lab measurement value of leaf samples at each layer are
annotated with green and red lines, respectively. Compared to the PLSR model using OS
data, the average predicted values derived from the nonlinear SVR model using MSC data
were more consistent with the lab measurement values. Although the PLSR model achieved
good estimation accuracy, as mentioned above, notable discrepancies existed between the
average predicted value and lab measurement value of pigment content, particularly for
the Car with lower variation coefficients (the white areas in the leaves in Figure 8b were
removed due to outliers). The predicted value of PLSR using OS data showed a more
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dispersed distribution than that of SVR using MSC data, indicating that the predicted
pigment contents had been overestimated. Overall, the results suggest that the nonlinear
SVR model outperformed the PLSR model in terms of prediction accuracy and stability
for the leaf pigment contents. The primary reason for this discrepancy was that PLSR
linear regression was relatively sensitive to input parameters and achieved low estimation
performance when the input variables had nonlinear distributions. Additionally, compared
to SVR nonlinear regression, the PLSR linear regression model lacked the flexibility to
capture the complex patterns of spectral reference in the leaf images [19]. The results
demonstrate that the nonlinear mapping and generalization of nonlinear SVR were superior
to that of PLSR. Thus, among the models developed for leaf pigment content in this study,
the SVR combined with svm-sfs using MSC preprocessing data improved the performance
of proximal multispectral imaging for the purpose of estimating the biochemical pigment
contents of poplar at the leaf scale.

4. Conclusions

Using proximal multispectral images of poplar leaves as information with which
to predict the biochemical pigment contents in the leaves via variable selection and re-
gression analyses was the primary purpose of this work. A few main conclusions can be
established from this study. (1) Reflectance correction used MSC preprocessing to allow
for freedom from leaf architecture effects (specular reflection and leaf inclination) and to
improve proximal imaging spectral information related to Chla+b and Car at the leaf scale.
(2) SFS-SVR achieved a higher performance for the estimation of bio-parameters in terms
of reducing data redundancy and enhancing estimation accuracy compared to the PLSR
model combined with CORR and RFE. (3) The nonlinear mapping and generalization of
proximal multispectral VIs-based modeling by SVR were superior to those of PLSR.

Finally, this study showed that proximal multispectral imaging combined with SFS
variable selection and nonlinear SVR model is a promising technology for the monitoring
of leaf biochemical pigment content. Its use can be expanded to plant phenology or
ecology issues. Applying the optimal prediction model to whole multispectral images
produces a map of spatial pigment contents. It will, thus, be possible to follow up on
pigment content dynamics at each leaf level, contributing to improving our understanding
of the heterogeneous distribution of physiological traits and the mechanisms underlying
environmental stress responses. In addition, low-cost proximal multispectral imaging for
biochemical monitoring can be used as an aspect of phenological observation, which is
particularly valuable as it facilitates the need for the periodic acquisition of temporal data.
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