Optical Coherence Tomography as a Non-Invasive Tool for Plant Material Characterization in Agriculture: A Review
Abstract
:1. Introduction
2. Applicational Overview of OCT in Agriculture
3. A-Scan Profiling for Assessing OCT Images
4. Chapters
4.1. Chapter 1—Non-Invasive Screening for Disease in Plant Seed Specimens
4.2. Chapter 2—Optical Sensing-Based Germination Rate Assessment for Plant Seeds
4.3. Chapter 3—Optical Inspection for the Detection of Leaf Spot Diseases
4.4. Chapter 4—Diagnosis of Physiological Diseases of Fruit Specimens
4.5. Chapter 5—Wearable OCT for On-Field Inspection
4.6. Chapter 6—Optical Coherence Imaging-Based Microbiological Findings
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
AMD | acid mine drainage |
bOCT | biospeckle optical coherence tomography |
CGMMV | cucumber green mottle mosaic virus |
CymMV | Cymbidium mosaic virus |
ELISA | enzyme-linked immunosorbent assay |
FD-OCT | Fourier-domain OCT |
GA3 | gibberellic acid |
LCD | liquid crystal display |
MRI | magnetic resonance imaging |
OCT | optical coherence tomography |
O3 | ozone |
PCR | polymerase chain reaction |
PET | positron emission tomography |
PP | palisade parenchyma |
ROI | region of interest |
RBD | rind breakdown |
SS-OCT | swept-source OCT |
SD-OCT | spectral-domain OCT |
SDW | sterile distilled water |
SP | spongy parenchyma |
TD-OCT | time-domain OCT |
UE | upper epidermis |
References
- Teng, P.; Krupa, S.V. Assessment of losses which constrain production and crop improvement in agriculture and forestry. In Proceedings of the EC Stakman Commemorative Symposium (1980: University of Minnesota), Minneapolis, MN, USA, 20–23 August 1980; Department of Plant Pathology, University of Minnesota: Minneapolis, MN, USA, 1980. [Google Scholar]
- Teng, P.S. Crop Loss Assessment and Pest Management; American Phytopathological Society: St. Paul, MN, USA, 1987. [Google Scholar]
- Oerke, E.-C.; Dehne, H.-W.; Schönbeck, F.; Weber, A. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Gaikwad, S.A.; Deore, K.S.; Waykar, M.K.; Dudhane, P.R.; Sorate, G. Fruit disease detection and classification. Int. Res. J. Eng. Technol. 2017, 4, 1151–1154. [Google Scholar]
- James, G.M.; Sujatha, S. WITHDRAWN: Categorising Apple Fruit Diseases Employing Hybrid Neural Clustering Classifier; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Ruffo Roberto, S.; Youssef, K.; Hashim, A.F.; Ippolito, A. Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials 2019, 9, 1752. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Gupta, A. Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Blanco, R.; Aveling, T. Seed-borne Fusarium pathogens in agricultural crops. In Proceedings of the VII International Symposium on Seed, Transplant and Stand Establishment of Horticultural Crops-SEST2016 1204, Pretoria, South Africa, 11–15 September 2016; pp. 161–170. [Google Scholar]
- ElMasry, G.; Wang, N.; Vigneault, C.; Qiao, J.; ElSayed, A. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT-Food Sci. Technol. 2008, 41, 337–345. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Chen, G.; Wang, S.; Fu, F. The early diagnosis and fast detection of blast fungus, Magnaporthe grisea, in rice plant by using its chitinase as biochemical marker and a rice cDNA encoding mannose-binding lectin as recognition probe. Biosens. Bioelectron. 2013, 41, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Arivazhagan, S.; Shebiah, R.N.; Ananthi, S.; Varthini, S.V. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 2013, 15, 211–217. [Google Scholar]
- Liaghat, S.; Ehsani, R.; Mansor, S.; Shafri, H.Z.; Meon, S.; Sankaran, S.; Azam, S.H. Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. Int. J. Remote Sens. 2014, 35, 3427–3439. [Google Scholar] [CrossRef]
- Khairunniza-Bejo, S.; Vong, C.N. Detection of basal stem rot (BSR) infected oil palm tree using laser scanning data. Agric. Agric. Sci. Procedia 2014, 2, 156–164. [Google Scholar] [CrossRef]
- Al Bashish, D.; Braik, M.; Bani-Ahmad, S. Detection and classification of leaf diseases using K-means-based segmentation and Neural-networks-based Classification. Inf. Technol. J. 2011, 10, 267–275. [Google Scholar] [CrossRef]
- Ishaq, I.; Alias, M.; Kadir, J.; Kasawani, I. Detection of basal stem rot disease at oil palm plantations using sonic tomography. J. Sustain. Sci. Manag. 2014, 9, 52–57. [Google Scholar]
- Gullino, M.L.; Bonants, P.J. Detection and Diagnostics of Plant Pathogens; Springer: Berlin/Heidelberg, Germany, 2014; Volume 5. [Google Scholar]
- Fang, Y.; Ramasamy, R.P. Current and prospective methods for plant disease detection. Biosensors 2015, 5, 537–561. [Google Scholar] [CrossRef] [PubMed]
- Lelong, C.C.; Roger, J.-M.; Brégand, S.; Dubertret, F.; Lanore, M.; Sitorus, N.A.; Raharjo, D.A.; Caliman, J.-P. Evaluation of oil-palm fungal disease infestation with canopy hyperspectral reflectance data. Sensors 2010, 10, 734–747. [Google Scholar] [CrossRef] [PubMed]
- As’wad, A.M.; Sariah, M.; Paterson, R.; Abidin, M.Z.; Lima, N. Ergosterol analyses of oil palm seedlings and plants infected with Ganoderma. Crop Prot. 2011, 30, 1438–1442. [Google Scholar] [CrossRef]
- Rathod, A.N.; Tanawal, B.; Shah, V. Image processing techniques for detection of leaf disease. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013, 3, 397–399. [Google Scholar]
- Jagtap, S.B.; Hambarde, M.S.M. Agricultural plant leaf disease detection and diagnosis using image processing based on morphological feature extraction. IOSR J. VLSI Signal Process 2014, 4, 24–30. [Google Scholar] [CrossRef]
- Dhingra, G.; Kumar, V.; Joshi, H.D. Study of digital image processing techniques for leaf disease detection and classification. Multimed. Tools Appl. 2018, 77, 19951–20000. [Google Scholar] [CrossRef]
- Oo, Y.M.; Htun, N.C. Plant leaf disease detection and classification using image processing. Int. J. Res. Eng. 2018, 5, 516–523. [Google Scholar] [CrossRef]
- Meor Yusoff, M.; Khalid, M.A.; Seman, I.A. Identification of basal stem rot disease in local palm oil by microfocus XRF. Nucl. Relat. Technol. 2009, 6, 282–287. [Google Scholar]
- Khaled, A.Y.; Abd Aziz, S.; Bejo, S.K.; Nawi, N.M.; Seman, I.A.; Onwude, D.I. Early detection of diseases in plant tissue using spectroscopy–applications and limitations. Appl. Spectrosc. Rev. 2018, 53, 36–64. [Google Scholar] [CrossRef]
- Idris, A.; Mazliham, M.; Loonis, P.; Wahid, M. GanoSken for early detection of Ganoderma infection in oil palm. MPOB Inf. Ser. 2010, 442, 1–4. [Google Scholar]
- Wilson, A.D. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D. Use of infrared spectroscopy for in-field measurement and phenotyping of plant properties: Instrumentation, data analysis, and examples. Appl. Spectrosc. Rev. 2014, 49, 564–584. [Google Scholar] [CrossRef]
- Shahin, M.; Tollner, E.; McClendon, R.; Arabnia, H. Apple classification based on surface bruises using image processing and neural networks. Trans. ASAE 2002, 45, 1619. [Google Scholar]
- Gonzalez, J.J.; Valle, R.C.; Bobroff, S.; Biasi, W.V.; Mitcham, E.J.; McCarthy, M.J. Detection and monitoring of internal browning development in ‘Fuji’apples using MRI. Postharvest Biol. Technol. 2001, 22, 179–188. [Google Scholar] [CrossRef]
- Sun, D.-W.; Li, B. Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J. Food Eng. 2003, 57, 337–345. [Google Scholar] [CrossRef]
- McKay, R.; Palmer, G.; Ma, X.; Layzell, D.; McKee, B. The Use of Positron Emission Tomography for Studies of Long-Distance Transport in Plants: Uptake and Transport of 18F; Wiley Online Library: Hoboken, NJ, USA, 1988. [Google Scholar]
- Sandobal, C.; Carbó, E.; Iribas, J.; Roverano, S.; Paira, S. Ultrasound nail imaging on patients with psoriasis and psoriatic arthritis compared with rheumatoid arthritis and control subjects. JCR J. Clin. Rheumatol. 2014, 20, 21–24. [Google Scholar] [CrossRef]
- Counter, S.A.; Damberg, P.; Aski, S.N.; Nagy, K.; Berglin, C.E.; Laurell, G. Experimental fusion of contrast enhanced high-field magnetic resonance imaging and high-resolution micro-computed tomography in imaging the mouse inner ear. Open Neuroimaging J. 2015, 9, 7. [Google Scholar]
- Price, D.L.; De Wilde, J.P.; Papadaki, A.M.; Curran, J.S.; Kitney, R.I. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J. Magn. Reson. Imaging 2001, 13, 288–293. [Google Scholar] [CrossRef]
- Lee, F.Y.-I.; Yu, J.; Chang, S.-S.; Fawwaz, R.; Parisien, M.V. Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. JBJS 2004, 86, 2677–2685. [Google Scholar] [CrossRef]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000, 2, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, M.; Thrane, L.; Jørgensen, T.M.; Andersen, P.E.; Jemec, G.B. OCT imaging of skin cancer and other dermatological diseases. J. Biophotonics 2009, 2, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Adhi, M.; Duker, J.S. Optical coherence tomography–current and future applications. Curr. Opin. Ophthalmol. 2013, 24, 213. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Sadr, A.; Burrow, M.F.; Tagami, J.; Ozawa, N.; Sumi, Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J. Dent. 2010, 38, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xi, J.; Huo, L.; Padvorac, J.; Shin, E.J.; Giday, S.A.; Lennon, A.M.; Canto, M.I.F.; Hwang, J.H.; Li, X. Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging. IEEE J. Sel. Top. Quantum Electron. 2009, 16, 863–869. [Google Scholar]
- Anna, T.; Chakraborty, S.; Cheng, C.-Y.; Srivastava, V.; Chiou, A.; Kuo, W.-C. Elucidation of microstructural changes in leaves during senescence using spectral domain optical coherence tomography. Sci. Rep. 2019, 9, 1167. [Google Scholar] [CrossRef]
- Brown, K.; Harvey, M. Optical coherence tomography: Age estimation of Calliphora vicina pupae in vivo? Forensic Sci. Int. 2014, 242, 157–161. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, Y.; Bao, W.; Li, P.; Wang, X.; Ding, Z. Identification of surface defects on glass by parallel spectral domain optical coherence tomography. Opt. Express 2015, 23, 23634–23646. [Google Scholar] [CrossRef]
- Rateria, A.; Mohan, M.; Mukhopadhyay, K.; Poddar, R. Investigation of Puccinia triticina contagion on wheat leaves using swept source optical coherence tomography. Optik 2019, 178, 932–937. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Shirazi, M.F.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Biophotonic approach for the characterization of initial bitter-rot progression on apple specimens using optical coherence tomography assessments. Sci. Rep. 2018, 8, 15816. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Han, S.; Jeong, H.; Han, Y.; Jung, H.-Y.; Kim, P.; Jeon, M.; Kim, J. Optical coherence tomography-integrated, wearable (backpack-type), compact diagnostic imaging modality for in situ leaf quality assessment. Appl. Opt. 2017, 56, D108–D114. [Google Scholar] [CrossRef] [PubMed]
- Stanga, P.; Bird, A. Optical coherence tomography (OCT): Principles of operation, technology, indications in vitreoretinal imaging and interpretation of results. In Laser Scanning: Update 1: First Official Publication of the International Society of Laser Scanning: INSOLAS; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; pp. 9–15. [Google Scholar]
- De Boer, J.F.; Leitgeb, R.; Wojtkowski, M. Twenty-five years of optical coherence tomography: The paradigm shift in sensitivity and speed provided by Fourier domain OCT. Biomed. Opt. Express 2017, 8, 3248–3280. [Google Scholar] [CrossRef] [PubMed]
- Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical coherence tomography (OCT): Principle and technical realization. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics; Springer: Cham, Switzerland, 2019; pp. 59–85. [Google Scholar]
- Cordes, A.; Couceiro, I.; Alvarenga, A.; Malinovski, I.; Dominguez, C.; de Andrade, C.; Russomano, F.; von der Weid, J. Practical considerations for OCT applications. J. Phys. Conf. Ser. 2021, 1826, 012064. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, C.; Kim, J.; Jung, H.-Y. Application of optical coherence tomography to detect Cucumber green mottle mosaic virus (CGMMV) infected cucumber seed. Hortic. Environ. Biotechnol. 2012, 53, 428–433. [Google Scholar] [CrossRef]
- Bennett, C. Seed transmission of plant viruses. Adv. Virus Res. 1969, 14, 221–261. [Google Scholar] [PubMed]
- Yoon, T.; Lee, B.H. Identification of fungus-infected tomato seeds based on full-field optical coherence tomography. Curr. Opt. Photonics 2019, 3, 571–576. [Google Scholar]
- Zhou, Y.; Wu, Y.; Chen, Z. Early Detection of Mold-Contaminated Maize Kernels Based on Optical Coherence Tomography. Food Anal. Methods 2022, 15, 1619–1625. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography. J. Biomed. Opt. 2017, 22, 091502. [Google Scholar] [CrossRef]
- Li, D.; Rajagopalan, U.M.; De Silva, Y.S.K.; Liu, F.; Kadono, H. Biospeckle optical coherence tomography (BOCT) in the speedy assessment of the responses of the seeds of Raphanus sativus L.(Kaiware Daikon) to acid mine drainage (AMD). Appl. Sci. 2021, 12, 355. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Li, X.; Zhao, Z.; Zhang, Z.; Lin, H.; Kang, D.; Shen, Y. Nondestructive in situ monitoring of pea seeds germination using optical coherence tomography. Plant Direct 2022, 6, e428. [Google Scholar] [CrossRef] [PubMed]
- De Silva, Y.S.K.; Rajagopalan, U.M.; Kadono, H.; Li, D. Positive and negative phenotyping of increasing Zn concentrations by Biospeckle Optical Coherence Tomography in speedy monitoring on lentil (Lens culinaris) seed germination and seedling growth. Plant Stress 2021, 2, 100041. [Google Scholar] [CrossRef]
- Chow, T.H.; Tan, K.M.; Ng, B.K.; Razul, S.G.; Tay, C.M.; Chia, T.F.; Poh, W.T. Diagnosis of virus infection in orchid plants with high-resolution optical coherence tomography. J. Biomed. Opt. 2009, 14, 014006. [Google Scholar] [CrossRef] [PubMed]
- Saleah, S.A.; Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Seong, D.; Jung, H.-Y.; Jeon, M.; Kim, J. On-field optical imaging data for the pre-identification and estimation of leaf deformities. Sci. Data 2022, 9, 698. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.S.; Poddar, R.; Satapathy, L.; Mukhopadhyay, K. Image processing–based artificial intelligence system for rapid detection of plant diseases. In Bioinformatics in Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 619–624. [Google Scholar]
- Rajagopalan, U.M.; Kabir, M.; Lim, Y.; Kadono, H. Biospeckle optical coherence tomography in speedy visualizing effects of foliar application of plant growth hormone to Chinese chives leaves. BMC Res. Notes 2020, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Srimal, L.; Rajagopalan, U.; Kadono, H. Functional optical coherence tomography (fOCT) biospeckle imaging to investigate response of plant leaves to ultra-short term exposure of Ozone. J. Phys. Conf. Ser. 2015, 605, 012013. [Google Scholar] [CrossRef]
- González, E.; Sutton, T.B. Population diversity within isolates of Colletotrichum spp. causing Glomerella leaf spot and bitter rot of apples in three orchards in North Carolina. Plant Dis. 2004, 88, 1335–1340. [Google Scholar] [CrossRef]
- Zhou, Y.; Mao, J.; Wu, D.; Liu, T.; Zhao, Y.; Zhou, W.; Chen, Z.; Chen, F. Nondestructive early detection of bruising in pear fruit using optical coherence tomography. Hortic. Sci. Technol. 2019, 37, 140–150. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, D.; Hui, G.; Mao, J.; Liu, T.; Zhou, W.; Zhao, Y.; Chen, Z.; Chen, F. Loquat bruise detection using optical coherence tomography based on microstructural parameters. Food Anal. Methods 2018, 11, 2692–2698. [Google Scholar] [CrossRef]
- Zhou, Y.; Mao, J.; Liu, T.; Zhou, W.; Chen, Z. Discriminating hidden bruises in loquat by attenuation coefficients estimated from optical coherence tomography images. Postharvest Biol. Technol. 2017, 130, 1–6. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Ford, H.D.; Cronje, P.J.; Opara, U.L.; Landahl, S.; Tatam, R.P.; Terry, L.A. Application of optical coherence tomography to non-destructively characterise rind breakdown disorder of ‘Nules Clementine’mandarins. Postharvest Biol. Technol. 2013, 84, 16–21. [Google Scholar] [CrossRef]
- Bollen, W.B. Microorganisms and Soil Fertility; Oregon State College: Corvallis, OR, USA, 1959. [Google Scholar]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Hakim, S.; Naqqash, T.; Nawaz, M.S.; Laraib, I.; Siddique, M.J.; Zia, R.; Mirza, M.S.; Imran, A. Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front. Sustain. Food Syst. 2021, 5, 617157. [Google Scholar] [CrossRef]
- Mohan, M.; Nigam, V.K.; Poddar, R. Towards characterization of bacterial colonies and biofilms: An approach based on swept source optical coherence tomography. Optik 2019, 185, 592–598. [Google Scholar] [CrossRef]
- Qian, J.; Horn, H.; Tarchitzky, J.; Chen, Y.; Katz, S.; Wagner, M. Water quality and daily temperature cycle affect biofilm formation in drip irrigation devices revealed by optical coherence tomography. Biofouling 2017, 33, 211–221. [Google Scholar] [CrossRef]
- Lequette, K.; Ait-Mouheb, N.; Wéry, N. Hydrodynamic effect on biofouling of milli-labyrinth channel and bacterial communities in drip irrigation systems fed with reclaimed wastewater. Sci. Total Environ. 2020, 738, 139778. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, M.; Ji, Y.; He, Y.; Dai, X.; Li, P.; Ma, H. Transverse flow velocity quantification using optical coherence tomography with correlation. Laser Phys. Lett. 2011, 8, 318. [Google Scholar] [CrossRef]
- Tokayer, J.; Jia, Y.; Dhalla, A.-H.; Huang, D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed. Opt. Express 2013, 4, 1909–1924. [Google Scholar] [CrossRef]
Leaf Type, Experimental Day | Avg. (μm) | STD (μm) | Min. (μm) | Max. (μm) |
---|---|---|---|---|
Apple, day 1 | 49.42 | 1.03 | 46.42 | 53.25 |
Apple, day 15 | 78.62 | 1.72 | 75.96 | 81.86 |
Apple, day 30 | 113.05 | 3.21 | 109.72 | 116.85 |
Pear, day 1 | 41.31 | 1.12 | 37.98 | 44.88 |
Pear, day 15 | 62.74 | 2.24 | 59.08 | 67.65 |
Pear, day 30 | 99.39 | 3.12 | 97.06 | 102.15 |
Persimmon, day 1 | 228.92 | 8.52 | 215.22 | 243.35 |
Persimmon, day 15 | 163.69 | 1.93 | 160.36 | 167.47 |
Persimmon, day 30 | 120.82 | 1.73 | 118.16 | 124.66 |
Applications | Sample Type | Cause of Plant Material Changes | OCT-Type | Center Wavelength of the Light Source (nm) | References |
---|---|---|---|---|---|
Screening of disease in plant seed | Cucumber seed | CGMMV d | TD-OCT | 1310 | [55,57,58] |
Tomato seed | Anthracnose (fungus) d | FF-OCT | 650 | ||
Maize kernels | Mold infection d | SD-OCT | 840 | ||
Seed germination rate assessment | Capsicum annum seed | Growth-promoting chemical i | SS-OCT | 1310 | [59,60,61,62] |
Raphanus sativus L. seed | Acid mine drainage i | bOCT | 836.1 | ||
Pea seed | N/A | SD-OCT | 840 | ||
Lentil seed | Zn concentration i | bOCT | 836.1 | ||
Leaf disease and morphological assessment | Wheat leaf | Fungal infection d | SS-OCT | 1060 | [48,63,64,65,66,67] |
Orchid leaf | Virus infection d | FD-OCT | 820 | ||
Persimmon and apple | Circular leaf spot d, apple blotch d | SD-OCT | 850 | ||
Wheat leaf | N/A | SS-OCT | 1060 | ||
Chinese chive leaf | Plant growth hormone i | bOCT | 836.1 | ||
Chinese chive leaf | Exposure to ozone i | SD-OCT | 836.1 | ||
Assessment of physiological disease of fruit | Apple fruit | Bitter-rot d | SS-OCT | 1310 | [49,69,70,71,72] |
Pear fruit | Bruising | SD-OCT | 1300 | ||
Loquat fruit | Bruising | SD-OCT | 1300 | ||
Loquat fruit | Bruising | SD-OCT | 1300 | ||
Mandarin fruit | Rind breakdown disorder d | SD-OCT | 930 | ||
Wearable OCT for on-field inspection | Apple leaf | MarssoninaCoronaria d | SD-OCT | 850 | [50] |
OCT-based microbiological findings | Bacterial colonies and biofilms | N/A | SS-OCT | 1064 | [76,77,78] |
Biofilm in drip irrigation devices | N/A | SD-OCT | 930 | ||
Milli-labyrinth channel and bacterial communities | N/A | SD-OCT | 930 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleah, S.A.; Kim, S.; Luna, J.A.; Wijesinghe, R.E.; Seong, D.; Han, S.; Kim, J.; Jeon, M. Optical Coherence Tomography as a Non-Invasive Tool for Plant Material Characterization in Agriculture: A Review. Sensors 2024, 24, 219. https://doi.org/10.3390/s24010219
Saleah SA, Kim S, Luna JA, Wijesinghe RE, Seong D, Han S, Kim J, Jeon M. Optical Coherence Tomography as a Non-Invasive Tool for Plant Material Characterization in Agriculture: A Review. Sensors. 2024; 24(1):219. https://doi.org/10.3390/s24010219
Chicago/Turabian StyleSaleah, Sm Abu, Shinheon Kim, Jannat Amrin Luna, Ruchire Eranga Wijesinghe, Daewoon Seong, Sangyeob Han, Jeehyun Kim, and Mansik Jeon. 2024. "Optical Coherence Tomography as a Non-Invasive Tool for Plant Material Characterization in Agriculture: A Review" Sensors 24, no. 1: 219. https://doi.org/10.3390/s24010219
APA StyleSaleah, S. A., Kim, S., Luna, J. A., Wijesinghe, R. E., Seong, D., Han, S., Kim, J., & Jeon, M. (2024). Optical Coherence Tomography as a Non-Invasive Tool for Plant Material Characterization in Agriculture: A Review. Sensors, 24(1), 219. https://doi.org/10.3390/s24010219