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Abstract: The occurrence of anomalies on the surface of industrial products can lead to issues such
as decreased product quality, reduced production efficiency, and safety hazards. Early detection
and resolution of these problems are crucial for ensuring the quality and efficiency of production.
The key challenge in applying deep learning to surface defect detection of industrial products is the
scarcity of defect samples, which will make supervised learning methods unsuitable for surface defect
detection problems. Therefore, it is a reasonable solution to use anomaly detection methods to deal
with surface defect detection. Among image-based anomaly detection, reconstruction-based methods
are the most commonly used. However, reconstruction-based approaches lack the involvement of
defect samples in the training process, posing the risk of a perfect reconstruction of defects by the
reconstruction network. In this paper, we propose a reconstruction-based defect detection algorithm
that addresses these challenges by utilizing more realistic synthetic anomalies for training. Our model
focuses on creating authentic synthetic defects and introduces an auto-encoder image reconstruction
network with deep feature consistency constraints, as well as a defect separation network with a large
receptive field. We conducted experiments on the challenging MVTec anomaly detection dataset
and our trained model achieved an AUROC score of 99.70% and an average precision (AP) score of
99.87%. Our method surpasses recently proposed defect detection algorithms, thereby enhancing the
accuracy of surface defect detection in industrial products.

Keywords: defect detection; image reconstruction; synthetic anomalies; defect separation

1. Introduction

Defects on the surface of industrial products refer to incomplete, irregular, or non-
compliant areas or traces that occur during manufacturing, processing, or usage. These
defects can be caused by physical, chemical, mechanical, or other factors and they can
affect the appearance, quality, and performance of the products. The presence of defective
products has a significant impact on both businesses and users. In mature industrial pro-
duction processes, defective products exhibit three main characteristics. Firstly, the number
of defective products is extremely low compared to normal products. Secondly, the defects
exhibit various forms and diverse types. Thirdly, the defect areas are relatively small and
the defect images are similar in distribution to the normal images. Therefore, identifying
the differences between normal and defective samples is a highly challenging task.

Traditional detection methods primarily rely on increased allocation of human re-
sources, where product quality inspectors visually discern the quality of products. This
approach proves to be inefficient and incurs high costs. In addition, machine vision-based
defect detection methods have also been widely explored, including techniques such as
edge detection, threshold segmentation, and texture analysis. However, these techniques
exhibit significant limitations when applied. For example, noise and variations in illumi-
nation can directly result in inaccurate edge detection, unstable threshold segmentation,

Sensors 2024, 24, 264. https://doi.org/10.3390/s24010264 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24010264
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010264?type=check_update&version=2


Sensors 2024, 24, 264 2 of 17

and interference with the texture analysis results. Moreover, these methods typically rely
on designed feature extraction, lacking good adaptability to different types of defects or
image scenes, requiring adjustments and optimizations specific to the problem at hand,
which further involves the challenge of parameter selection. In recent years, there has been
rapid progress in deep learning methods aimed at emulating human habits and capabilities,
with the objective of substituting humans in performing complex and high-risk tasks. With
the swift advancement of computer technology and the enhancement of computational
capabilities, the performance of deep learning-based anomaly detection techniques has
been continuously improving. These techniques have found extensive applications in
various domains, including agricultural production [1,2], industrial manufacturing [3,4],
aerospace [5,6], and computer network security [7,8].

Supervised anomaly detection based on image data is one of the commonly employed
methods in the field of deep learning. By being able to learn the distinctive features of
positive and negative samples, it typically achieves the desired task objectives. However,
the stable performance of supervised learning methods relies on a massive dataset with
a balanced distribution of positive and negative samples. The major challenge in surface
defect detection tasks lies in the extremely limited quantity of defect samples, which can
result in overfitting of the model during fully supervised learning and subsequently affects
the detection accuracy. In comparison, reconstruction-based semi-supervised anomaly
detection methods, which do not require labeled defect samples, have gained popularity
as an alternative approach. Among them, the two most classical categories are based
on Generative Adversarial Networks (GANs) and Autoencoders (AEs), two fundamental
techniques in the field of semi-supervised learning for image reconstruction. These methods
extensively train on a large number of normal samples, aiming to learn the close relationship
between the high-dimensional and low-dimensional distributions of images. This enables
the network to learn how to reconstruct output images that closely resemble the input
images. During testing, defect images are fed into the pre-trained network model, and due
to significant differences from the reconstructed images, they are effectively identified and
filtered out. Therefore, reconstruction-based anomaly detection methods have become an
effective means to accomplish surface defect detection tasks in industrial products. When
the network is trained to be too robust, it tends to perfectly reconstruct defect images as
well, thus evading detection.

However, this type of image reconstruction technique is trained only using normal
samples, and real defect images have never been involved in the entire process. This makes
the inference of the entire network somewhat biased. The reality is that the scarcity of real
defect images prevents their inclusion in the training process, and artificially synthesized
defects generally differ significantly from real defects. As a result, the trained network
exhibits poor generalization ability and fails to detect real defective products. Addition-
ally, the authenticity of the reconstructed images serves as a criterion for assessing the
performance of the reconstruction network. While autoencoders primarily focus on the
reconstruction effect on high-dimensional images without considering low-dimensional
features, Ganomaly takes into account the reconstruction consistency of low-dimensional la-
tent vectors. However, training Ganomaly [9] is often challenging and struggles to converge
to the global optimum.

In response to the aforementioned issues, this study was inspired by the DRAEM [10]
concept to create more realistic and plausible synthetic anomaly images. This approach
addresses the problem of defect images not being involved in the training process. An image
reconstruction network was designed with deep feature consistency, and the network’s
ability to separate defects was enhanced by utilizing the larger effective receptive field
provided by the use of oversized convolutional kernels. This resulted in the generation of
defect region prediction maps. By calculating the loss function using the predicted maps
and the real defect regions, the possibility of the network model directly reconstructing
defect images was eliminated, thus achieving more accurate surface defect detection in
industrial products. The main contributions of this study are as follows:
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• A methodology for creating more realistic synthetic defect images is designed.
• An image reconstruction network with depth feature consistency is constructed.
• A defect prediction network with a widely effective receptive field is being constructed.

2. Related Work
2.1. The Study of Anomaly Synthesis

Obtaining a large amount of defect data is a very challenging issue in defect detection
tasks. Synthetic anomaly is a reverse solution approach that addresses this challenge by
artificially creating more anomalous situations and expanding the defect dataset. The Cut-
Paste method proposed by Chung-Liang Li et al. [11] has been validated on the MVTec [12]
dataset. This method involves cutting out patch blocks from images and pasting them
randomly onto the image to augment the dataset. This data augmentation strategy is simple
and effective, enabling the model to detect local irregularities of the target. However, this
random masking method for creating anomalies does not match actual situations. For
instance, in the bottle dataset, the edge of the bottle bottom may appear in the middle of
the bottle image, and in the toothbrush dataset, the top of the toothbrush head may appear
in the middle of the toothbrush head (as shown on the left in Figure 1). The FIP method
proposed by Jeremy Tan et al. [13] extracts the same patch area from two independent
samples, uses interpolation between the two patches to obtain a fused patch, and then
replaces it at the original patch position. The model trained with this method has stronger
generalization ability and can detect subtle irregularities, performing well on the MOOD
Challenge [14] dataset of medical images. NSA [15] uses Poisson image editing to make
the synthesized defects more natural and closer to real anomalies. DRAEM first uses Berlin
noise to crop DTD [16] texture dataset images and then paste them onto the images to be
trained. The design of the discriminative network is specifically for learning the ability to
separate these synthesized anomalies. However, the Berlin noise is superimposed on the
entire image, beyond the scope of the foreground target (as shown on the right in Figure 1)
and differs significantly from real anomalies, resulting in inaccurate defect positioning.

Figure 1. The left-hand side of the figure presents an example of defect synthesis using the CutPaste
method, while the right-hand side shows an example of defect synthesis using the DRAEM approach.

2.2. The Study of Defect Detection

Image reconstruction has recently been widely used for anomaly detection. Although
it was not originally designed for anomaly detection, it can be forced to capture key un-
derlying patterns through learning the representation of data instances. AnoGAN [17]
was the first method to apply GAN [18] to anomaly detection. During the inference stage,
AnoGAN requires a huge amount of computational resources to iteratively search for the
latent vector z corresponding to an input instance X. Ganomaly, proposed later, improved
upon AnoGAN by incorporating an encoder, which learns the ability to transform image
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instances into latent space vectors during the training process and detects anomalies by cal-
culating the distance between the input image and the reconstructed image. Convolutional
Autoencoders are also widely used for data compression and dimensionality reduction.
Comprising of an encoder and a decoder, the network model must retain the essential
information of data instances to minimize the reconstruction error. DRAEM adopts a dual
autoencoder architecture and uses a re-embedding technique to directly learn the anomaly
distance function, achieving good performance in anomaly detection.

The flow-based method was initially used for network traffic analysis and security
monitoring. Recently, with the development of computer technology, the algorithm per-
formance has been significantly improved. Cflow [19], Csflow [20], and Fastflow [21]
determine anomalies by analyzing the characteristic patterns in data flows and using unsu-
pervised methods to learn anomaly patterns from the data. They have strong adaptability
to the data, but Cflow can only detect abnormal traffic significantly different from normal
data, as Csflow has weak processing ability for high-dimensional data, which can result in
false positives or negatives, and Fastflow has limited effectiveness in industrial product
defect detection due to the need for a large amount of data for training and weak processing
ability for high-dimensional data.

Using pre-trained models can greatly reduce training time and have good feature
extraction capabilities. STFPM [22] and RDFOCE [23] are based on the teacher–student
network architecture and belong to a class of knowledge distillation methods that cooperate
with pre-trained models. They can be trained end-to-end, but RDFOCE requires a high
amount of training data, as insufficient training data can lead to performance degradation.
STFPM may perform poorly when dealing with large-sized images due to the large amount
of data needed.

Performing data feature extraction followed by processing the feature set is also a
good approach for anomaly detection. PatchCore [4] divides images into patches, extracts
features via convolutional networks, learns the similarity of nodes in the PatchCore graph,
and detects anomalies using clustering. PaDim [24] shares a similar approach with Patch-
Core, but uses an anomaly detection model to detect anomalies. DFM [25] also extracts
features to establish the probability distribution of normal samples in the feature space
and detects anomalies by calculating the likelihood of a new sample belonging to normal
samples. The commonality among these three methods is that they rely too much on the
accuracy of the feature extraction network. If there are few available normal samples for
learning, it may lead to problems such as feature learning bias. In addition, other methods
include CFA [26], which uses feature adaptation and coupled hypersphere methods for
anomaly detection, but consumes significant computational resources.

3. Method

The defect detection algorithm model proposed in this study, which is based on the
prediction of defect maps through the learning of abnormal distance function, is composed
of an image reconstruction network and an anomaly separation network (as shown in
Figure 2).

The image reconstruction network is trained to ensure that the reconstructed image
and the original normal image have highly similar high-level semantic information and
low-level semantic information, resulting in high visual similarity between the two. The
anomaly separation network takes the reconstructed image and the synthesized abnormal
image as inputs and aims to learn the distance function between the abnormal image and
the real image, thereby generating accurate abnormal segmentation images and completing
the defect detection task. The mechanism for synthesizing anomalies adopts a simple
cut-and-patch method to mimic real anomalies and add a large number of realistic defect
samples, thus compensating for the sample imbalance problem caused by the lack of defect
images in the training data of the image reconstruction method.
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Figure 2. The model consists of a reconstruction network on the left and a defect prediction network
on the right. The reconstruction network comprises an autoencoder and a deep feature extractor,
while the defect prediction network employs an ultra-large kernel convolutional encoder and connects
the encoding and decoding components via a U-Net network.

3.1. Abnormal Synthesis Process

Defects can be commonly understood as the situation where the contextual infor-
mation of a certain region on the foreground target is significantly different from that of
the surrounding areas and is unrelated to the target background. Unlike DRAEM, we
emphasize the authenticity of synthesizing anomalies. Based on this principle, the process
of generating synthetic abnormal images can be divided into three stages (as shown in
Figure 3).

In the first stage, an input image I is selected and a sample A is randomly extracted
from the normal images in the same dataset to serve as the anomaly source. The foreground
object corresponding to the region is obtained by using edge detection with dilated padding
or by directly setting a grayscale threshold, resulting in the corresponding mask images IM
and AM. We use a Perlin noise generator to generate random noise texture image P, which
is then compared with a preset threshold to produce a binary mask image PM.

In the second stage, since P is randomly generated, the unobstructed areas of PM (the
white area of PM in Figure 3) may appear within the specified range (the size of the image),
but we want the synthetic anomaly to appear on the foreground object. Therefore, the
anomaly source mask image AM is first multiplied pixel-wise with the Perlin noise mask
image PM to obtain the mask image M1, and the defect region is constrained within the
valid range. Then, the input image mask image IM is multiplied pixel-wise with M1 to
obtain the final mask image M2 (the same as M in Figure 2). Therefore, the final mask
image M2 is defined as:

M2 = AM
⊙

PM
⊙

IM (1)
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Figure 3. The three stages of anomaly image synthesis.

In the third stage, M2 is used to extract a portion of the region from sample A, and
similarly, M2 is used to extract the corresponding region from input image I, which is then
blended using random interpolation to obtain the final defect image. It is then combined
with the other regions (1− M2) of the input image I to obtain the final synthesized anomaly
image. Therefore, the anomaly image Ia is defined as:

Ia = (A
⊙

M2)β + (I
⊙

M2)(1 − β) + I
⊙

(1 − M2) (2)

where
⊙

is pixel-wise multiplication, while β is a random interpolation coefficient with
β ∈ [0, 0.8). The defect region created using the random interpolation blending method
includes both the partial information of the original image I and the information from
the anomaly source image A, which makes the synthesized anomaly diverse and realistic.
Figure 4 presents a set of examples of synthesized anomaly images.

Figure 4. From left to right, the three columns are the anomaly source image A, the input image I,
and the synthesized anomaly image Ia.
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Therefore, our synthetic anomaly method ensures that the anomaly cases appear only
on the foreground object, independent of the background, and the anomalies produced are
more realistic.

3.2. Image Reconstruction Network

The reconstruction module consists of an autoencoder and a deep feature vector
extractor, which aim to extract key information from synthesized defective images and
reconstruct the original image (as shown on the left in Figure 2) using the reconstruction
network. The network structure of the deep feature vector extractor is identical to the
encoder part of the autoencoder but does not participate in network parameter updates.
Instead, before each training session, all the parameters of the encoder are copied to the
corresponding locations of the feature extractor. The intuition behind this design is that the
entire reconstruction network, constrained by both the reconstruction loss function and
deep feature loss function, can learn to reconstruct normal images or synthesized anomaly
images into normal images via continuous training. In other words, the encoder part
of the autoencoder can extract key information for perfect reconstruction from different
input images, and its ability to extract key features continues to improve. Therefore, it is
reasonable to use the feature extractor with the same parameter settings to extract deep
features for the reconstructed image.

The L2 loss function is commonly employed to compute the sum of squared pixel
differences between generated and real images. However, it is heavily influenced by noise
and outliers and exhibits poor recovery performance for edge details. The L2 loss is defined
as follows:

L2(I, Ir) =
1

HW

H

∑
i=1

W

∑
j=1

∥Ia(i, j)− I(i, j)∥2 (3)

The SSIM [27] loss function can be used to measure the structural similarity between
the generated image and the original image and can compensate for the shortcomings of
the L2 loss function. The SSIM loss is defined as follows:

LSSIM(I, Ir) =
1

HW

H

∑
i=1

W

∑
j=1

1 − SSIM(I, Ir)(i,j) (4)

The variables H and W in Equations (3) and (4) represent the height and width of
the input image I, respectively, which denotes the reconstructed image generated by the
network, and SSIM is the similarity function used to measure the similarity between
I and Ir.

The two loss functions are combined proportionally to form the visual image recon-
struction loss function Lvision, which is used to measure the loss of image reconstruction in
terms of visual perception.

Lvision(I, Ir) = λ1LSSIM(I, Ir) + L2(I, Ir) (5)

where λ1 is a hyperparameter used to balance the two loss functions.
In addition, the loss function L1 is calculated based on the deep feature vectors of the

extracted input image z and the reconstructed image ẑ, in order to ensure that the generated
image is close to the original one in terms of high-level semantic information. This part of
the loss is defined as Ldeep.

Therefore, the loss function of the image reconstruction network is formulated as
follows:

Lrec(I, Ir) = λ2Lvision(I, Ir) + λ3Ldeep(z, ẑ) (6)

where λ2 and λ3 are hyperparameters used to balance the visual loss and deep feature loss,
respectively, in the loss function of the image reconstruction network.
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3.3. The Large Convolutional Kernel Defect Prediction Network

The RepLKNet network proposed by Xiaohan Ding et al. [28] uses a large 31 × 31
convolutional kernel for computation, which has a larger effective receptive field compared
to the approach of using multiple small convolutional kernels to form an equivalent
large one, demonstrating good performance on ImageNet [29] classification, COCO [30]
detection, and ADE20K [31] segmentation tasks. The defect prediction network adopts an
autoencoder architecture and employs U-Net [32] network connections (as shown on the
right in Figure 2). The reconstructed image Ir and the synthesized abnormal image Ia are
concatenated at the channel level and inputted into the network. The network learns an
appropriate distance metric between the reconstructed image Ir and the input abnormal
image Ia, predicting the probability of defects occurring at the pixel level. The design
concept of using large convolutional kernels is employed in the encoder part of the network,
where the concatenated image Ir + Ia is inputted with a size of 256 × 256 and six channels.
After being processed via four stem layers, the output is a feature map with 128 channels
and a size of 64 × 64. The feature map then enters the stage block, which includes four
stages that use large convolutional kernels of sizes [31, 29, 27, 13] to extract information.
To address the optimization problems, the small kernel reparameterization is introduced.
The synthesized defects are generated using Gaussian noise, and the distribution of the
abnormal areas is random, resulting in an imbalance of the defect and normal areas. Focal
Loss [33] has shown good performance in dealing with sample imbalance and difficult
classification problems. Therefore, it is selected as the loss function Lseg for the defect
prediction network:

Lseg = L f ocal(pt) = −αt(1 − pt)
γ log(pt) (7)

where pt is defined as:

pt =

{
p, i f y = 1
1 − p, otherwise

(8)

In our model, p represents the probability that each pixel position in the predicted
abnormal image outputted by the defect prediction network is an abnormal area.

Taking into account the two parts mentioned above, the overall loss function Ltotal of
the network is formulated as follows:

Ltotal(I, Ir, M2, Mp) = L f ocal(pt) = Lrec(I, Ir) + Lseg(M2, Mp) (9)

where M2 is the final mask image, representing the ground truth, and Mp is the defect
prediction image.

3.4. Abnormality Score

The defect prediction image Mp can serve as a criterion for judging whether there are
abnormalities. After being smoothed via mean filtering to aggregate local abnormal infor-
mation, the final image-level abnormality score is obtained by utilizing maximum pooling:

η = max(Mp ∗ fs f ×s f ) (10)

where ∗ represents the convolutional operator, fs f ×s f is a mean filter with a size of s f × s f ,
max is the maximum pooling operation, and the abnormality score η corresponds to the
maximum value in the feature map after maximum pooling.

4. Experiments

The performance of this method was evaluated and compared with other advanced
methods in the field of defect detection. Furthermore, the effectiveness of each component
module of the proposed method was validated via ablation experiments.
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4.1. Experimental Setup

We evaluated our method on the MVTec anomaly detection dataset, which is currently
a challenging benchmark test set used to evaluate and compare different defect detection
algorithms. MVTec AD contains approximately 5000 real industrial defect images from
15 different categories in 13 industrial sectors, including approximately 2500 defective
images. The dataset also provides pixel-level mask annotations to indicate the location and
shape of the defects in the images. In anomaly detection, image-level AUROC is commonly
used to evaluate the algorithm’s ability to detect anomalies. To evaluate the performance
of our proposed method, we used image-level AUROC as an evaluation metric in anomaly
detection. Additionally, we also used average precision (AP) as a benchmark for evaluating
the model’s ability to locate defects.

In the experiment, we trained the network on the MVTec AD dataset for 700 epochs,
with a learning rate set to 10−4. We performed fine-tuning by multiplying the learning
rate by 0.1 at 400 and 600 epochs to achieve global optimization. Throughout the training
process, we saved the best-performing model. The hyperparameters in the loss function
were set to λ1 = 1, λ2 = 0.8, and λ3 = 0.2, respectively.

During training, we also used data augmentation via image rotation to compensate
for the limited number of training samples. We still used MVTec AD as a source of anomaly
images for defect manufacturing to create more realistic defect images and improve the
model’s robustness. The experiment was conducted on a computer equipped with an
NVIDIA RTX 3090 GPU.

4.2. Anomaly Detection

Samet Akcay et al. [34] proposed the anomalib library based on the PyTorch Lightning
architecture, which includes several state-of-the-art anomaly detection algorithms. We
reproduced these anomaly detection algorithms on a computer equipped with an NVIDIA
RTX 3090 GPU. The parameter settings for all methods remained consistent with the original
papers, and a quantitative comparison was conducted against our proposed algorithm (as
shown in the Tables 1 and 2). Our method achieved the highest AUROC in 14 out of the
15 categories in the dataset, with an average value of 99.70% when rounded to two decimal
places. This is 1.1 percentage points higher than the previous best-performing method, and
it outperformed the baseline method DRAEM in all aspects. Furthermore, based on the
ROC curve, the optimal threshold for distinguishing between defective and non-defective
items was determined. The accuracy of defect detection reached 98.41%, with an average
inference time of 0.041 s per sample during testing. Moreover, the results demonstrate the
exceptional stability of our method on texture-based datasets, with nearly all the values of
AUROC approaching 100%, as well as on several datasets of regular-shaped objects. The
test results of some categories are shown in Figure 5, and the distribution of predicted defect
locations almost coincides with the actual situation. Taking the cable dataset as an example,
we show their ROC curves in Figure 6, and it can be seen that the area under the curves
is close to 1. Figure 7 are visualizations of box plots for Tables 1 and 2, which intuitively
demonstrate the different distributions of results for various testing methods. Our method
has the most concentrated distribution among all methods. Figure 8 displays comparisons
between our method and three other methods, PaDim, DRAEM, and STFPM, in terms of
predicted and ground truth images for some samples. It can be observed that our method
is closer to the ground truth images. The model performs poorly on several types of data,
which can be explained by the fact that our defect synthesis method creates abnormal
images that are relatively realistic, posing a greater challenge to anomaly detection.
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Figure 5. Results of defect prediction for several categories. For each category, the four images from
left to right are the original image, the defect prediction image, the heat map, and the ground truth.

Table 1. Our method compared to defect detection algorithms based on optical flow and pre-trained
model-based methods: a comparison of AUROC values on the MVTecAD dataset.

Category Cflow [19] Csflow [20] Fastflow [21] STFPM [22] RDFOCE [23] Ours

bottle 100.0 99.4 100.0 99.8 93.2 99.5
cable 93.1 97.3 90.8 93.4 92.9 98.8

capsule 90.3 97.7 87.6 67.5 90.5 99.5
carpet 94.8 97.9 97.2 98.4 98.3 99.8
grid 86.5 99.3 98.3 93.8 94.7 100.0

hazelnut 99.3 93.2 81.0 99.1 100.0 100.0
leather 99.9 99.7 100.0 100.0 86.5 100.0

metal nut 97.9 94.6 95.7 98.5 97.4 100.0
pill 90.2 93.3 91.4 76.7 95.7 98.8

screw 91.0 98.1 72.4 79.5 88.6 100.0
tile 91.0 98.1 72.4 79.5 88.6 100.0

toothbrush 95.0 94.3 82.2 86.3 97.0 100.0
transistor 91.4 98.0 91.0 91.8 93.1 99.2

wood 99.6 98.7 96.8 98.7 99.2 100.0
zipper 92.1 98.6 94.0 84.6 92.7 99.9

Average 94.7 97.3 91.6 90.9 93.3 99.7

Table 2. Our method compared to defect detection algorithms based on feature extraction and image
reconstruction methods: a comparison of AUROC values on MVTecAD dataset.

Category PC * [4] PaDim [25] DFM [26] DRAEM [10] CFA [27] Ganomaly [9] Ours

bottle 100.0 99.4 100.0 99.2 99.8 54.6 99.5
cable 98.7 84.3 95.6 91.8 97.2 56.6 98.8

capsule 97.2 90.1 94.4 98.5 90.7 66.6 99.5
carpet 98.1 94.5 81.7 97.0 97.3 55.8 99.8
grid 97.0 85.7 73.6 99.9 95.0 86.0 100.0

hazelnut 100.0 75.0 99.4 100.0 100.0 88.5 100.0
leather 100.0 98.2 99.3 100.0 100.0 43.8 100.0

metal nut 99.6 96.1 92.2 98.7 99.1 48.7 100.0
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Table 2. Cont.

Category PC * [24] PaDim [25] DFM [26] DRAEM [10] CFA [27] Ganomaly [9] Ours

pill 94.2 86.3 96.1 98.9 94.9 66.7 98.8
screw 97.3 75.9 89.0 93.9 70.8 44.3 100.0

tile 98.7 95.0 96.6 99.6 99.8 59.3 100.0
toothbrush 100.0 88.9 96.9 100.0 100.0 41.9 100.0
transistor 100.0 92.0 93.9 93.1 96.5 58.2 99.2

wood 99.4 97.6 97.7 99.1 99.5 86.9 100.0
zipper 99.4 77.9 96.9 100.0 96.7 56.2 99.9

Average 98.6 89.1 93.6 98.0 95.8 60.9 99.7
* PC refers to PatchCore.

Figure 6. The ROC curve for the cable dataset is shown in the upper and lower halves of the figure,
respectively.

Figure 7. Visualizations of the box plots for Tables 1 and 2 show the distribution of results for
each method.
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Figure 8. Several examples of comparisons between predicted results from different methods and
ground truth images.

4.3. Defect Localization

We compared the performance of our method with several latest pixel-level anomaly
detection methods in terms of the AP performance metric (as shown in the Table 3).
Our method outperformed the baseline method DRAEM in terms of AP scores in all
15 categories, with a numerical improvement of 31.47%. Our method also surpassed other
detection methods (data sourced from DRAEM). We also take the cable dataset as an exam-
ple and show the obtained AP curve in Figure 9. It can be seen that the precision values
can still maintain a relatively high level at high recall rates, indicating that our model can
predict the true anomaly distribution accurately after training.

Table 3. Our method compared to advanced anomaly localization algorithms: a comparison of AP
values on the MVTecAD dataset.

Category US [35] RIAD [36] PaDim DRAEM Ours

bottle 74.2 76.4 77.3 86.5 99.8
cable 48.2 24.4 45.4 52.4 99.6

capsule 25.9 38.2 46.7 49.4 99.9
carpet 52.2 52.2 60.7 53.5 100.0
grid 10.1 36.4 35.7 65.7 100.0

hazelnut 57.8 33.8 61.1 92.9 100.0
leather 40.9 49.1 53.5 75.3 100.0

metal nut 83.5 64.3 77.4 96.3 100.0
pill 62.0 51.6 61.2 48.5 99.8

screw 7.8 43.9 21.7 58.2 100.0
tile 65.3 52.6 52.4 92.3 100.0

toothbrush 37.7 50.6 54.7 44.7 100.0
transistor 27.1 39.2 72.0 50.7 98.9

wood 53.3 38.2 46.3 77.7 100.0
zipper 36.1 63.4 58.2 81.5 100.0

Average 45.5 48.2 55.0 68.4 99.9
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Figure 9. The AP curve for the cable dataset is shown in the upper and lower halves of the figure,
respectively.

4.4. Ablation Experiments

In order to demonstrate the effectiveness of the network structure, we designed several
sets of control experiments, mainly evaluating from three aspects: model design, abnormal
image source selection, and network training.

4.4.1. Model Structure

We incorporated a deep feature extractor on the basis of the reconstruction network
autoencoder and evaluated its impact on anomaly detection. Through comparative experi-
ments (as shown in item 1 and 2 in Table 4), it was found that the reconstruction network,
with the addition of the deep feature extractor, had some improvement in detection per-
formance compared to DRAEM. This can be explained by the fact that the addition of
deep feature loss makes the reconstructed image and the original input image visually and
deeply feature-wise closer, making the information contained in the reconstructed image
more abundant and specific.

Table 4. Ablation experiments on different comparison schemes.

Structure Abnormal Appearance Training Approach Result

Number
Deep

Features
Large

Kernel MVTec AD DTD
Parameter
Copying

Gradient
Update AUROC AP

1 ✓ 98.00 68.40
2 ✓ ✓ 99.23 99.62
3 ✓ ✓ 99.61 99.78
4 ✓ 99.25 99.54
5 ✓ ✓ 99.58 99.79
6 ✓ ✓ ✓ 99.27 99.49
7 ✓ ✓ ✓ ✓ 99.70 99.87
8 ✓ ✓ ✓ ✓ 99.33 99.69

Next, we fixed the existing autoencoder reconstruction network and conducted com-
parative experiments on the encoding part of the defect prediction network using the
RepLKNet structure, which showed significant improvement in performance compared
to the baseline model. This is because the actual receptive field of the larger convolution
kernel is larger than the effective receptive field of the stacked small convolution kernels,
as proven in the RepLKNet paper. A larger receptive field allows the network to better un-
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derstand the global structure and contextual information in the image, avoiding overfitting
during network training and thus learning more general features in the image.

4.4.2. Abnormal Appearance

We evaluated the proposed new anomaly synthesis method by changing the anomaly
source from the DTD dataset used by DRAEM to the MVTec anomaly detection dataset.
From the data (as shown in items 1 and 4 in Table 4), it can be seen that this approach
slightly improved the detection performance. This may be due to the use of random linear
interpolation during the anomaly synthesis process, which allowed the synthesized defec-
tive images to retain some of the original image information, allowing the reconstruction
network to more accurately recover the original image from these residual information.
Furthermore, for some of the object datasets, the defect positions we created accurately
appeared on the foreground objects, which is in line with the consensus and allows the
network to learn towards discriminating real defects. Under the premise of using the
MVTec anomaly detection dataset as the anomaly source, experiments were conducted
by adding a deep feature extractor and a large kernel convolution encoder (as shown in
items 4, 5, 6, and 7 in Table 4), and the results showed that the network that included all
parts (as shown in item 7 in Table 4) had the best performance, confirming the effectiveness
and indispensability of the design and composition of the reconstruction network and the
defect prediction network. Figure 10 presents examples of performance in each ablation
experiment, and it can be observed that our final model displays the results that are closest
to the ground truth images.

Figure 10. The first row to the last row in the figure are baseline method (item 4 in Table 4), ablation
experiment of generative network (item 6 in Table 4), ablation experiment of defect prediction network
(item 5 in Table 4), and our method (item 7 in Table 4), respectively. The rightmost column in the
image is the ground truth.
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4.4.3. Training Method

The structure of the deep feature extractor we designed is exactly the same as the
encoder part of the reconstruction network, but the training strategy for this part is different
from direct training and parameter sharing, instead using a direct copying approach. The
experimental results showed that the effect of direct training without parameter copying
is comparable to that of the network that only changed the anomaly synthesis method
(as shown in items 4 and 8 in Table 4). This suggests that if a similar form of the feature
extractor structure is trained directly, it may in turn affect the model’s anomaly detection
capability, whereas our parameter copying training method achieved the best results (as
shown in items 7 and 8 in Table 4). This is because the autoencoder is constrained by
the loss function between the input image and the reconstructed image. After multiple
rounds of training, the encoder part learns the ability to extract key feature information
from normal or synthesized abnormal input images and uses the decoder to reconstruct the
deep features with less data into the original normal image. The feature extraction ability
of this encoder is based and unquestionable. Therefore, copying all parameters directly to
the deep feature extractor allows it to extract the key features of the reconstructed image,
ensuring consistency in deep features between the original and reconstructed images. If the
deep feature extractor is directly involved in network parameter updates, the validity of
the key information extracted by the extractor will be questioned due to the lack of direct
constraints like the reconstruction loss of the autoencoder. Although the deep feature loss
correction is used to make the extracted features close to the intermediate layer features of
the autoencoder, the cost is that it greatly misleads the network training direction in the
early stages of training, making it impossible for the network to converge to the optimal
point. This is also one of the factors why the anomaly detection performance of methods
such as GANomaly with directly trained feature extractors is not good enough.

5. Conclusions

A semi-supervised defect detection algorithm based on defect map prediction with
realistic synthetic anomalies is proposed in this paper. Our method demonstrates excellent
performance in industrial product defect detection tasks. After conducting experiments
on the MVTec dataset, which consists of 15 different categories, our method outperformed
other recent detection methods by 1.1 percentage points on the AUROC evaluation metric,
showcasing its strong generalization capability. Furthermore, our method surpassed
the best-performing DRAEM by 31.5% on the defect localization evaluation metric AP,
indicating a significant improvement in localization accuracy. This is because we only
learn the distance function between normal and abnormal samples, rather than directly
learning the features of anomalies. By employing various data preprocessing techniques
such as affine transformations and image enhancement, combined with the utilization
of synthetically generated realistic abnormal images as input samples for training, the
network has acquired enhanced resistance to interference and robustness. We discussed the
design of the two sub-modules, analyzed the benefits of parameter copying in the feature
extractor, and demonstrated the effectiveness of large kernel convolution in expanding the
receptive field in practical applications via experiments.
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