Temporal Electroencephalography Traits Dissociating Tactile Information and Cross-Modal Congruence Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Paradigm
2.3. Data acquisition and Preprocessing
2.4. Cortical Current Source Estimation
2.5. ERP
2.6. SEP
2.7. Classification Analysis
2.8. Statistical Analysis
3. Results
3.1. Classification Results for ERP and SEP
3.2. Brain Regions Contributing to ERP-Based Classification
4. Discussion
- (1)
- The materials used in this study were two easily distinguishable materials with completely different degrees of surface roughness. It is expected that improving the similarity of the materials would decrease discrimination accuracy. Therefore, it would be interesting to investigate the degree to which stimulus similarities can be discriminated. For example, it may be possible to seek the limits that could provide greater perception while giving the user a more realistic experience using VR technology. To clarify this possibility, it is necessary to use materials with similar characteristics of surface roughness in future studies.
- (2)
- In addition, it would be useful to conduct an experiment with additional tasks for either visual or tactile stimuli and no tactile or visual stimuli (i.e., only electrical stimulation) and then analyze the results because it may be possible to dissociate responses that may be associated with sensory integration by subtracting brain responses ranging from unimodal to multimodal conditions [55,56].
- (3)
- In this study, it was expected that the congruency effect between visual and tactile information would appear in the process of perceptual processing because the participants judged what object they were touching. Therefore, it would be interesting to investigate where changes in brain activity due to congruency effects appear. To this end, network analysis may be useful to capture the signal flow and brain regions that contribute to the effect.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabrik, S.; Behroozi, M.; Schlaffke, L.; Heba, S.; Lenz, M.; Lissek, S.; Güntürkün, O.; Dinse, H.R.; Tegenthoff, M. Visual and Tactile Sensory Systems Share Common Features in Object Recognition. eNeuro 2021, 8, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Spence, C.; Pavani, F.; Driver, J. Spatial constraints on visual-tactile cross-modal distractor congruency effects. Cogn. Affect. Behav. Neurosci. 2004, 4, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Power, R.P. The dominance of touch by vision: Sometimes incomplete. Perception 1980, 9, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Guest, S.; Spence, C. Tactile dominance in speeded discrimination of textures. Exp. Brain Res. 2003, 150, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Shore, D.I.; Barnes, M.E.; Spence, C. Temporal aspects of the visuotactile congruency effect. Neurosci. Lett. 2006, 392, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Contini, E.W.; Wardle, S.G.; Carlson, T.A. Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions. Neuropsychologia 2017, 105, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Cichy, R.M.; Pantazis, D.; Oliva, A. Similarity-based fusion of MEG and fMRI reveals spatio-temporal dynamics in human cortex during visual object recognition. Cereb. Cortex 2016, 26, 3563–3572. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, J. Regional distributions of functions in parietal association area 7 of the monkey. Brain Res. 1981, 206, 287–303. [Google Scholar] [CrossRef]
- Avillac, M.; Denève, S.; Olivier, E.; Pouget, A.; Duhamel, J.R. Reference frames for representing visual and tactile locations in the parietal cortex. Nat. Neurosci. 2006, 8, 941–949. [Google Scholar] [CrossRef]
- Duhamel, J.R.; Colby, C.L.; Goldberg, M.E. Ventral intraparietal area of the macaque: Congruent visual and somatic response properties. J. Neurophysiol. 1998, 79, 126–136. [Google Scholar] [CrossRef]
- Graziano, M.S.; Gandhi, S. Location of the polysensory zone in the precentral gyrus of monkeys. Exp. Brain Res. 2000, 135, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Scandolara, C.; Matelli, M.; Gentilucci, M. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav. Brain Res. 1981, 2, 147–163. [Google Scholar] [CrossRef]
- Bruce, C.; Desimone, R.; Gross, C.G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 1981, 46, 369–384. [Google Scholar] [CrossRef] [PubMed]
- James, T.W.; James, K.H.; Humphrey, G.K.; Goodale, M.A. Do visual and tactile object representations share the same neural substrate? In Touch and Blindness: Psychology and Neuroscience; Psychology Press: London, UK, 2006; pp. 139–155. [Google Scholar]
- Pietrini, P.; Furey, M.L.; Ricciardi, E.; Haxby, J.V. Beyond sensory images: Object-based representation in the human ventral pathway. Proc. Natl. Acad. Sci. USA 2004, 101, 5658–5663. [Google Scholar] [CrossRef]
- Beauchamp, M.S.; Pasalar, S.; Ro, T. Neural substrates of reliability-weighted visual-tactile multisensory integration. Front. Syst. Neurosci. 2010, 4, 1480. [Google Scholar] [CrossRef]
- Gentile, G.; Petkova, V.I.; Ehrsson, H.H. Integration of visual and tactile signals from the hand in the human brain: An fMRI study. J. Neurophysiol. 2011, 105, 910–922. [Google Scholar] [CrossRef]
- Gentile, G.; Guterstam, A.; Brozzoli, C.; Ehrsson, H.H. Disintegration of multisensory signals from the real hand reduces default limb self-attribution: An fMRI study. J. Neurosci. 2013, 14, 13350–13366. [Google Scholar] [CrossRef]
- Limanowski, J.; Blankenburg, F. Integration of visual and proprioceptive limb position information in human posterior parietal, premotor, and extrastriate cortex. J. Neurosci. 2016, 36, 2582–2589. [Google Scholar] [CrossRef]
- Krebber, M.; Harwood, J.; Spitzer, B.; Keil, J.; Senkowski, D. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices. NeuroImage 2015, 15, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Florian, G.; Uwe, F.; Peter, K.; Engel, A.K. Long-range functional coupling predicts performance: Oscillatory EEG networks in multisensory processing. NeuroImage 2019, 196, 114–125. [Google Scholar] [CrossRef]
- Göschl, F.; Friese, U.; Daume, J.; König, P.; Engel, A.K. Oscillatory signatures of crossmodal congruence effects: An EEG investigation employing a visuotactile pattern matching paradigm. NeuroImage 2015, 116, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; Zhang, Y. Relative distance and gaze in the use of entity-referring spatial demonstratives: An event-related potential study. J. Neurolinguistics 2013, 26, 31–45. [Google Scholar] [CrossRef]
- Rossi, V.; Pourtois, G. State-dependent attention modulation of human primary visual cortex: A high density ERP study. NeuroImage 2012, 60, 2365–2378. [Google Scholar] [CrossRef] [PubMed]
- Allison, T.; McCarthy, G.; Wood, C.C.; Jones, S.J. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve: A review of scalp and intracranial recordings. Brain 1991, 114, 2465–2503. [Google Scholar] [CrossRef] [PubMed]
- Deschrijver, E.; Wiersema, J.R.; Brass, M. The interaction between felt touch and tactile consequences of observed actions: An action-based somatosensory congruency paradigm. Soc. Cogn. Affect. Neurosci. 2015, 11, 1162–1172. [Google Scholar] [CrossRef]
- Cardini, F.; Longo, M.R. Congruency of body-related information induces somatosensory reorganization. Neuropsychologia 2016, 84, 213–221. [Google Scholar] [CrossRef]
- Aspell, J.E.; Palluel, E.; Blanke, O. Early and late activity in somatosensory cortex reflects changes in bodily self-consciousness: An evoked potential study. Neuroscience 2012, 216, 110–122. [Google Scholar] [CrossRef]
- Sakamoto, M.; Ifuku, H. Attenuation of sensory processing in the primary somatosensory cortex during rubber hand illusion. Sci. Rep. 2021, 11, 7329. [Google Scholar] [CrossRef]
- Kawashima, Y.; Toma, S.; Nakajima, Y. Attenuation of somatosensory evoked potentials by acupuncture and tactile skin stimulation in man. Brain Topogr. 1991, 4, 37–46. [Google Scholar] [CrossRef]
- Sato, M.; Yoshioka, T.; Kajihara, S.; Toyama, K.; Goda, N.; Doya, K.; Kawato, M. Hierarchical bayesian estimation for MEG inverse problem. NeuroImage 2004, 23, 806–826. [Google Scholar] [CrossRef]
- Yamashita, O.; Sato, M.A.; Yoshioka, T.; Tong, F.; Kamitani, Y. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage 2008, 42, 1414–1429. [Google Scholar] [CrossRef] [PubMed]
- Klem, G.H.; Lüders, H.O.; Jasper, H.; Elger, C. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1999, 52, 3–6. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open-source toolbox for analysisof single-trial EEG dynamics including independent component analysis. J. Neurosci. 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Bufalari, I.; Aprile, T.; Avenanti, A.; Russo, F.D.; Aglioti, S.M. Empathy for Pain and Touch in the Human Somatosensory Cortex. Cereb. Cortex 2007, 17, 2553–2561. [Google Scholar] [CrossRef]
- Github. Available online: https://github.com/sccn/cleanline (accessed on 11 November 2023).
- Ludwig, K.A.; Miriani, R.M.; Langhals, N.B.; Joseph, M.D.; Anderson, D.J.; Kipke, D.R. Using a Common Average Reference to Improve Cortical Neuron Recordings from Microelectrode Arrays. J. Neurophysiol. 2009, 101, 1679–1689. [Google Scholar] [CrossRef] [PubMed]
- Baillet, S.; Mosher, J.C.; Leahy, R.M. Electromagnetic brain mapping. IEEE Signal Process. 2001, 18, 14–30. [Google Scholar] [CrossRef]
- Yoshioka, T.; Toyama, K.; Kawato, M.; Yamashita, O.; Nishina, S.; Yamagishi, N.; Sato, M. Evaluation of hierarchical bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals. NeuroImage 2008, 42, 1397–1413. [Google Scholar] [CrossRef]
- Cruccu, G.; Aminoff, M.J.; Curio, G.; Guerit, J.M.; Kakigi, R.; Mauguiere, F.; Rossini, P.M.; Treede, R.D.; Garcia-Larrea, L. Recommendations for the clinical use of somatosensory-evoked potentials. Clin. Neurophysiol. 2008, 199, 1705–1719. [Google Scholar] [CrossRef]
- Essen, D.C.V.; Smith, S.M.; Barch, D.M.; Behrens, T.E.J.; Yacoub, E.; Ugurbil, K. The WU-Minn Human Connectome Project: An overview. NeuroImage 2013, 80, 62–79. [Google Scholar] [CrossRef]
- Baker, C.M.; Burks, J.D.; Briggs, R.G.; Sheets, J.R.; Conner, A.K.; Glenn, C.A.; Sali, G.; McCoy, T.M.; Battiste, J.D.; O’Donoghue, D.L.; et al. A Connectomic Atlas of the Human Cerebrum-Chapter 3: The Motor, Premotor, and Sensory Cortices. Oper. Neurosurg. 2018, 15, S75–S121. [Google Scholar] [CrossRef]
- Baker, C.M.; Burks, J.D.; Briggs, R.G.; Conner, A.K.; Glenn, C.A.; Taylor, K.N.; Sali, G.; McCoy, T.M.; Battiste, J.D.; O’Donoghue, D.L.; et al. A Connectomic Atlas of the Human Cerebrum-Chapter 7: The Lateral Parietal Lobe. Oper. Neurosurg. 2018, 15, S295–S349. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.M.; Burks, J.D.; Briggs, R.G.; Conner, A.K.; Glenn, C.A.; Manohar, K.; Milton, C.K.; Sali, G.; McCoy, T.M.; Battiste, J.D.; et al. A Connectomic Atlas of the Human Cerebrum-Chapter 8: The Posterior Cingulate Cortex, Medial Parietal Lobe, and Parieto-Occipital Sulcus. Oper. Neurosurg. 2018, 15, S350–S371. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.M.; Burks, J.D.; Briggs, R.G.; Stafford, J.; Conner, A.K.; Glenn, C.A.; Sali, G.; McCoy, T.M.; Battiste, J.D.; O’Donoghue, D.L.; et al. A Connectomic Atlas of the Human Cerebrum-Chapter 9: The Occipital Lobe. Oper. Neurosurg. 2018, 15, S372–S406. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Mauchly, J.W. Significante Test for Sphericity of a Normal n-Variate Distribution. Ann. Math. Stat. 1940, 11, 204–209. [Google Scholar] [CrossRef]
- Greenhouse, S.W.; Geisser, S. On methods in the analysis of profile data. Psychometrika 1959, 24, 95–112. [Google Scholar] [CrossRef]
- Tukey, J. Comparing individual means in the analysis of variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Lin, Y.E. The influence of semantic relevance on the discernment of product appearance and function. BMC Psychol. 2021, 9, 133. [Google Scholar] [CrossRef]
- Ishikawa, S.; Matsunaga, K.; Nakanishi, R.; Kawahira, K.; Murayama, N.; Tsuji, S.; Huang, Y.Z.; Rothwell, J.C. Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin. Neurophysiol. 2007, 118, 1033–1043. [Google Scholar] [CrossRef]
- Allison, T.; Wood, C.C.; MCarthy, G.; Spencer, D.D. Cortical somatosensory evoked potentials. II. Effects of excision of somatosensory or motor cortex in humans and monkeys. J. Neurophysiol. 1991, 66, 64–82. [Google Scholar] [CrossRef]
- Allison, T.; McCarthy, G.; Wood, C.C. The relationship between human long-latency somatosensory evoked potentials recorded from the cortical surface and from the scalp. Electroencephalogr. Clin. Neurophysiol. 1992, 84, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Bauer, M.; Chowanski, W.; Sui, Y.; Atkinson, D.; Baurley, S.; Fry, M.; Evans, J.; Bianchi-Berthouze, N. The brain’s response to pleasant touch: An EEG investigation of tactile caressing. Front. Hum. Neurosci. 2014, 8, 893. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Pol, A.; Calvo-Merino, B.; Capilla, A.; Forster, B. Persistent recruitment of somatosensory cortex during active maintenance of hand images in working memory. NeuroImage 2018, 174, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Pol, A.; Calvo-Merino, B.; Forster, B. Revealing the body in the brain: An ERP method to examine sensorimotor activity during visual perception of body-related information. Cortex 2020, 125, 332–344. [Google Scholar] [CrossRef]
Subject | Sex | Age | Dominant Hand |
---|---|---|---|
1 | Male | 23 | Right |
2 | Male | 22 | Right |
3 | Male | 22 | Right |
4 | Male | 23 | Right |
5 | Male | 24 | Right |
6 | Male | 22 | Right |
7 | Male | 23 | Right |
8 | Male | 27 | Left |
9 | Male | 23 | Right |
10 | Male | 26 | Right |
11 | Male | 24 | Right |
12 | Female | 24 | Right |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozawa, Y.; Yoshimura, N. Temporal Electroencephalography Traits Dissociating Tactile Information and Cross-Modal Congruence Effects. Sensors 2024, 24, 45. https://doi.org/10.3390/s24010045
Ozawa Y, Yoshimura N. Temporal Electroencephalography Traits Dissociating Tactile Information and Cross-Modal Congruence Effects. Sensors. 2024; 24(1):45. https://doi.org/10.3390/s24010045
Chicago/Turabian StyleOzawa, Yusuke, and Natsue Yoshimura. 2024. "Temporal Electroencephalography Traits Dissociating Tactile Information and Cross-Modal Congruence Effects" Sensors 24, no. 1: 45. https://doi.org/10.3390/s24010045
APA StyleOzawa, Y., & Yoshimura, N. (2024). Temporal Electroencephalography Traits Dissociating Tactile Information and Cross-Modal Congruence Effects. Sensors, 24(1), 45. https://doi.org/10.3390/s24010045