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Abstract: Space systems play an integral role in every facet of our daily lives, including national
security, communications, and resource management. Therefore, it is critical to protect our valuable
assets in space and build resiliency in the space environment. In recent years, we have developed
a novel approach to Space Situational Awareness (SSA), in the form of a low-resolution, Wide
Field-of-View (WFOV) camera payload for attitude determination and Resident Space Object (RSO)
detection. Detection is the first step in tracking, identification, and characterization of RSOs, including
natural and artificial objects orbiting the Earth. A space-based dual-purpose camera that can provide
attitude information alongside RSO detection can enhance the current SSA technologies which rely
on ground infrastructure. A CubeSat form factor payload with real-time attitude determination
and RSO detection algorithms was developed and flown onboard the CSA/CNES stratospheric
balloon platform in August 2023. Sub-degree pointing information and multiple RSO detections were
demonstrated during operation, with opportunities for improvement discussed. This paper outlines
the hardware and software architecture, system design methodology, on-ground testing, and in-flight
results of the dual-purpose camera payload.

Keywords: Space Situational Awareness (SSA); star tracker; Resident Space Objects (RSOs); attitude
determination; object detection; stratospheric balloon; Commercial off-the-shelf (COTS)

1. Introduction

Space Situational Awareness (SSA) refers to the ability to detect, track, identify and
characterize Resident Space Objects (RSOs), and is crucial in understanding and managing
the environment in the Earth’s orbit. It involves the mitigation of space debris, collision
avoidance, protection of space assets, Space Traffic Management (STM), and supports
scientific research and national security. We have already experienced devastating impacts
resulting in the loss of telecommunication and creation of debris in the Earth’s orbit in the
2009 collision of Iridium 33 and Kosmos 2251 [1]. As the number of satellites increases in
the coming years, the probability of similar collisions is likely to occur every five to nine
years [2]. With this, the need for robust and resilient SSA systems becomes more pressing.
The Space Surveillance Network tracks tens of thousands of objects larger than 10 cm in
diameter. However, there are hundreds of thousands of smaller debris that are considered
too small to track or catalogue. This places importance on the continual development of
SSA infrastructure to address the concerns of detection and tracking of RSOs using novel
and advanced technologies.

A low-cost, Wide Field-of-View (WFOV) dual-purpose camera system can serve
as both an attitude sensor and SSA payload on a nanosatellite platform. Space-based
observations provide a unique opportunity to support ground infrastructure with the
benefit of improved imaging conditions due to the lack of atmospheric interference and
longer access times in orbit. Star trackers (ST), commercial-grade camera systems with
space-flight heritage, are similar in technology and perform attitude determination (AD).
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Integration of RSO detection can enhance current space technology and merge spacecraft
attitude information with SSA. In 2022, we demonstrated a ST-like camera system for
Space-Based Space Surveillance (SBSS) on a stratospheric balloon in collaboration with
the Canadian Space Agency (CSA) and the National Centre for Space Studies (CNES)
(Figure 1). More details of the STRATOS 2022 mission can be found in [3]. We validated
the performance of this new star tracker design through simulation and in situ ground
measurements, and continue to develop image processing algorithms, Field-Programmable
Gate Array (FPGA) camera electronics and mission concept studies for future SSA missions.
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Platform (b).

In this paper, we present the improved dual-purpose camera system, demonstrated
on the 2023 STRATOS Balloon platform with real-time operation of a star tracker with
simultaneous RSO detection. The 2023 campaign was to demonstrate real-time attitude
determination and RSO detection and identify the challenges with the implementation of
the dual-purpose star tracker.

1.1. Dual-Purpose Star Tracker for RSO Detection

The concept of a dual-purpose star tracker is not new. In [4], our team demonstrated
that STs are cost-effective, flight proven, and require basic image processing to be used as
an attitude-determination sensor. An AI-based RSO detection algorithm was presented
in this paper “to augment the capabilities of a star tracker by becoming an opportunistic
space-surveillance sensor”. In [5], we also examined the feasibility of a virtual constellation
using dual-purpose star trackers for Space Domain Awareness (SDA) and applications.
Similar concepts were also examined in [6–8]. While these articles present a similar concept
of using star trackers for detecting RSOs in star field images, there has been little to no
in-orbit demonstration of the multi-use star trackers with real-time performance of the func-
tions. Dual-purpose star trackers for in-orbit tests and operation were presented in [9,10],
respectively. Both aim to demonstrate and evaluate the performance and functional re-
quirements of a star tracker as a SSA sensor. The work presented in this paper is aimed to
develop the technology in a stratospheric balloon platform with the eventual space-based
nanosatellite application.
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As discussed in the references listed above, dual-purpose star trackers present a low-
cost, yet effective alternative to dedicated space surveillance payloads. Most SSA missions
rely on expensive imaging systems equipped with telescopes to provide high resolution
RSO images. Instead, star trackers can serve as a secondary SSA payload or proximity
sensor to continuously monitor the host satellites surroundings. As Low Earth Orbit (LEO)
continues to become more congested and contested, proximity sensing continues to be
recognized as a tool to avoid in-orbit collisions, raise awareness of the surroundings, and
provide SSA data when necessary. Rather than relying on dedicated networks of SSA
satellites as an external data provider, monitoring its own environment also provides data
security for small satellites.

Observing RSOs while also providing AD is a challenging mission concept. First and
foremost, both attitude determination and RSO detection require extensive computational
resources. While recent studies have proposed several star tracker algorithms that are more
computationally efficient and suitable for use onboard spacecraft [11,12], most algorithms
are not compatible with the computing limitations of smaller (e.g., CubeSat or nanosatellites)
spacecraft. Traditionally, star trackers have been too large, expensive, and power intensive
for a CubeSat platform [13]. Added to this already challenging task, RSO detection is
equally complex and computationally demanding. Most RSO detection relies on AI-
based algorithms [4,14,15] that are not suitable for real-time operation. Multi-functional,
small form-factor STs are not only difficult to develop but require careful planning in
mission operation to avoid overloading power, onboard computers, and other spacecraft-
level resources.

Both AD and SSA algorithms are complex on their own. Together, two sets of seem-
ingly independent algorithms must be designed simultaneously to operate in real-time and
communicate with multiple subsystems onboard a satellite. For example, if the same set
of images are used for both functions, an image buffer needs to be designed to share the
real-time images to process them for both functions. If a different set of camera settings
are required for AD and SSA, real-time communication with the camera control software
needs to be implemented, as well as power, communication, and thermal management for
safe keeping and operational management.

Lastly, as described in [16], star tracker specifications required to achieve a given
attitude accuracy are stringent in terms of the signal-to-noise ratio, focal length, pixel size
and much more. RSO detection has slightly different, yet equally demanding requirements
for camera parameters. While most are compatible (minimum detectability of dim objects),
some pose competing constraints. For example, to reliably detect RSOs and have a reason-
able update rate for AD, star trackers require relatively short exposure time while RSO
detection requires longer exposure time to capture moving objects within the same frame.

1.2. Research Overview

In this paper, we present a concept of a dual-purpose camera suitable for CubeSat-
class spacecraft as a star tracker capable of RSO detection. The prototype camera payload
was flown on the STRATOS balloon platform in 2023 as a technology demonstration for
a star tracker concept. In preparation of the balloon campaign, a series of ground-based
campaigns were conducted to characterize the camera and collect night sky images for
algorithm design. Ground observation data are then compared to the data collected from the
stratosphere where no atmospheric interference is expected. The final balloon payload was
also extensively tested in a space-like environment with thermal, vacuum, and functional
tests. The primary objectives of this study, therefore, are (1) to demonstrate a low-cost
camera for a CubeSat-like mission in a space-like environment; (2) to conduct real-time
attitude determination and RSO detection and lastly (3) to collect night sky images from a
near-space platform for future development of AD and SSA algorithm design.
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2. Dual-Purpose Camera Technology Demonstration Payload—STARDUST

STARDUST (Star Tracker Attitude and RSO Detection for Unified Space Technologies)
was a primary payload onboard the RSONAR II (Resident Space Object Near-space As-
trometric Research) stratospheric balloon mission flown in August 2023 onboard the CSA
STRATOS gondola.

2.1. Hardware Description

The hardware selected was for a star tracker-like Commercial off-the-shelf (COTS)
camera system with a CubeSat form factor. The design prioritized low cost and function-
ality such as a WFOV lens and the sensor’s limiting magnitude. There are competing
requirements between the star tracker and RSO detection functions, including the fast inte-
gration time required for the ST, compared to the longer exposure time for RSO detection
to guarantee positive detection of dimmer RSOs. STs such as Rocket Lab’s ST-16RT2 [17]
and Ball Aerospace’s CT-2020 [18] provide arc-second level accuracy at 2–5 Hz and 10 Hz,
respectively. This comes with a higher price tag and smaller FOV (less than 15 degrees),
which does not meet the STARDUST payload’s requirements.

For this project, the Raspberry Pi High Quality (HQ) Camera [19], IDS UI-3370CP-M-
GL [20] and Alvium 1500 C-500 m [21] cameras were considered as the commercial-grade
star-tracker like cameras. A trade study between these cameras looked at cost, temperature
rating, connector types, maximum resolution, exposure time, quantum efficiency, flexibility
in camera parameters, and ease of programming. It was determined the IDS UI-3370CP-
M-GL camera would be suitable for the project, having no major drawbacks for operation
with the benefit of larger pixel scale for low-light conditions. This is at the expense of
marginally larger power, mass, and cost budgets. The IDS camera is a monochrome 1′ ′

sensor, with a 5.5 µm pixel size, maximum resolution of 2048 by 2048 pixels, exposure
time of 0.038–500 ms, and power consumption of 1.8–3.6 W. To trade off the selection of
the camera’s costs, a much cheaper lens was selected for operation. The 16 mm telephoto
lens, 6 mm wide-angle lens, and 25 mm 5 MP Lens for the HQ camera were all considered.
The 16 mm telephoto lens was ultimately selected for the FOV of approximately 40 degrees
and large aperture. Finally, the Raspberry Pi 4 Model B was selected for the onboard
computer (OBC). The Raspberry Pi Zero 2 W was initially considered, but due to the
computations required for a dual-purpose star tracker, a trade off was made at the cost
of larger power, mass, and cost budgets. The Raspberry Pi 4 Model B uses the Broadcom
BCM2711, quad core Cortex-A72 64 bit processor, 8GB LPDDR4-3200 SDRAM, and has a
power consumption of 2.7–6.4 W. Figure 2 shows the selected camera and OBC.
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In addition to the payload and OBC, a Power Distribution Unit (PDU) and temperature
sensors were also implemented. The PDU, providing power to STARDUST and three other
payloads onboard RSONAR II, was primarily used to down regulate the 36–24 V DC
voltage supplied by the CSA’s gondola batteries to the 5 V input of the Raspberry Pi. This
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is achieved using the PYBE30-Q24-S12-T DC-to-DC converter, and two PYBE30-Q24-S5-
T converters. All three regulators were placed in the application and Electromagnetic
compatibility (EMC) circuits recommended by the manufacturer described in [22]. The
PDU connects to the gondola batteries with a power harness using the PT06E-12-3P(SR),
PT06E-12-3S(SR), and PT02E-12-3P connectors following the MIL-DTL-26482 standard
and a 16 AWG wire dual-conductor wire providing a larger ampacity for the expected
power draw. The operational nominal power draw for STARDUST was 8.12 W. Two K-type
thermocouples with MAX31855 amplifier breakout boards were selected as the temperature
sensors to monitor the IDS camera chassis. Serial Peripheral Interface (SPI) was used to
measure the in-flight temperature alongside the Raspberry Pi internal sensor.

The selected hardware determined to meet the minimal requirements for the project,
was then tested in-field to quantify star and RSO capture described in Section 5. The
selected hardware was tested against the Raspberry Pi HQ camera with the same 16 mm
lens using each respective proprietary software. The IDS camera was demonstrated to
observe at least 3 magnitude stars at 100–500 ms exposure time. The HQ camera requires a
minimum of 30 s exposure time to be able to observe the same stars. This would not be
feasible during operation, as the gondola platform will sway and cause stars and RSOs
to streak in the image leading to degradation or loss of scientific information. This was
used as a validation for the selected hardware to move forward with full software and
algorithm development. The dual-purpose star tracker hardware aimed to be simply
implemented for future CubeSat applications, with the ability to use open-source systems
for future developments.

2.2. Software Description

The software of the STARDUST payload was designed to initiate autonomously on
power on. After ensuring that no unplanned power cycles occurred, the camera and code
were initialized, performing functions such as setting the camera’s parameters and initiat-
ing counters.

The code then captured an image, extracted the centroids of the objects in those images,
and saved the health and temperature sensor data, for two iterations. On the third iteration,
the Lost-in-Space (LIS) attitude determination function was executed first, followed by
the capturing of the third image and centroid extraction. With three images loaded into
memory now, RSO detection was possible and was performed with the RSO detection
algorithm. Afterwards, the time elapsed since the LIS function, as well as its return type
(successful or unsuccessful) were used to determine which attitude function to use. If the
time elapsed since the LIS function was greater than five minutes, or if the function did
not execute successfully, the function was executed again. Otherwise, the tracking attitude
determination function was executed. Regardless of the AD function used, the health and
temperature sensor data were stored again before the next iteration. The next subsections
serve to further explain each of the functions, with additional details for the algorithms
provided in Sections 3 and 4. Figure 3 provides a summary of the software architecture.

Initialize Camera Function:

This function was used to set the camera’s parameters, including the resolution (2048
by 2048 pixels), exposure time (100 ms), gamma (1.0), gain (100), and pixel clock frequency
(100 MHz). This function also recorded the boot-up time and ensured that a power outage
did not occur. If a power outage did occur, this function forced a software reboot to ensure
that the entire system resets properly, avoiding issues such as driver errors.

Capture Image Function:

This function captured an image with the camera, converted the data into an array,
logged the image name using the onboard date, time, and counter, saved the image with
these details, and incremented the counter.
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Extract Centroids Function:

This function was the first step in the RSO detection algorithm. It extracted the
centroids of all the objects (stars, RSOs, noise) in an image, and converted them to x and y
coordinate pairs to be analyzed by the next step of the RSO detection algorithm.

Detect RSOs Function:

This function was the second step in the RSO detection algorithm. It took in three sets
(from three sequential images) of x and y coordinate pairs and identified unique x and y
coordinate pairs that satisfied the conditions to be considered an RSO. This function also
served to save x and y coordinate pairs to the SD card.

Lost-In-Space Attitude Determination Function:

This function used the current iterations image array captured and completed a LIS
algorithm. This includes star detection and centroiding, star identification, and attitude
determination. The attitude results and time are then saved into a csv file.

Tracking Attitude Determination Function:

This function used the current and previous iterations image array captured, and the
previous attitude result. Star centroiding, proximity search, and attitude determination are
then calculated, and the attitude results and time are saved.

Save Health and Sensor Data Function:

This function was used to save the health data reported by the Raspberry Pi OBC (the
frequency of each CPU core and the CPU temperature) as well as the temperature reported
by the connected temperature sensors.
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3. Star Tracker Attitude Determination

A star tracker can provide inertial pointing with the highest accuracy relative to other
AD sensors [23,24]. It is capable of having two functions during its operation; the LIS and
tracking modes. LIS uses the knowledge of star positions in an inertial reference frame
from known star catalogs and matches the sensor’s star measurement to find the host’s
attitude. Therefore, it does not require prior knowledge of the host’s attitude. The tracking
mode can update the attitude based only on the sensor measurements of the stars. This is
useful to reduce computational resources following the accurate LIS execution. Both were
developed for the STARDUST payload and are described below.

3.1. The Lost-in-Space Mode

The first step in the algorithm is to detect and centroid the stars in the image. For star
detection, a binary threshold is applied followed by contour-detection. The star objects are
then centroiding using the Centre of Mass (COM) method. The COM calculation considers
the 3 × 3 pixel neighborhood around the estimated center and provides the sub-pixel
coordinates using a weighted average of pixel coordinates based on pixel brightness. Next,
the centroided stars are ordered by brightest, and the three-brightest stars are used in
a pattern matching algorithm to find their corresponding inertial measurements in the
Earth-Centered Inertial (ECI) frame. The planar area and polar moment method, detailed
in [25], was used for pattern matching. Once the three brightest stars are selected, they are
projected from the imager to the celestial sphere following [26]. Using these unit vectors
(V1, V2, and V3), the area and polar moment is calculated.

Area =
√

s(s− a)(s− b)(s− c), (1)

a = |V1 −V2|, b = |V2 −V3|, c = |V1 −V3|, s = 1
2 (a + b + c)

Moment = Area ∗
(

a2+b2+c2

36

) (2)

An onboard catalog was created using the Bright Star 5 catalog [27], thresholded at
magnitude 3 stars and brighter, with a window of 300 to 60 degrees Right Ascension (RA)
and −30 to 60 degrees Declination (DEC). A star brightness threshold can be justified given
the camera’s limiting magnitude, to ensure at least three stars are in the image for most of
the flight (analysis in Section 6). The RA and DEC window used was based on the planned
flight and pointing of the gondola. To compare with the onboard catalog, a weighting of
80% for the Area and 20% for the Moment was used based on ground experimentation.

Finally, with the three-star vectors in the body and ECI frame, the Quaternion Esti-
mator (QUEST) algorithm was used [28]. QUEST can rapidly find the three-axis attitude
estimation, in the form of a quaternion, and has been used on hundreds of space missions
to date.

q =
1√

γ2 + |χ|2
, (3)

γ = α(λmax + σ)− det(S), χ =
[
αI3x3 + (λmax − σ)S + S2

]
z,

α = λ2
max − σ2 + trace(adj(S)), λmax ≡ found in Newton− Raphson method,

σ = trace(B), S = B + BT, Z = [−B32, B31 − B13, B12 − B21], B

≡ Attitude profile matrix

The attitude quaternion was then converted to Euler angles, specifically the Tait-Bryan
angles, simplifying the mission’s post-analysis.

If two or fewer bright stars were detected, the algorithm would be re-run on the next
image capture. The first successful attitude output would be saved onboard, and in the
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subsequent LIS iteration compared with the next successful execution. If a larger than
60-degree total angular distance between iterations is calculated, the previous attitude
was used. However, this would only be completed once in a row and the next attitude
would be trusted as the correct value, to avoid an initial incorrect attitude propagating
throughout the mission. This provided some robustness to star misidentification, caused
by an incorrect pattern match or if a bright RSO was detected in the star selection.

3.2. The Tracking Mode

The tracking mode requires the time between the images captured and the previous
attitude to be known. First, a histogram equalization or a gaussian blur is applied to the
image to help with noise reduction. Next, a gamma correction of 15 is applied to increase
the brightness of the stars. At this point, the image is all black with white contours. To
minimize the amount of false positive stars, a contour is only recorded if it spans an area
greater than 5 pixels. The centroid of each recorded contour is then saved and compared
with the star locations from the previous image using a nearest neighbor search. If the
centroid of a contour is found within a predefined radius of 15 pixels of a star from the
previous image, it is assumed it to be the same star. This radius was selected due to the
planned inertial pointing constraints of the mission, with a small slew rate between images.

The algorithm can estimate the new attitude with just one star’s location, but it is
constrained to prioritize accuracy, requiring a minimum of three star locations to be known.
Each recorded star can then be represented by a unit vector with respect to the boresight
of the camera. The body vectors from the current and previous images were used to find
the angular rate between the two images. The time interval is relatively small between
images, therefore, the assumption of a constant angular rate between images is made. The
methodology from [29] was used in the implementation of the tracking mode algorithm.
To find the angular rate between the two images, the body vectors of the current image and
the previous image are utilized in Equation (4) below.

→
ω =


→
ωx
→
ωy
→
ωz

 =
1
dt

(
∑n

i=1 [b(t)i×]
T [b(t)i×]

)−1(
∑n

i=1 [b(t− dt)i×]
T [b(t)i×]

)
(4)

With the angular rate between the two images found, the new attitude can then be
calculated. The attitude is found as a quaternion with Equation (5) [30]. Here, the angular
velocity found in Equation (4) is represented as a pure quaternion, such that a Hamilton
product can be applied. It is then converted to the omega operator, Ω, defined as the
skew-matrix form of the angular velocity. Finally, the new attitude, q, can be found by
multiplying the previous attitude, q0, by the quaternion representation of the rotation
between the two images. This algorithm is repeated until the 5 min interval of image
capture is complete and the LIS algorithm is performed once again.

q =

[
cos

(
|Ω| dt

2

)
I4 +

1
2|Ω| sin

(
|Ω| dt

2

)
Ω
]

q0, q =


qx
qy
qz
qw

, Ω =


0

ωx
ωy
ωz

−ωx
0
−ωz
ωy

−ωy
ωz
0
−ωx

−ωz
−ωy
ωx
0

 (5)

4. RSO Detection

The RSO detection algorithm was developed to detect RSOs in real time in a rolling
window of three starfield images received from the camera. Several simplifications and
assumptions were made when designing the algorithm. Firstly, it was assumed that the
background stars captured in the images would not appear to move more than one pixel
between each image (the movement of which would primarily be from the gondola’s sway).
Next, it was assumed that RSOs would appear to be travelling mostly linearly across the FOV
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of the imager. Finally, it was assumed that RSOs would travel the same amount of distance
across the FOV of the imager, between each image that captured the RSO (equidistance).

The algorithm works in two main steps as described in Section 2.2. Software Architec-
ture. The first step consists of extracting the centroids of the objects in each image, while
the second step consists of detecting RSOs across three sets of these centroids.

4.1. Extracting Centroids

In the first step, the algorithm begins by binarizing the image by applying a simple
threshold to the image. Connected Component Analysis (CCA) using 8-pixel-neighbourhood
connectivity is then performed to uniquely segment each of the objects in an image [31].
This algorithm returns details for each segmented object, most notably the x and y sub-pixel
locations of each object’s centroid and the pixel size of each object. This list of centroids is
then filtered to remove objects deemed too small or large to be considered stars or RSOs,
such as illumination effects or hot pixels. The size of this point list (which corresponds to
the number of detected objects) is then analyzed to determine an appropriate threshold
to use for the next iteration. If there are too few objects, the threshold is reduced, thereby
allowing dimmer objects to be picked up by the algorithm. If there are too many objects, the
threshold is increased, having the opposite effect. This point list (and two more-point lists,
corresponding to a sequence of three images) is passed on to the next step of the algorithm.
Figure 4 below shows the block diagram outlining the steps of the extracting centroids step.
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4.2. Detecting RSOs

In the next step, after ensuring that the three point lists from the previous step contain
data, the three point lists are looped through. For each set of unique (one point from each
point set), unmatched set of three points, the Euclidean distance is calculated between the
point belonging to the first image and second image, d1, and again calculated between the
second image and third image, d2. These distances are then checked to ensure they are
far enough to be considered RSOs, as defined in the assumptions mentioned previously.
Equation (6) below is then used to determine how similar these distances, followed by

Equation (7) to determine the angle between the vectors, θ (where
→
d1 is the vector from

point one to point two, and
→
d2 is the vector from point two to point three). These two

calculations are performed to fulfill the linear and equidistant RSO assumption.

dsimilarity = 1−
∣∣∣∣ d1 − d2

max(d1, d2)

∣∣∣∣ (6)

θ = cos−1


→
d1·
→
d2∣∣∣∣→d1

∣∣∣∣∣∣∣∣→d2

∣∣∣∣
 (7)

From experimentation with using this formula on existing optical RSO imagery, it
was found that the angle was related to the distance similarity by Equation (8) below. This
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equation also provides the maximum angle, and the angle is deemed small enough to
consider the triplet of three points as a roughly linearly moving RSO.

θmax = 39dsimilarity − 8 (8)

The triplet of three points is then marked as matched, and the next set of points are
analyzed until all points have been considered. The function then saves these RSO points
to the OBC’s SD card. Figure 5 below shows the block diagram outlining the steps of the
detecting RSOs step.
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5. Image Collection
5.1. Field Campaigns

Several ground-based field campaigns were conducted to optimize camera parameters
including gain, exposure time, image resolution, and gamma. Permutations of the above
parameters were tested while taking images of the night sky with stars and RSOs present.
These images were used to test and fine-tune the AD and RSO detection algorithms.

King City, Ontario was the first field campaign location the payload was taken to
for night-sky observations. Based on experimentation, an exposure time of 100–200 ms,
image resolution of 2048 by 2048 pixels, and gamma of 1 was selected. The key parameter,
exposure time, was proven to see bright stars of three magnitude and multiple RSOs within
the campaign. It was also shown that the Raspberry Pi HQ camera was only able to see
these same objects at a much larger exposure time of 30 s. This would not be possible
during the stratospheric balloon campaign, due to the instability of the gondola causing
streaking of objects at larger exposure times. Without a full quantification analysis of how
exposure times on the gondola affect streaking, the lowest exposure time that was able to
see bright stars and RSOs on the ground was the primary variable to minimize. Finally,
the payload was tested in Timmins, Ontario, and the selected parameters were verified
similar to King City. Here, the lighting conditions were the best of the two locations due to
minimal light pollution.

Through these ground field campaigns and algorithm tests, it was verified that the
barrel distortion caused by the camera lens would negatively affect the results of the
AD. MATLAB’s 2023a Camera Calibration Toolbox was used for the calibration and the
algorithms were re-tested in Timmins, Ontario. In addition, the adaptive thresholding used
in the RSO detection algorithm was verified during the multiple field campaigns. Here, we
noted that the observing location, time, and pointing direction would vary the imaging
conditions. Consequently, the initial threshold value would adjust to detect potential RSOs
and stars within the images captured.

5.2. STRATOS Campaign

The STARDUST payload was flown on the CSA/CNES STRATOS Balloon platform on
22 August 2023, from 4:52 am to 9:24 am Coordinated Universal Time (UTC). During the
4.5 h flight, a total of 23,354 images were collected from the STARDUST payload. However,
the gondola reached the ceiling of 37 km and was stabilized after approximately 3 h. This
meant that the scientific data captured were only for 92 min. This period was ideal for RSO
viewing time, which is approximately 2 h before local sunrise or after local sundown. The
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flight profile once stabilized was inertial pointing, which meant the camera was staring
about a specific section of the sky. In this case, the camera boresight was pointing at
approximately 355 degrees RA and −10 degrees Declination Dec in the celestial sphere.
The mission successfully captured images and saved its AD and RSO detection results and
health status onboard, for further analysis on the ground. Figure 6 below shows an image
with stars and an RSO during operation.
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6. Results

The total flight was 4 h and 32 min, from gondola lift-off to payload shut down
pre-descent. During the first approximately 3 h ascent and gondola stabilization period,
the attitude and RSO detections algorithms were not accurate due to the slewing of the
gondola. This led to the stars streaking in the image or moving drastically from frame to
frame. Therefore, the analysis shown is during the final 92 min period of inertial pointing.
During this inertial pointing stage, there was some oscillating gondola motion which may
have negatively impacted the results. Furthermore, the flight duration was significantly
shorter than expected, with an initially planned post-sunset and pre-sunrise observation,
decreasing the potential analysis window for RSO detection. Together, with the 100 ms
image capture and both the real-time attitude and RSO detection algorithms, there was an
average of 502 ms and standard deviation of 66 ms between each iteration. This shows
potential in real-time applications for a dual-purpose star tracker, which would require a
1–10 Hz sampling rate.

6.1. Real-Time Attitude Determination

We had a total of 19 LIS and 11,068 tracking mode calculations. Both attitude algorithms
used the open source astrometry.net application as its pointing truth data, which reports a
99.9% success rate [32]. The absolute error for each is presented and discussed below.

The LIS cross boresight error was 36.72 arc minutes, and around boresight error was
65.98 arcminutes. The star identification stage had an 84% true positive rate, in which the
previous attitude was used as a substitution. Figure 7 shows the AD LIS in-flight results.
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Upon further inspection during post-mission analysis, it is likely that the barrel
distortion was causing the largest error during the attitude determination QUEST algorithm.
The pixel scale for the system is 71 arcsec per pixel, or approximately 1.2 arcmin per pixel,
so there was a preliminary expectation that the final accuracy would be on the order of arc
minutes. Improvement of lens selection can benefit the final attitude accuracy to this end.
Similarly, a star tracker algorithm using four or more stars in the algorithm can increase the
accuracy at the cost of computational speed and resources.

Using a simplified expected pointing direction accuracy for star trackers [33], PDestimated,
the estimated accuracy of the system was 3.4 arcminutes. 103 stars in the onboard catalog,
NCatalog, was dependant on the magnitude limit of the sensor while maintaining at least three
the stars in the FOV, NFOV . The average hyperacuity of centroiding accuracy of 0.1 pixels,
ECentroid, was selected based on the previous ground campaigns and testing using the custom
star field simulator (more description of the simulator in [34]). The primary contribution to the
centroiding error was due to the selection of the imagers bit depth of 8-bit. Increasing the bit-
depth to the imager’s maximum 12 bit would provide additional pixel intensity information
and therefore increase the estimate of the sub-pixel coordinates using the COM method.

NFOV =
NCatalog − NCatalog ∗ cos

(
FOV

2

)
2

= 3.17 stars (9)

PDestimated =
ECentroid√

NFOV
= 0.056 [deg] = 3.4 [arcmin] (10)

The second image in the sequence was the first star misidentification. It was noted
in the post-analysis that one of the stars selected was near the edge of the image border.
Here, being the furthest from the principal point, the largest effects of barrel distortion
caused a misidentification of a three-star group in the area and moment calculation. This
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was noticed in the ground campaign and led to the weighting of 80/20 between area and
moment, respectively, to partially mitigate these effects. The thirteenth and last images
contained an RSO, which also led to an incorrect star identification and therefore incorrect
attitude. It would be ideal to merge the RSO detection and attitude determination code, to
remove RSO’s from the sequence and further improve the true positive rate.

This level of accuracy can be suitable for nanosatellite applications that require a
degree of accuracy for science or engineering. Regarding SSA, this accuracy would be
required to be further improved for algorithms such as RSO identification.

The tracking mode cross boresight error was 1.38 degrees, and around boresight error
was 2 degrees. The tracking mode was able to accurately update the attitude during the
5 min intervals before returning to the LIS mode within an error of 10 degrees excluding
anomalies. Preliminary analysis has shown a decrease in computation time upwards of
100 ms compared to the LIS algorithm.

Figure 8 shows the attitude errors during the inertial pointing period for the tracking
mode. As seen in Figure 8 at the 25 and 75 min mark (1500 and 4500 s), there is a large
spike in inaccuracy. These spikes in inaccuracy are likely caused by stars being incorrectly
identified. If there are multiple stars or RSOs being detected within the search radius of the
known star in the previous image, the algorithm is unable to determine which star is the
same as the previous one. This can cause the calculated centroid of the star to vastly differ
from the true values. To mitigate inaccuracy in the detection stage, an Iterative Closest-Point
(ICP) algorithm can be considered for implementation to replace the current algorithm.
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6.2. Real-Time RSO Detection

Given that the mission was a technology demonstration, the main objective for the
RSO detection segment of the payload was to detect any RSOs at all, during the flight.
Success would be achieved if an RSO detection reported by the algorithm’s output was
verified visually against the corresponding raw images. Given this objective, these results
do not consider metrics such as precision and recall, and instead seek to quantify and
verify the number of RSOs reported by the algorithm and the number of total detections
corresponding to each RSO. To give an understanding of the consistency of the detections,
the longest consistent detection of each RSO is also given. These results are provided
in Table 1.
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Table 1. RSO detection results, with total detections and longest consecutive detection included.

RSO Number Total Detections [Images] Longest Consecutive
Detection [Images]

1 53 18
2 34 34
3 40 40
4 36 36
5 14 14
6 66 55
7 31 16
8 106 106
9 13 6
10 159 159
11 117 117

Total RSOs: 11 Total Detections: 669

By plotting the pixel centroids of an RSO, corresponding to each of the three sequential
images it was observed in, a visual was constructed to represent how the RSO detection
algorithm works, and what it outputs. Figure 9 below is an example of this.
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Figure 9. RSO centroids corresponding to three sequential images, plotted as single, colored pixels
on a black background. The Euclidean distances calculated by the algorithm are also plotted.

Upon analyzing the raw images captured by the STARDUST imager, it was observed
that the lit pixels corresponding to stars and RSOs in the images were fewer and dimmer
(in terms of pixel intensity value) than what was observed during ground campaigns. The
cause of this is currently being investigated, with the current hypotheses being that there
was a fogging in the optics, or temperature variations throughout the mission and the harsh
vacuum of the stratospheric environment resulted in degradation of the imager. Due to this
suspected degradation, most of the RSOs in the images corresponded to a single pixel each,
which would not be detected by the algorithm. This was a result of the algorithm imposing a
minimum pixel threshold of 10, used to filter out noise, and was experimentally determined
during ground campaigns. This meant that objects in the images corresponding to fewer
than 10 pixels would be ignored, which includes these single-pixel RSOs. Nevertheless, the
algorithm was able to detect RSOs in the images, given that there were some larger and
brighter RSOs during this imaging window.
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The dynamic threshold function implemented in the algorithm proved to be very
useful, given that the algorithm automatically decreased the threshold to account for the
fewer points it was detecting during the mission. This allowed fainter RSOs to be detected,
though they had to pass the minimum pixel threshold as well. The algorithm could certainly
benefit from better object analysis in the images, employing a dynamic analysis of the
points similar to the dynamic threshold. For example, when fewer than desirable points
are detected in an image, the algorithm could reduce the minimum pixel threshold to allow
more points to be considered.

The linear motion model appears to be a good estimate of RSO motion in these images,
given that the RSOs that passed the threshold and pixel area requirement were consistently
detected in the images, as the RSOs passed through the FOV of the imager. The built-in
tolerance to the linear motion model as defined in Equation (8) proved to be invaluable
in detecting RSOs with the gondola movement, since this movement also caused RSOs
to move non-linearly in the images. The equidistant requirement for RSO detection, as
enforced by Equation (6), was also a good estimate of the motion of the RSOs.

Though intended to be a technology demonstration, the images captured by the
STARDUST payload have proved to be an invaluable dataset for SSA, given the presence
of numerous RSOs. Furthermore, a unique opportunity is offered by the challenges with
the dataset, including the drastic background star movement (caused by the gondola
movement) and the faint, small RSOs.

7. Conclusions and Future Work

The STARDUST stratospheric balloon payload successfully performed real-time AD
and RSO detection during the inertial pointing phase of the STRATOS 2023 campaign. In
this paper, a low-cost, WFOV dual-purpose star tracker was demonstrated as a technology
that can augment SSA for stratospheric balloons and space-based applications.

The AD results showed sub-degree accuracy in the LIS mode and under five-degree
accuracy in the tracking mode. The star identification, attitude determination, and star
tracking were negatively affected by barrel distortions produced by the lens. This can
be mitigated to some extent with improved lens selection and camera calibration. The
star centroiding, star identification, and attitude determination algorithms selected can
be further compared to its more accurate and computationally costly algorithms such as
the Gaussian curve fitting method, pyramid methods, and Extended Kalman Filter (EKF),
respectively. In addition, while the AD and RSO detection and algorithms were isolated to
reduce risk, future iterations of the mission will seek to combine the algorithms to improve
their respective performance. For example, the RSO detection algorithm could be used to
remove RSOs in the images that are passed to the attitude determination algorithm. This
would be helpful in reducing false detections in the attitude determination algorithm from
the RSOs present in the images.

The real-time RSO detection algorithm was successfully able to detect RSOs during
the mission. Though the RSOs within the image appeared much smaller and fainter than
what was observed during ground campaigns, the algorithm was able to detect 11 unique
RSOs corresponding to 669 total detections in the 92 min analysis window. The dynamic
image thresholding technique and linear motion model proved to be excellent algorithms
in consistently capturing the RSOs that passed the minimum pixel threshold. However, it
was determined that the minimum pixel threshold itself needs improvement, given that
many RSOs observed in the raw images were much smaller than the 10-pixel threshold.

Several improvements could be made to the RSO detection algorithm and are planned
to be incorporated in future research. As mentioned, the swaying of the gondola, which
caused the background stars to appear to move throughout the images, suggests that a
method to correct the apparent motion of the stars could be added to create a more robust
RSO detection algorithm. Such a method is currently being developed and is being tested
with optical imagery from the Fast Auroral Imager (FAI) onboard the CASSIOPE satellite.
Another improvement to be made is the addition of a tracking method to give each detected
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RSO a unique identity, carried through its detection in subsequent images. This can be used
to identify RSOs of particular interest, in real time. Such a tracking implementation is also
being investigated for future work. Lastly, the RSO detection algorithm can be improved by
incorporating a more advanced motion model than what was experimentally determined.
While the linear motion model appears to work effectively for many of the RSOs found in
the images captured from the stratosphere, RSOs in general do not always appear to be
moving linearly through an imager’s FOV.
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