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Abstract: Estimation of oxygen consumption (VO2) from accelerometer data is typically based
on prediction equations developed in laboratory settings using steadily paced and controlled test
activities. These equations may not capture the temporary changes in VO2 occurring in sporadic
real-life physical activity. In this study, we introduced a novel floating epoch for accelerometer data
analysis and hypothesized that an adaptive epoch length provides a more consistent estimation
of VO2 in irregular activity conditions than a 6 s constant epoch. Two different activity tests were
conducted: a progressive constant-speed test (CS) performed on a track and a 6 min back-and-
forth walk test including accelerations and decelerations (AC/DC) performed as fast as possible.
Twenty-nine adults performed the CS test, and sixty-one performed the AC/DC test. The data were
collected using hip-worn accelerometers and a portable metabolic gas analyzer. General linear models
were employed to create the prediction models for VO2 that were cross-validated using both data
sets and epoch types as training and validation sets. The prediction equations based on the CS test or
AC/DC test and 6 s epoch had excellent performance (R2 = 89%) for the CS test but poor performance
for the AC/DC test (31%). Only the VO2 prediction equation based on the AC/DC test and the
floating epoch had good performance (78%) for both tests. The overall accuracy of VO2 prediction
is compromised with the constant length epoch, whereas the prediction model based on irregular
acceleration data analyzed with a floating epoch provided consistent performance for both activities.

Keywords: accelerometer; energy consumption; measurement; movement; physical activity; prediction

1. Introduction

Physical activity (PA) offers significant health benefits and mitigates health risks [1]. It
is important to regularly measure population-level PA with valid methods. Such methods
should be able to measure the frequency, duration, and intensity of PA, and desirably also
the type of activity and its context [2]. These methods can be divided into self-reports and
device-based methods. Self-reports provide pertinent information on the specific type or
context of PA but are known to overestimate the exercise time while underestimating the
active time accumulated during daily routines [3]. The device-based methods can assess
PA in a more standardized manner regardless of the individual’s current fitness level and
body weight, factors that may influence the subjectively perceived and reported intensity
of PA [4]. In population studies, accelerometry is a commonly used cost-efficient and
feasible method to collect dense data over long periods, allowing a detailed examination
of daily behavior [2]. Also, accelerometry shows good compliance among participants [2]
and provides relevant information on the dose–response relationship between physical
behavior and health outcomes [1].
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Accelerometer measurements of physical activity and estimations of its intensity
are typically based on equations developed in laboratory settings using steadily paced
activities [5]. However, they may offer little insight into how methods will perform in real-
life conditions where activity and postural transitions are frequent and occur at irregular
intervals [6]. Habitual PA comprises accelerations, turning, and braking, which all increase
oxygen consumption (VO2) compared to constant-speed locomotion [7]. The extra VO2
depends on the rate of acceleration and deceleration and the number of changes in the
direction of movement [8,9]. Changes in the movement speed or direction require applying
additional force and energy to change the original momentum and kinetic energy to a new
level [10].

The epoch length is the duration of time for which PA data is collected and processed
for estimating coincident VO2. During continuous PA performed constantly at the same
intensity, the accuracy of VO2 estimates from the accelerometer data is independent of
the selected epoch length [11]. During intermitted conditions, short epoch lengths (less
than 10 s) are effective in identifying PA and stationary phases, whereas longer epoch
lengths (over 30 s) tend to smooth the acceleration signal and lead to missed short bursts
of PA [5,11]. However, the longer epochs may be more appropriate for evaluating the
physiological impacts of PA on health outcomes [11]. In a real-life context, different epoch
lengths yield substantially different estimates of the total accumulated PA time, which can
be confusing when the individual volumes of daily PA are evaluated [12].

Although short epoch lengths can detect short bursts of PA, they are not able to detect
the higher energy expenditure caused by changes in the direction or speed of movement.
A higher speed increases both the VO2 and accelerometer output but changing the body
direction by 180◦, i.e., performing a U-turn increases the VO2 while the accelerometer
output does not respond similarly [7,13]. Current accelerometric prediction models cannot
estimate the increased metabolic requirements caused by temporary or sporadic acceler-
ations, decelerations, and rotations of the body, exceeding the metabolic requirement of
constant-speed movements [9,14].

The accelerometer measurements of human movements can be contaminated with
noise, which can be mitigated by applying a low-pass filter to the raw data [15]. The choice
of the filter and its parameters depends on the noise characteristics and the desired trade-off
between noise reduction and preserving meaningful motion data. For example, Wundersitz
et al. (2015) found a low-pass filter with a cutoff of 12 Hz appropriate for measuring peak
impacts during different types of movements [16]. Correspondingly, Fridolfsson et al. (2018)
found that signal frequencies above 10 Hz did not include relevant information relative
to movement [17]. Under normal conditions, the peak frequency rarely exceeds 6 Hz [18],
and most relevant information ranges up to 4 Hz, corresponding to the step frequency [17].

In this paper, we introduce a novel approach to using a floating epoch length for
estimating VO2 from raw triaxial accelerometer data and compare the performance of de-
veloped VO2 estimation models in walking tests, which were performed either at a constant
speed or contained both acceleration and deceleration phases. The floating epoch algorithm
estimates the change in the kinetic energy by setting the epoch length according to the
coincident stride cycle. This approach can help ensure that all relevant parts of acceleration
data are considered for analysis while providing the possibility to estimate the energetic
cost of the changes in the kinetic energy. We hypothesize that the continuous adjustment
of the epoch length improves the prediction of VO2 compared to the conventional fixed
epoch length approach. Our objective is to develop a more accurate and comprehensive
prediction equation for VO2 compared to existing prediction models.

2. Materials and Methods
2.1. Accelerometry

This study employed the raw acceleration signals from a triaxial accelerometer (Hookie
AM20, Traxmeet Ltd., Espoo, Finland) collected during a constant-speed (CS) walking
test and a walking test including both acceleration and deceleration phases (AD/DC).
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This accelerometer employs the commonly used 13-bit digital triaxial acceleration sensor
module (ADXL345; Analog Devices Inc, Norwood, MA, USA). The measurement range
of each measurement axis of the accelerometer is ±16 g (g denotes the Earth’s gravity,
9.81 m/s2), and the data is measured at a 100 Hz sampling frequency. The peak acceleration
with hip-worn accelerometer can exceed 10 g in foot ground contacts during running [19]
and a sampling frequency lower than 100 Hz can lead to missed movement events [20].
The accelerometer was attached to a hip-mounted elastic belt at the level of the iliac crest
(Figure 1).
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Figure 1. The placement of the accelerometer at the level of the iliac crest on an elastic hip-band.

2.2. Test Protocols

The data employed in the present analysis were collected in our previous studies,
where the participants were selected with convenience sampling [21,22]. The CS test was
carried out at the premises of Vierumäki Sports Institute near the city of Lahti, Finland,
and the participants were recruited from the Lahti region by the staff of the Vierumäki
Sports Institute. The AC/DC test was carried out at the premises of the UKK Institute in
the city of Tampere, Finland, and the participants were recruited from the Tampere region
by the staff of the UKK Institute. Participants were informed about the experimental test
protocol, and they gave their written informed consent before performing their test. This
study conformed to the code of Ethics of the World Medical Association Declaration of
Helsinki and was approved by the Regional Ethics Committee of the Expert Responsibility
area of Tampere University Hospital with codes R11115, R12246, and R13040.

Before testing, participants’ body height and weight were measured with standard
methods. During both the CS and AC/DC tests, VO2 was continuously measured with a
portable respiratory gas analyzer (Oxycon Mobile, CareFusion, Yorba Linda, CA, USA),
which employs a telemetry system for data collection. A metabolic cart is designed to
evaluate the body’s energy expenditure and respiratory gas exchange. The device gathers
and analyzes information about how the body utilizes oxygen and produces carbon dioxide
during different activities. Before each test, the flow meter, oxygen sensor, and carbon
dioxide sensor of the metabolic cart were calibrated against known volumes and contents
of oxygen and carbon dioxide gases.

In the CS test, 29 adults (15 males and 14 females) performed a pace-conducted non-
stop test on a 200 m track. The initial speed was 0.6 m/s, and the speed was increased by
0.4 m/s every 2.5 min. Each stage lasted 2.5 min. The pace was controlled by light sources
alongside the track, which were automatically lit up one at a time according to the required
pace (Figure 2a). The participant had to keep up with the light sources. All light sources
were also visible to the test supervisor. The selected gait type was recorded for each stage,
and only completely walked stages were included in the present analysis. As a measure of
steady-stage VO2 for a given speed, the mean VO2 of the final minute of the corresponding
stage was used. The acceleration was analyzed for the final 2 min of each stage [21].
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Figure 2. Illustration of the walking tests: (a) in the constant speed (CS) test, the participants were
asked to follow the pace set by an advancing light source on a 200 m track; (b) in the accelera-
tion/deceleration (AC/DC) test, the participants were asked to walk back and forth around the
plastic cones on a 15 m track as fast as possible.

In the AC/DC test, 61 adults (35 males and 27 females) walked back and forth on
a 15 m track as fast as possible for 6 min (Figure 2b). Like the CS test, the steady-stage
VO2 for a given speed was based on the mean VO2 of the final minute of the test. The
acceleration was collected and analyzed throughout the test. Before the test, the participants
familiarized themselves with the metabolic cart and the 15 m test track. The participants
were instructed to walk back and forth around the cones as fast as possible for six minutes.
At the end of every minute, the tester informed the passing of walking time and counted
the number of laps each participant walked [22].

2.3. Data Analysis

The acceleration data was analyzed with constant 6 s epochs and floating epochs using
the MAD algorithm [21]. The acceleration data was first preprocessed with a low-pass filter
to remove the noise. Secondly, the data was bandpass filtered to extract the cycle length of
movement, which sets the epoch length.

The length of the floating epoch was set by the stride time of the gait. A single stride
time starts from the initial contact of one foot and continues to the subsequent contact of the
same foot [23]. Thus, a single stride contains two steps, one with each leg. After analyzing
the data within one epoch, the analysis window was then shifted forward by the duration
of one step to begin analyzing the next epoch. The data analysis with the floating epoch
was based on the MAD value of each epoch, the difference in the MAD value between the
adjacent epochs, and the inverse of the step time (i.e., step frequency).

Tri-axial acceleration was measured from all three orthogonal measurement axes (x, y,
and z) in actual g-units and stored for further analysis. In short, each measurement point (i)
consisted of samples x, y and z. The resultant acceleration (r), which defines the magnitude
of the acceleration vector and contains both dynamic and static component of acceleration,
was calculated for each (i) time point with Equation (1).

r[i] =
√

x[i]2 + y[i]2 + z[i]2 (1)

The resultant acceleration data was smoothed with a 2nd order low-pass filter with
a 0.12 Hz cut-off frequency. The low-pass filtered value (RLF) for the time point (i) was
calculated with Equation (2), where RLF is the low-pass filtered value of three adjacent
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points (i, i − 1 and i − 2), a is the filter coefficient (127/128 for the 0.12 Hz cutoff frequency)
and r[i] is the resultant acceleration for the point (i).

RLF[i] = 2aRLF[i− 1]− a2RLF[i− 2] +
(

1− 2a + a2
)

r[i] (2)

The duration of the single step, defined by the start time point (j) and the number
of included samples (N), was determined by an algorithm comprising two digital filters
for removing low- and high-frequency noise and for detecting the zero-crossing. First,
the resultant acceleration r was filtered with 2nd order Butterworth low-pass filter with
a 12 Hz cutoff frequency (RLF12). The RLF12 for the time point (i) was calculated with
Equation (3), where the filter coefficient value a1 is 46/512, a2 93/512, b1 125/128, and b2
44/128. The accelerometer data filtered this way is demonstrated to have an acceptable
level of concurrent validity compared to a 3-dimensional motion analysis system [16].

RLF12[i] = a1r[i] + a2r[i− 1] + a1r[i− 2] + b1RLF12[i− 1]− b2RLF12[i− 2] (3)

Secondly, the low-pass filtered data, RLF12, was bandpass filtered (RBP) with a 2nd
order Butterworth filter with bandwidth from 1.0 Hz to 3.0 Hz for the time point (i)
with Equation (4), where a1 is 16,139/222, a2 32,278/222, b1 15,565/4096, b2 22,279/4096,
b3 14,239/4096, and b4 3429/4096.

RBP[i] = a1RLF12[i]− a2RLF12[i− 2] + a1RLF12[i− 4] + b1RBP[i− 1]− b2RBP[i− 2] + b3RBP[i− 3]− b4RBP[i− 4] (4)

Finally, the duration of a single step time was determined by the zero-crossing method
with hysteresis. The hysteresis was used to prevent artefacts or noise caused by false
crossings. It involved two threshold levels: one for the rising edge (positive crossing
threshold, 0.05 g) and another for the falling edge (negative crossing threshold, −0.05 g).
Counting of the single step time started when the bandpass filtered acceleration value, RBP,
went from negative to positive and crossed the rising edge threshold, 0.05 g level. The step
time calculation could not stop until the signal value went below the falling edge threshold
(−0.05 g) before the next positive zero crossing (0.05 g), i.e., step time, can be detected.

The MAD value of the kth step was calculated with Equation (5), where N is the
number of samples in the step and j is the time point of the start of the step.

MADk =
1
N ∑j+N−1

i=j |r[i]− RLF[i]| (5)

The floating MAD value was calculated for two adjacent steps with Equation (6),
where MADf,k is the floating epoch MAD-value of the kth step, MADk and MADk−1 are the
MAD values for the kth and preceding step, and Nk and Nk−1 is the number of samples
in the kth and preceding step. Thus, for bipedal gait, each epoch contained successive left
and right footsteps or vice versa. As the floating epoch had one step overlap, each step was
analyzed twice.

MAD f ,k =
MADk−1Nk−1 + MADk Nk

Nk−1 + Nk
(6)

The change in the MAD values between adjacent epochs (dMAD) was calculated with
Equation (7), where MADf,k and MADf,k−1 are the MAD values of the two adjacent floating
epochs windows.

dMAD f ,k =
∣∣∣MAD f ,k −MAD f ,k−1

∣∣∣ (7)

The step frequency, fs, for the kth epoch was calculated with Equation (8), where
100 Hz is the sampling frequency of the accelerometer.

fs,k = 2
100 Hz

Nk−1 + Nk
(8)
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Figure 3a illustrates the calculation of the MAD values for single steps during a 6 s
period of the CS test. The calculation of the stepwise MAD values is based on the use of
Equations (1)–(5). Figure 3b illustrates the floating epoch MAD values, 6 s epoch MAD
values, dMAD values and stride frequency during a 60 s period of the AC/DC test. The
floating epoch MAD values can capture the turns during the AC/DC test in contrast to the
6 s epoch. The values were calculated using Equations (6)–(8).
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Figure 3. Example of measured and calculated parameter values during the AC/DC test: (a) The
upper row shows the magnitude of the acceleration (R) and low-pass filtered acceleration (RLP)
during the 6 s time containing one turn. The middle row shows the band-pass filtered acceleration
(RBP). The dashed lines show the rising and falling edge thresholds for detecting the positive and
negative crossings. The bottom row shows the mean amplitude deviation (MAD) value of each step.
(b) The curves show the floating and 6 s epoch MAD values, change in the MAD-values between two
adjacent floating epochs (dMAD) and step frequency (fs) during a 60 s time.
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2.4. Statistical Analysis

The VO2 prediction equations based on the constant 6 s epochs were determined from
the data of the CS test and AC/DC test and validated with the AC/DC test and CS test,
respectively. Similarly, the VO2 prediction equations based on the floating epochs were
determined using both data sets as training and validation sets. Mean MAD values for the
6 s and floating epochs, dMAD, and fs were calculated for all stages of the CS test and for
the entire AC/DC test.

Generalized linear models were employed to create prediction models for estimating
VO2. Incident VO2 was the dependent variable, while the coincident MAD values based on
the 6 s epochs or coincident MAD values, dMAD value, and fs based on the floating epoch
served as the independent predictor variables. Coefficient of determination (R2), standard
error of estimate (SEE), and mean absolute percent error (MAPE) were used to assess the
predictive error of the prediction models. All statistical analyses were conducted using the
statistics software (IBM SPSS Statistics for Windows, Version 29.0, Armonk, NY, USA)

3. Results

The participants’ characteristics are presented in Table 1. There were more participants
in the AC/DC test than in the CS test. The proportion of males was somewhat higher in
the AC/DC test while the number of males and females was almost equal in the CS test.
The participants of the AC/DC test were on average 15 years older and 12 kg heavier than
those of the CS test.

Table 1. Number of participants (N) and their background characteristics, mean (SD, range).

AC/DC Test CS Test

N 62 29
Male (%) 35 (56.5) 14 (48.3)
Female (%) 27 (43.5) 15 (51.7)
Age (years) 50.1 (12.5, 19.0–68.0) 36.6 (9.7, 20.0–59.0)
Height (cm) 172.9 (7.9, 154.0–191.0) 172.0 (10.0, 156.0–196.0)
Weight (kg) 82.6 (19.7, 52.4–146.8) 70.8 (12.7, 49.8–100.0)
BMI (kg/m2) 27.5 (5.4, 19.3–41.5) 23.5 (2.3, 19.3–29.6)

The VO2 values ranged from 8.7 to 30.2 mL/kg/min in the CS test and from 12.4
to 41.1 mL/kg/min in the AC/DC test. The mean values of the 6 s epoch MAD ranged
from 51 to 660 mg, the floating MAD from 56 to 660 mg, dMAD from 5 to 27 mg, and step
frequency from 0.54 to 1.20 Hz for the CS test. For the AC/DC test, the mean values of
the 6 s epoch MAD ranged from 280 to 662 mg, the floating MAD from 281 to 662 mg,
dMAD from 20 to 63 mg, and step frequency from 0.89 to 1.37 Hz. The Pearson correlation
coefficient between the 6 s epoch MAD and the floating MAD was 0.9998 for both the CS
and AC/DC tests.

Figure 4 illustrates the relationships between the measured VO2 and calculated param-
eters. The MAD values of the AC/DC test (6 s and floating epoch) tend to be smaller than
the values of the CS test for VO2 values greater than 20 mL/kg/min. The dMAD values of
the AC/DC test were higher than the values of the CS test.

Table 2 presents the VO2 prediction equations derived from the 6 s epoch data. Notably,
the equation developed using the CS test demonstrated high predictive accuracy when
applied to the CS test data but performed poorly when applied to the AC/DC test data.
Conversely, the equation generated from the AC/DC test exhibited high predictive accuracy
for the CS test data but performed poorly when applied to the AC/DC test data.
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Figure 4. Mean values of measured accelerometer parameters for each participant as a function of
coincident oxygen consumption (VO2) frequency during the acceleration and deceleration (AC/DC)
test and constant speed (CS) test. (a) Mean amplitude deviation (MAD) for the 6 s epochs; (b) MAD
for the floating epochs; (c) absolute change in MAD between the adjacent epochs (dMAD); and (d) step
frequency.
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Table 2. Coefficients and performance of VO2 (mL/kg/min) prediction models based on 6 s epochs.

Training Set CS Test AC/DC Test

Constant (p-value) 7.929 (<0.001) 10.379 (0.002)
MAD (p-value) 0.033 (<0.001) 0.036 (<0.001)
Bias 0 0
SEE 1.68 4.81
R2 88.8% 31.0%
MAPE 8.7% 13.6%

Validation Set AC/DC Test CS Test

Bias 4.13 −3.32
SEE 4.82 1.76
R2 31.0% 88.8%
MAPE 16.9% 23.2%

CS test = constant-speed walking test, AC/DC test = acceleration and deceleration walking test, MAD = mean
amplitude deviation, SEE = standard error of estimate, R2 = coefficient of determination, MAPE = mean absolute
percentage error.

Table 3 presents the VO2 prediction equations for the floating epoch. The prediction
was based on the MAD values, dMAD values and the exponent of the fs. Notably, the
equation developed using the CS test demonstrated excellent predictive accuracy for the
CS test but performed poorly when applied to the AC/DC test. In contrast, the equation
derived from the AC/DC test demonstrated high predictive accuracy for both the AC/DC
and CS tests.

Table 3. Coefficients and performance of VO2 (ml/kg/min) prediction models based on the
floating epoch.

Training Set CS Test AC/DC Test

Constant (p-value) 7.186 (<0.001) −3.160 (0.295)
MAD (p-value) 0.033 (<0.001) 0.005 (0.585)
dMAD (p-value) 0.068 (0.049) 0.218 (0.008)
Exp(fs) (p-value) −0.004 (0.986) 2.004 (<0.001)
Bias 0.0 0.0
SEE 1.64 2.9
R2 89.3% 74.9%
MAPE 8.4% 9.1%

Validation Set AC/DC Test CS Test

Bias 2.29 2.56
SEE 4.62 2.37
R2 36.4% 78.2%
MAPE 13.1% 19.6%

CS test = constant-speed walking test, AC/DC test = acceleration and deceleration walking test,
MAD = mean amplitude deviation, dMAD = absolute change of MAD value between adjacent epochs,
Exp = exponent, fs = step frequency, SEE = standard error of estimate, R2 = coefficient of determination,
MAPE = mean absolute percentage error.

Figure 5 illustrates the performance of the VO2 prediction models trained with the
6 s epochs and the CS test. The model underestimates over 25 mL/kg/min VO2 values
for the AC/DC test. The Bland–Altman difference plot further shows that the limit of
agreement is wider for the AC/DC test, indicating a greater variability in the predicted
values. In addition, the Bland–Altman plot depicts an apparent trend in the AC/DC test
results, as the difference between measured and predicted VO2 values tends to increase
with increasing mean VO2 values.
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predicted VO2 tends to become larger as the mean VO2 increases. The CS test has a 
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Figure 6 illustrates the performance of the VO2 prediction model trained with the
6 s epoch and the AC/DC test. Although the results of the AC/DC test show no bias,
there is an evident trend in the Bland–Altman plot. The difference between the measured
and predicted VO2 tends to become larger as the mean VO2 increases. The CS test has a
narrower limit of agreement in the Bland–Altman plot than the AC/DC test, but the model
overestimates VO2 for the CS test.

Figure 7 illustrates the performance of the VO2 prediction equations trained with the
floating epochs and the CS test. Notably, the model consistently underestimates VO2 values
exceeding 25 mL/kg/min for the AC/DC test. The Bland–Altman difference plot further
reveals that the AC/DC test exhibits a wider limit of agreement compared to the CS test,
signifying a greater variability in predictions. Additionally, this plot demonstrates a clear
trend in the AC/DC test results, with the difference between measured and predicted VO2
values increasing as the mean VO2 increases.
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Figure 8 illustrates the performance of the VO2 prediction model trained using the
floating epochs and the AC/DC test. Notably, the VO2 values are consistently underesti-
mated for the CS test. The limits of agreement are similar for both the AC/DC test and
CS test, suggesting a comparable predictive performance. Unlike the other models, the
Bland–Altman difference plot for the AC/DC test displays no visible trend, indicating more
stable results over a broad range of VO2.
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4. Discussion

The VO2 prediction equation using the floating epoch and developed with the un-
steady activity performed adequately with steady activity but not vice versa. The present
findings support the notion that VO2 estimation models based on steady activities may
contribute to the poor accuracy of VO2 estimations during daily activities [7]. Habitual
activities comprise inherently sporadic and irregular patterns compared to steadily paced
patterns occurring in walking or running for exercise. Therefore, the assessment of free-
living PA could be more reliable with methods developed using irregular activities. Both
models trained with the CS test data performed well on the training data (CS test) but
poorly on the validation data (AC/DC test). This means that the prediction models based
on steady activities are compromised by generalization problems. This kind of model may
perform well on the training data but fails to transfer its predictive ability to new, unseen
data [24,25]. This lack of generalization is likely to lead to poor performance in real-world
measurements [26].
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In the present study, the CS and AC/DC tests had different ranges of the measured
VO2 values. The participants of the CS test walked at different speeds, while the participants
of the AC/DC test were asked to walk as fast as possible. Thus, the AC/DC test did not
contain low VO2 values typical for light PA and most daily habitual activities [27]. An
increased range of walking speeds during the AC/DC test would have likely resulted in a
better performance for the floating epoch model. In its present form, the models trained by
the AC/DC test yielded narrow limits of agreement for the CS test with both the 6 s and
floating epochs. However, both models, the 6 s and the floating epoch, produced slightly
biased estimates of VO2.

The floating epoch length model improved the VO2 estimation by detecting the vari-
ations between steps due to braking and acceleration. Previously, shorter epoch lengths
have been found to be more accurate for capturing the actual PA levels during intermittent
PA than longer epochs [11]. Like the short epoch length, the floating epoch model can
capture short bursts of PA. In addition, when calculating the change in the epoch-wise
accelerometer output values, it became possible to estimate the extra VO2 due to braking
and propulsive forces. Noteworthy, the floating epoch length model also had good perfor-
mance for the steady activity of the CS test, where the change in the accelerometer output
between the adjacent epochs was small. The different influence of the floating epoch and
fixed epoch lengths on the predicted VO2 from a standing position to walking is illustrated
in Figure 9. The predicted VO2 reached the highest values during the acceleration phase of
walking with the floating epoch model, but during the steady walking pace, both models
showed a comparable prediction of VO2.
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The fixed epoch length can result in the over-smoothing of acceleration data and lead
to a loss of potentially important details and features from the data [28]. In this study,
the fixed, 6 s epoch length missed the changes in the MAD levels during braking and
accelerating, which yielded underestimated VO2 values from 25 mL/kg/min upwards for
the AC/DC test (Figures 3–5). The largest difference between the measured and estimated
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VO2 value for the AC/DC test with the 6 s epoch was 17 mL/kg/min, when the CS test was
used as the training set, and 13 mL/kg/min, when the AC/DC test was used as the training
set. Correspondingly, the largest difference with the floating epoch was 15 mL/kg/min,
when the CS test was used as the training set, and 7 mL/kg/min, when the AC/DC test
was used as the training set.

Bipedal gait involves continuous fluctuations in energetics, differing from wheeled
vehicles, like bicycles [29]. The increases in kinetic energy due to acceleration require extra
positive mechanical work and the same applies to deceleration, where negative mechanical
work is required to reduce the kinetic energy. The absence of energy fluctuations at the
constant speed makes any speed changes energetically very expensive for wheeled vehicles,
but on the contrary, for bipedal gait, limited alterations in the speed can be performed
without a remarkable increase in metabolic energy consumption [29]. In this study, the
MAD and VO2 values were at the same level for the AC/DC and CS tests up to the
approximately 20 mL/kg/min level in terms of the VO2 (Figure 2). For higher intensities,
the VO2 values were higher for the AC/DC test than for the CS test with the same MAD
values. Therefore, the greatest benefits of the floating epoch model can be achieved with
intensities over 20 mL/kg/min corresponding primarily to vigorously performed PA.

The limitation of this study is that the floating epoch model was tested only with
walking and the speed range was narrow in the AC/DC test. The floating epoch model
should also be tested with other than bipedal physical activities, like swimming, cycling,
skiing, and gym training, and in transportation activities, like vehicle driving. The other
activities will likely have an influence on the selection of appropriate filter characteris-
tics. The filter type and cutoff frequency determine the level of smoothing applied to
the raw accelerometer data and directly impact on the detection of the movement cycle
patterns [30,31]. An excessively aggressive filter may result in over-smoothing, obscuring
important high-frequency features and leading to missed or distorted cycle events, while
an insufficiently smoothing filter can allow noise and fine-scale variations in the raw data
to interfere with cycle detection, potentially leading to inaccuracies in movement detection
and the classification of movements [32]. Therefore, the judicious choice of the filter is
pivotal in achieving a precise and robust cycle detection, striking a balance between noise
reduction and the preservation of essential information of coincident movements.

In free-living measurements, the floating epoch model can capture the pulsatile and
sporadic activity behaviors. With fixed and longer, over 15 s epochs, the intensity of these
kinds of movements becomes underestimated or can even be undetected and classified as
stationary time [33,34]. On the other hand, a short interruption in PA can be picked up as
a stationary behavior with shorter epoch lengths [34]. Therefore, the floating epoch will
contribute to the accumulation of both stationary time and time spent in light, moderate,
and vigorous PA. It is likely that the accumulated time of light PA is reallocated to other
activities, if the accumulated time is calculated using the floating epochs instead of the
fixed epoch length.

When employing floating epochs, the use of an analyzing window with a size that
aligns with specific parameters of interest in coincident PA might be a reasonable approach.
The time-course of physiological responses to acute PA depends on the various factors,
including the type and duration of activity and individual fitness level [35]. The analyzing
window size can modulate data smoothing, a long window size smooths data more than
a short window size [36]. The longer analyzing window size is likely more suitable for
responses with a longer time-course while it removes effectively short bursts of PA in the
middle of stationary behavior or short breaks in the middle of a long steady PA period.
Similarly, a short window size suits responses with a shorter time-course while it can
capture shorts bursts of activity or breaks. A short window size can also improve the type
of human activity recognition as the number of windows containing multiple activities can
be minimized [37,38]. The optimal size of the analyzing window, i.e., the level of smoothing,
depends on the goals of the PA measurement and analysis, and the trade-off between noise
reduction and preserving meaningful information. These topics call for further research.
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5. Conclusions

The floating epoch model can accurately capture the intensity of the short bursts of
PA effectively and may thus enhance the performance of the laboratory-trained prediction
models for VO2 in free-living conditions. This model shows a heightened accuracy in pre-
dicting spontaneous and sporadic PA, which is advantageous for research focused on child
and adolescent PA or activities associated with occupational tasks. The assessment of PA in
population studies may also benefit from this approach. Furthermore, its utility may extend
to exercise interventions characterized by short, high-intensity intervals, establishing the
floating epoch model as a valuable tool for advancing our understanding and application
of PA-related interventions.
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